1
|
Brígido HPC, dos Santos LGA, de Barros RC, Correa-Barbosa J, dos Santos PVB, Paz RFL, Pereira AR, de Albuquerque KCO, Campos MB, Silveira FT, Percário S, Dolabela MF. The Role of Oxidative Stress in the Pathogenesis and Treatment of Leishmaniasis: Impact on Drug Toxicity and Therapeutic Potential of Natural Products. TOXICS 2025; 13:190. [PMID: 40137517 PMCID: PMC11945835 DOI: 10.3390/toxics13030190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
The treatment of leishmaniasis has limitations due to drug toxicity and the increasing resistance of the parasite. In this study, we analyze the role of oxidative stress in the pathogenesis and treatment of leishmaniasis, as well as in new therapeutic alternatives of natural origin. The evasion mechanisms against the host immune response involve surface molecules present in the parasite, which modulate oxidative stress to ensure its survival. Drug treatment requires strict monitoring to minimize adverse reactions and ensure patient safety, as mechanisms such as lipid peroxidation, mitochondrial dysfunction, and depletion of antioxidant defenses are associated with drug toxicity. Plant-derived products with antileishmanial activity impact the parasite's redox balance, inducing apoptosis and reducing its parasitic load. Most studies are still in preliminary stages, making in vivo assays and clinical studies essential, along with the development of accessible formulations. Oxidative stress is involved in the pathogenesis of leishmaniasis, as Leishmania manipulates the host's redox balance to survive. It also contributes to drug toxicity, as antimonials and amphotericin B increase reactive oxygen species, causing cellular damage. Several plant-derived compounds have demonstrated antileishmanial activity by modulating oxidative stress and promoting parasite apoptosis. Examples include alkaloids from Aspidosperma nitidum, lignans from Virola surinamensis, flavonoids from Geissospermum vellosii, and triterpenoids such as β-sitosterol. Although these compounds show promising selectivity, most studies remain in preliminary stages, requiring in vivo assays and clinical studies to confirm efficacy and safety, as well as the development of affordable formulations.
Collapse
Affiliation(s)
- Heliton Patrick Cordovil Brígido
- National Council for Scientific and Technological Development (CNPq), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
- Biotechnology and Biodiversity Postgraduate Program (BIONORTE), Federal University of Pará, Belém 66075-110, PA, Brazil; (A.R.P.); (K.C.O.d.A.); (S.P.)
| | | | - Renilson Castro de Barros
- Pharmaceutical Sciences Postgraduate Program, Federal University of Pará, Belém 66075-110, PA, Brazil;
| | - Juliana Correa-Barbosa
- Postgraduate Pharmaceutical Innovation Program, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil;
| | | | - Rayana Franciele Lopes Paz
- Faculty of Pharmacy, Federal University of Pará, Belém 66075-110, PA, Brazil; (L.G.A.d.S.); (P.V.B.d.S.); (R.F.L.P.)
| | - Amanda Ramos Pereira
- Biotechnology and Biodiversity Postgraduate Program (BIONORTE), Federal University of Pará, Belém 66075-110, PA, Brazil; (A.R.P.); (K.C.O.d.A.); (S.P.)
| | | | - Marliane Batista Campos
- Parasitology Department, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil; (M.B.C.); (F.T.S.)
| | - Fernando Tobias Silveira
- Parasitology Department, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil; (M.B.C.); (F.T.S.)
| | - Sandro Percário
- Biotechnology and Biodiversity Postgraduate Program (BIONORTE), Federal University of Pará, Belém 66075-110, PA, Brazil; (A.R.P.); (K.C.O.d.A.); (S.P.)
| | - Maria Fâni Dolabela
- Biotechnology and Biodiversity Postgraduate Program (BIONORTE), Federal University of Pará, Belém 66075-110, PA, Brazil; (A.R.P.); (K.C.O.d.A.); (S.P.)
- Pharmaceutical Sciences Postgraduate Program, Federal University of Pará, Belém 66075-110, PA, Brazil;
- Postgraduate Pharmaceutical Innovation Program, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil;
| |
Collapse
|
2
|
Xu H, Song X, Zhang X, Wang G, Cheng X, Zhang L, Wang Z, Li R, Ai C, Wang X, Pu L, Chen Z, Liu W. SIRT1 regulates mitochondrial fission to alleviate high altitude hypoxia inducedcardiac dysfunction in rats via the PGC-1α-DRP1/FIS1/MFF pathway. Apoptosis 2024; 29:1663-1678. [PMID: 38678130 DOI: 10.1007/s10495-024-01954-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/29/2024]
Abstract
High-altitude exposure has been linked to cardiac dysfunction. Silent information regulator factor 2-related enzyme 1 (sirtuin 1, SIRT1), a nicotinamide adenine dinucleotide-dependent deacetylase, plays a crucial role in regulating numerous cardiovascular diseases. However, the relationship between SIRT1 and cardiac dysfunction induced by hypobaric hypoxia (HH) remains unexplored. This study aims to assess the impact of SIRT1 on HH-induced cardiac dysfunction and delve into the underlying mechanisms, both in vivo and in vitro. In this study, we have demonstrated that exposure to HH results in cardiomyocyte injury, along with the downregulation of SIRT1 and mitochondrial dysfunction. Upregulating SIRT1 significantly inhibits mitochondrial fission, improves mitochondrial function, reduces cardiomyocyte injury, and consequently enhances cardiac function in HH-exposed rats. Additionally, HH exposure triggers aberrant expression of mitochondrial fission-regulated proteins, with a decrease in PPARγ coactivator 1 alpha (PGC-1α) and mitochondrial fission factor (MFF) and an increase in mitochondrial fission 1 (FIS1) and dynamin-related protein 1 (DRP1), all of which are mitigated by SIRT1 upregulation. Furthermore, inhibiting PGC-1α diminishes the positive effects of SIRT1 regulation on the expression of DRP1, MFF, and FIS1, as well as mitochondrial fission. These findings demonstrate that SIRT1 alleviates HHinduced cardiac dysfunction by preventing mitochondrial fission through the PGC-1α-DRP1/FIS1/MFF pathway.
Collapse
Affiliation(s)
- Hongbao Xu
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiaona Song
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiaoru Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Guangrui Wang
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiaoling Cheng
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Ling Zhang
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zirou Wang
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Ran Li
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Chongyi Ai
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xinxing Wang
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Lingling Pu
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.
| | - Zhaoli Chen
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.
| | - Weili Liu
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.
| |
Collapse
|
3
|
Wu Q, Tao J, Wu L, Wei W, Zhang X, Zhang Z, Zhang X, Jiang X, Chen N. Corn peptide enhances exercise performance and prevents myocardial damage of mice caused by overtraining through activating autophagy. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
4
|
Han J, Luo L, Wang Y, Wu S, Kasim V. Therapeutic potential and molecular mechanisms of salidroside in ischemic diseases. Front Pharmacol 2022; 13:974775. [PMID: 36060000 PMCID: PMC9437267 DOI: 10.3389/fphar.2022.974775] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Rhodiola is an ancient wild plant that grows in rock areas in high-altitude mountains with a widespread habitat in Asia, Europe, and America. From empirical belief to research studies, Rhodiola has undergone a long history of discovery, and has been used as traditional medicine in many countries and regions for treating high-altitude sickness, anoxia, resisting stress or fatigue, and for promoting longevity. Salidroside, a phenylpropanoid glycoside, is the main active component found in all species of Rhodiola. Salidroside could enhance cell survival and angiogenesis while suppressing oxidative stress and inflammation, and thereby has been considered a potential compound for treating ischemia and ischemic injury. In this article, we highlight the recent advances in salidroside in treating ischemic diseases, such as cerebral ischemia, ischemic heart disease, liver ischemia, ischemic acute kidney injury and lower limb ischemia. Furthermore, we also discuss the pharmacological functions and underlying molecular mechanisms. To our knowledge, this review is the first one that covers the protective effects of salidroside on different ischemia-related disease.
Collapse
Affiliation(s)
- Jingxuan Han
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Lailiu Luo
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Yicheng Wang
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Shourong Wu
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
- *Correspondence: Shourong Wu, ; Vivi Kasim,
| | - Vivi Kasim
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
- *Correspondence: Shourong Wu, ; Vivi Kasim,
| |
Collapse
|
5
|
Pretreatment of Nicorandil Protects the Heart from Exhaustive Exercise-Induced Myocardial Injury in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7550872. [PMID: 35035509 PMCID: PMC8758261 DOI: 10.1155/2022/7550872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Nicorandil has been widely used for the treatment of angina pectoris and myocardial infarction. The purpose of this study was to investigate whether nicorandil plays a protective role in exhaustive exercise (EE)-induced myocardial injury. METHODS Here, we applied the rat EE model and treated them with exercise preconditioning (EP, reported to protect the heart) or different doses of nicorandil gavage, respectively, to explore whether there are protective effects of single EP or nicorandil or a combination of both and the potential mechanism. Forty-nine male Sprague Dawley rats were randomly divided into control, EE, EP + EE, nicorandil (with low, middle, and high dose) + EE, and EP + nicorandil (middle dose) + EE. Blood samples and myocardial tissues were collected to analyze the myocardial injury-related index. RESULTS EE induced myocardial structural damage and altered the myocardial injury markers, which were partially reversed by pretreatment of nicorandil. In addition, oxidative stress and inflammation lead to the accumulation of reactive oxygen species (ROS) products and further damage to the myocardium, while pretreatment of nicorandil reduces the oxidative stress response and inflammation. Moreover, nicorandil suppressed the myocardial apoptosis induced by EE, as indicated by a decrease of Bax and caspase-3 expression and an increase of Bcl-2 expression. Finally, the pathway in which nicorandil plays a role may be involved in the endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) pathway. Pretreatment of nicorandil increased the protein level of myocardial eNOS and NO production. CONCLUSION Our result demonstrated that nicorandil has protective effects in EE-induced myocardial injury with dose-dependent effects. A combination of nicorandil and EP can further improve the protective effects. Taken together, nicorandil can be potentially used as an intervention method in EE-induced myocardial injury.
Collapse
|
6
|
Sarikaya B, Runa M, Dayanir D, Gündüztepe Y, Pinar L. Paraoxonase and oxidative stress changes in left and right ventricles of exhaustively exercised rats. Can J Physiol Pharmacol 2021; 99:752-759. [PMID: 33201749 DOI: 10.1139/cjpp-2020-0332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exhaustive exercise can cause subclinical inflammation to the heart, as it is an oxidative tissue that works continuously. The effect of exhaustive exercise on left and right ventricles (LVs, RVs) may be different. It is claimed that paraoxonase-1 (PON1), an antioxidant enzyme, has a cardioprotective effect on oxidative stress. Rats were separated as non-exercised controls (Con), those euthanized immediately after (E-0) and 24 h after exhaustive exercise (E-24). Cardiac troponin-I (cTnI), total antioxidant status (TAS), total oxidant status (TOS), PON1 activities, and histological findings in LV and RV of the exhausted rats were evaluated. TAS and PON1 levels were lower in LVs compared with RVs of all groups. TOS levels were high in LVs compared with RVs of all groups. In LVs, TAS levels decreased significantly in the E-0 group while PON1 activity decreased in E-0 and E-24 groups compared with controls. In LVs, TOS levels decreased significantly in E-0 and E-24 groups, but in RVs a decrease was seen only in the E-0 group. cTnI levels increased significantly in the E-0 group and decreased to control levels in the E-24 group. Considering the histological and biochemical findings, exhaustive exercise affected the heart to the maximum during and just after exhaustion, and LV was influenced more than RV.
Collapse
Affiliation(s)
- Badegül Sarikaya
- Department of Physiology, Faculty of Medicine, Atılım University, Ankara, Turkey
| | - Metin Runa
- Department of Physiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Duygu Dayanir
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Yasemin Gündüztepe
- Department of Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Lamia Pinar
- Department of Physiology, Faculty of Medicine, Okan University, İstanbul, Turkey
| |
Collapse
|
7
|
Salidroside: A review of its recent advances in synthetic pathways and pharmacological properties. Chem Biol Interact 2021; 339:109268. [PMID: 33617801 DOI: 10.1016/j.cbi.2020.109268] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 09/08/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
Abstract
Salidroside has been identified as one of the most potent compounds isolated from various Rhodiola plants, which have been used for a long time as adaptogens in traditional Chinese medicine. However, due to the severe growing environment of herbal medicine and large-scale excavation, the content of natural salidroside is extremely small. Most of the previous studies focused on herbal medicine, and there were few reviews on the synthesis of its main active ingredient salidroside. This paper presents different synthetic routes of salidroside to resolve the contradiction between supply and demand and lays the foundation for new drug research and development. Furthermore, emerging evidence indicates that salidroside, a promising environmentally-adapted drug with low toxicity and few side effects, possesses a wide spectrum of pharmacological properties, including activities on the cardiovascular system and central nervous system, anti-hypoxia, anti-fatigue and anti-aging activities, anticancer activity, anti-inflammatory activity, antioxidant activity, antivirus and immune stimulation activities, antidiabetic activity, anti-osteoporotic activity, and so on. Although the former researches have summarized the pharmacological effects of salidroside, focusing on the central nervous system, diabetes, and cancer, the overall pharmacological aspects of it have not been analyzed. This review highlights biological characteristics and mechanisms of action from 2009 to now as well as toxicological and pharmacokinetic data of the analyzed compound reported so far, with a view to providing a reference for further development and utilization of salidroside.
Collapse
|
8
|
Jin P, Li LH, Shi Y, Hu NB. Salidroside inhibits apoptosis and autophagy of cardiomyocyte by regulation of circular RNA hsa_circ_0000064 in cardiac ischemia-reperfusion injury. Gene 2020; 767:145075. [PMID: 32858179 DOI: 10.1016/j.gene.2020.145075] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/08/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022]
Abstract
Salidroside (Sal), a natural extract of Rhodiola rosea, shows a latent effect on protecting cardiovascular system. Our study explored the effect of salidroside on ischemia-reperfusion (I/R) injury in rat heart. I/R was performed on Wistar rat hearts, and Sal pretreatment was performed in I/R rats. Cardiac marker enzyme, myocardial infarct size, malondialdehyde (MDA) and superoxide dismutase (SOD) content were then measured. Compared with the untreated group, Sal pretreatment observably ameliorated the cardiac function, decreased the myocardial infarct size, reduced the levels of cardiac lactate creatine kinase-MB (CK-MB) and dehydrogenase (LDH), and inhibited the anti-oxidative stress. In addition, Sal treatment also significantly inhibited autophagy and apoptosis, which could be partially reversed by Rapamycin (RAPA), an autophagic agonist. Furthermore, Sal treatment attenuated autophagy by up-regulating the expression of hsa_circ_0000064 (circ-0000064) and Rapamycin (RAPA) treatment abolished it. Our study showed that Sal protected the heart from I/R injury, which might berelated to the upregulation of circ-0000064 and the inhibition of autophagy.
Collapse
Affiliation(s)
- Ping Jin
- Department of Intensive Care Unit (ICU), Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei, China.
| | - Liang-Hai Li
- Department of Intensive Care Unit (ICU), Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei, China
| | - Yan Shi
- Department of Emergency, Huai'an Second People's Hospital and the Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Nan-Bin Hu
- Department of Intensive Care Unit, Lian Shui People's Hospital, Lian Shui, Huan'an, China
| |
Collapse
|
9
|
Liu B, Wei H, Lan M, Jia N, Liu J, Zhang M. MicroRNA-21 mediates the protective effects of salidroside against hypoxia/reoxygenation-induced myocardial oxidative stress and inflammatory response. Exp Ther Med 2020; 19:1655-1664. [PMID: 32104217 PMCID: PMC7027140 DOI: 10.3892/etm.2020.8421] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
Myocardial ischemia-reperfusion (I/R) injury is the oxidative stress and inflammatory response that occurs when a tissue is reperfused following a prolonged period of ischemic injury. Growing evidence has demonstrated that microRNAs (miRs) are essential in the development of myocardial I/R injury. Salidroside, a phenylpropanoid glycoside isolated from a traditional Chinese medicinal plant, Rhodiola rosea, possesses multiple pharmacological functions and protects against myocardial I/R injury in vitro and in vivo. However, the role of miRs in the cardioprotective effects of salidroside against myocardial I/R injury has not been studied, to the best of our knowledge. In the present study, the role of miR21 in the underlying mechanism of salidroside-induced protection against oxidative stress and inflammatory injuries in hypoxia/reoxygenation (H/R)-treated H9c2 cardiomyocytes was determined. The cell viability was assessed with an MTT assay. Lactate dehydrogenase (LDH) release, caspase-3 activity, malondialdehyde (MDA) level, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were determined by commercial kits. Cell apoptosis was measured by flow cytometry. Intracellular reactive oxygen species (ROS) generation was monitored by DCFH-DA. The miR-21 level was quantified by reverse transcription-quantitative (RT-q)PCR. The interleukin (IL)-6, IL-1β and tumor necrosis factor (TNF)-α levels were measured by RT-qPCR and ELISA. The results showed that salidroside pretreatment significantly increased cell viability and decreased the release of LDH, accompanied by an increase in miR-21 expression in H/R-treated H9c2 cells and a miR-21 inhibitor reversed these effects. In addition, the miR-21 inhibitor also abrogated the inhibition of salidroside on H/R-induced increases in apoptosis and caspase-3 activity in H9c2 cells. Salidroside mitigated H/R-induced oxidative stress as illustrated by the downregulation of ROS generation and MDA level and increased the activities of the antioxidant enzymes, SOD and GSH-Px, all of which were abrogated in cells transfected with the miR-21 inhibitor. Salidroside induced a decrease in the expression and levels of the pro-inflammatory cytokines, IL-6, IL-1β and TNF-α, which were prevented by the miR-21 inhibitor. Together, these results provide evidence of the beneficial effects of salidroside against myocardial I/R injury by reducing myocardial oxidative stress and inflammation which are enhanced by increasing miR-21 expression.
Collapse
Affiliation(s)
- Bing Liu
- Department of Cardiology, National Center of Gerontology of China, Beiing Hospital, Beijing 100730, P.R. China
| | - Huali Wei
- Department of Gynecology and Obstetrics, Emergency General Hospital, Beijing 100028, P.R. China
| | - Ming Lan
- Department of Cardiology, National Center of Gerontology of China, Beiing Hospital, Beijing 100730, P.R. China
| | - Na Jia
- Department of Cardiology, National Center of Gerontology of China, Beiing Hospital, Beijing 100730, P.R. China
| | - Junmeng Liu
- Department of Cardiology, National Center of Gerontology of China, Beiing Hospital, Beijing 100730, P.R. China
| | - Meng Zhang
- Department of Cardiology, Aerospace Center Hospital, Beijing 100049, P.R. China
| |
Collapse
|
10
|
Protective effects of Salidroside on cardiac function in mice with myocardial infarction. Sci Rep 2019; 9:18127. [PMID: 31792327 PMCID: PMC6888872 DOI: 10.1038/s41598-019-54713-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 11/18/2019] [Indexed: 01/19/2023] Open
Abstract
Salidroside (SAL) is the major ingredient of Rhodiola rosea, and has been traditionally used in Chinese medicine for decades. Numerous studies have demonstrated the protective effects of SAL for myocardial ischemia. However, it is yet to be deciphered whether SAL has cardioprotective effects after myocardial infarction (MI) in vivo. In the present study, we established a mouse MI model via coronary artery ligation. The aim was to investigate whether SAL treatment could reduce mortality, improve cardiac function and attenuate myocardial remodeling in MI mice. Post-surgery, mice were randomly administered SAL or normal saline. After 21 days, SAL was found to significantly reduce mortality, improve cardiac function, reduce fibrosis and infarct size compared to normal saline. In addition, oral administration of SAL could attenuate myocardial inflammation and apoptosis and promote angiogenesis. SAL down-regulated the expression levels of TNF-α, TGF-β1, IL-1β, Bax and up-regulate the expression of Bcl-2, VEGF, Akt and eNOS. These results indicated that SAL could alleviate the pathological processes of myocardial remodeling in MI mice, and may be a potentially effective therapeutic approach for the management of clinical ischemic cardiovascular diseases.
Collapse
|
11
|
Chauhan K, Kaur G, Kaur S. Evaluation of antileishmanial efficacy of Salidroside against the SSG-sensitive and resistant strain of Leishmania donovani. Parasitol Int 2019; 72:101928. [PMID: 31108221 DOI: 10.1016/j.parint.2019.101928] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 01/17/2023]
Abstract
The successful control and eradication of leishmaniasis are still challenging in view of the lack of adequate chemotherapy and potential prophylaxis. Research is going on for finding an appropriate anti-leishmanial drug which should be acceptable in terms of cost and safety. In view of this, the current study investigated the anti-leishmanial efficacy of salidroside (SAL) which is a phenylpropanoid glycoside. The leishmanicidal capacity of SAL was verified in vitro as well as in vivo. The SAL exhibited leishmanicidal activity against the promastigotes of L. donovani which was further validated by propidium iodide staining and its ability to arrest the promastigotes at the sub G0/G1 stage. SAL decreased and controlled the VL infection in mice as estimated by real-time PCR. Active immunomodulation was exhibited upon SAL treatment in BALB/c mice. The characteristic features like pronounced DTH reaction, polarization of immune status to Th1 type of immune response, increased the production of CD4+ and CD8+ T cells indicated the immune-stimulatory property of SAL. In addition to this the expression of NF-ĸB, iNOS genes along with the levels of leishmanicidal species, NO and ROS were found to be augmented in SAL treated infected animals. Moreover, SAL exhibited minimal toxicity to the THP-1 cells and it revealed no toxicity against liver and kidney. The capability of SAL in promoting the immune status in favor of host during VL infection without causing any side-effects may be used as an effective strategy to fight the disease.
Collapse
Affiliation(s)
| | - Gurpreet Kaur
- Department of Zoology, Panjab University, Chandigarh, India
| | - Sukhbir Kaur
- Department of Zoology, Panjab University, Chandigarh, India.
| |
Collapse
|
12
|
Effects of Modulation of Ion Channel Currents by Salidroside in H9C2 Myocardial Cells in Hypoxia and Reoxygenation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:8212868. [PMID: 30805019 PMCID: PMC6362469 DOI: 10.1155/2019/8212868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/30/2018] [Accepted: 01/13/2019] [Indexed: 11/17/2022]
Abstract
Salidroside, a phenyl-propanoid glycoside isolated from the medicinal plant Rhodiola rosea, has potent cardioprotective effects, especially against myocardial hypoxia and reoxygenation injury. However, the molecular mechanism underlying its action is still unclear. The aim of this study was to determine the effect of salidroside on sodium channel current (INa) and transient outward potassium channel current (Ito) in H9C2 cardiomyocytes. H9C2 cells were subcultured under anoxic conditions to mimic myocardial hypoxia and subsequently treated with salidroside. Whole cell patch clamp was performed to determine the effect of hypoxia/reoxygenation and salidroside on myocardial electrophysiological properties. In the differentiated H9C2 cells, hypoxia/reoxygenation reduced INa and Ito amplitude, while salidroside significantly restored both and altered the INa and Ito activation/inactivation kinetics in a dose-dependent manner. Our findings demonstrate that salidroside protects myocardial cells against hypoxia-reoxygenation by restoring the function of sodium and potassium channels.
Collapse
|
13
|
Zhuang W, Yue L, Dang X, Chen F, Gong Y, Lin X, Luo Y. Rosenroot ( Rhodiola): Potential Applications in Aging-related Diseases. Aging Dis 2019; 10:134-146. [PMID: 30705774 PMCID: PMC6345333 DOI: 10.14336/ad.2018.0511] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/11/2018] [Indexed: 12/12/2022] Open
Abstract
Aging is a progressive accumulation of changes in the body, which increases the susceptibility to diseases such as Alzheimer's disease, Parkinson's disease, cerebrovascular disease, diabetes, and cardiovascular disease. Recently, Chinese medicinal herbs have been investigated for their therapeutic efficacy in the treatment of some aging-related diseases. Rhodiola, known as 'Hongjingtian' in Chinese, has been reported to have anti-aging activity. Here, we provide a comprehensive review about its origin, chemical constituents, and effects on aging-related diseases.
Collapse
Affiliation(s)
- Wei Zhuang
- 1Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Lifeng Yue
- 2Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xiaofang Dang
- 3Department of Pharmacy, Hospital of T.C.M.S Shijingshan District, Beijing 100043, China
| | - Fei Chen
- 1Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yuewen Gong
- 4College of Pharmacy, University of Manitoba, Winnipeg R3E 0T5, Manitoba, Canada
| | - Xiaolan Lin
- 1Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yumin Luo
- 5Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| |
Collapse
|
14
|
Feng J, Zhang Q, Mo W, Wu L, Li S, Li J, Liu T, Xu S, Fan X, Guo C. Salidroside pretreatment attenuates apoptosis and autophagy during hepatic ischemia-reperfusion injury by inhibiting the mitogen-activated protein kinase pathway in mice. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:1989-2006. [PMID: 28721018 PMCID: PMC5501634 DOI: 10.2147/dddt.s136792] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ischemia–reperfusion injury (IRI) contributes to liver damage in many clinical situations, such as liver resection and liver transplantation. In the present study, we investigated the effects of the antioxidant, anti-inflammatory, and anticancer agent salidroside (Sal) on hepatic IRI in mice. The mice were randomly divided into six groups: normal control, Sham, Sal (20 mg/kg), IRI, IRI + Sal (10 mg/kg), and IRI + Sal (20 mg/kg). We measured liver enzymes, proinflammatory cytokines, TNF-α and interleukin-6, and apoptosis- and autophagy-related marker proteins at 2, 8, and 24 hours after reperfusion. Components of mitogen-activated protein kinase (MAPK) signaling, including P-38, jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK), were also measured using an MAPK activator anisomycin to deduce their roles in hepatic IRI. Our results show that Sal safely protects hepatocytes from IRI by reducing levels of liver enzymes in the serum. These findings were confirmed by histopathology. We concluded that Sal protects hepatocytes from IRI partly by inhibiting the activation of MAPK signaling, including the phosphorylation of P38, JNK, and ERK. This ameliorates inflammatory reactions, apoptosis, and autophagy in the mouse liver.
Collapse
Affiliation(s)
- Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai
| | - Qinghui Zhang
- Department of Clinical Laboratory, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, JiangSu
| | - Wenhui Mo
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai
| | - Shizan Xu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai
| | - Xiaoming Fan
- Department of Gastroenterology, Jinshan Hospital of Fudan University, Jinshan, Shanghai, China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai
| |
Collapse
|
15
|
Salidroside protects rat liver against ischemia/reperfusion injury by regulating the GSK-3β/Nrf2-dependent antioxidant response and mitochondrial permeability transition. Eur J Pharmacol 2017; 806:32-42. [DOI: 10.1016/j.ejphar.2017.04.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 04/08/2017] [Accepted: 04/10/2017] [Indexed: 02/06/2023]
|
16
|
Hsu SW, Chang TC, Wu YK, Lin KT, Shi LS, Lee SY. Rhodiola crenulata extract counteracts the effect of hypobaric hypoxia in rat heart via redirection of the nitric oxide and arginase 1 pathway. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:29. [PMID: 28061780 PMCID: PMC5219729 DOI: 10.1186/s12906-016-1524-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 12/08/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Rhodiola crenulata is traditionally used as a folk medicine in Tibet for preventing high-altitude illnesses, including sudden cardiac death (SCD). The cardio-protective effects of Rhodiola crenulata root extract (RCE) against hypoxia in vivo have been recently confirmed. However, the way in which RCE produces these effects remains unclear. The present study is designed to confirm the protective effects of RCE on the heart in acute hypobaric hypoxia exposure and examine the mechanisms by which this occurs. METHODS Sprague-Dawley (SD) rats were pretreated with or without RCE and then exposed to a simulated altitude of 8000 m in a hypobaric hypoxia chamber for 9 h. The expression of cardiac arginase 1 (Arg-1) and endothelial nitric oxide synthase (eNOS) and the activity of associated signaling pathways was examined. RESULTS Hypoxia reduced cardiac eNOS phosphorylation and increased Arg-1 expression, but both responses were reversed by RCE pre-treatment. In addition, RCE decreased the hypoxia-induced oxidative stress markers of reactive oxygen species (ROS) production, malondialdehyde (MDA) level, and protein carbonyl content. Furthermore, RCE protected cardiomyocytes from hypoxia-induced cardiac apoptosis and restored the phosphorylation level of AKT and p38 MAPK as well as the superoxide dismutase 2 (SOD2) content in hypoxic animals. CONCLUSION The findings provide evidence that the effects of Rhodiola crenulata against altitude illness are partially mediated by modulation of eNOS and Arg-1 pathways in the heart.
Collapse
Affiliation(s)
- Shih-Wei Hsu
- Department of Neurosurgery, Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Tsu-Chung Chang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Kuan Wu
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Kuen-Tze Lin
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Li-Shian Shi
- Department of Biotechnology, National Formosa University, Yunlin, Taiwan
| | - Shih-Yu Lee
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, P.O. Box 90048-514, Nei-Hu 114, Taipei, Taiwan, R.O.C
| |
Collapse
|
17
|
Protective Effects of Kaempferol against Myocardial Ischemia/Reperfusion Injury in Isolated Rat Heart via Antioxidant Activity and Inhibition of Glycogen Synthase Kinase-3β. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:481405. [PMID: 26265983 PMCID: PMC4525766 DOI: 10.1155/2015/481405] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/09/2014] [Accepted: 11/11/2014] [Indexed: 11/27/2022]
Abstract
Objective. This study aimed to evaluate the protective effect of kaempferol against myocardial ischemia/reperfusion (I/R) injury in rats. Method. Left ventricular developed pressure (LVDP) and its maximum up/down rate (±dp/dtmax) were recorded as myocardial function. Infarct size was detected with 2,3,5-triphenyltetrazolium chloride staining. Cardiomyocyte apoptosis was determined using terminal deoxynucleotidyl nick-end labeling (TUNEL). The levels of creatine kinase (CK), lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione/glutathione disulfide (GSH/GSSG) ratio, and tumor necrosis factor-alpha (TNF-α) were determined using enzyme linked immunosorbent assay (ELISA). Moreover, total glycogen synthase kinase-3β (GSK-3β), phospho-GSK-3β (P-GSK-3β), precaspase-3, cleaved caspase-3, and cytoplasm cytochrome C were assayed using Western blot analysis. Results. Pretreatment with kaempferol significantly improved the recovery of LVDP and ±dp/dtmax, as well as increased the levels of SOD and P-GSK-3β and GSH/GSSG ratio. However, the pretreatment reduced myocardial infarct size and TUNEL-positive cell rate, as well as decreased the levels of cleaved caspase-3, cytoplasm cytochrome C, CK, LDH, MDA, and TNF-α. Conclusion. These results suggested that kaempferol provides cardioprotection via antioxidant activity and inhibition of GSK-3β activity in rats with I/R.
Collapse
|
18
|
The Protective Effects of Salidroside from Exhaustive Exercise-Induced Heart Injury by Enhancing the PGC-1 α -NRF1/NRF2 Pathway and Mitochondrial Respiratory Function in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:876825. [PMID: 26167242 PMCID: PMC4488012 DOI: 10.1155/2015/876825] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 12/11/2014] [Accepted: 12/11/2014] [Indexed: 11/17/2022]
Abstract
Objective. To test the hypothesis that salidroside (SAL) can protect heart from exhaustive exercise-induced injury by enhancing mitochondrial respiratory function and mitochondrial biogenesis key signaling pathway PGC-1α–NRF1/NRF2 in rats. Methods. Male Sprague-Dawley rats were divided into 4 groups: sedentary (C), exhaustive exercise (EE), low-dose SAL (LS), and high-dose SAL (HS). After one-time exhaustive swimming exercise, we measured the changes in cardiomyocyte ultrastructure and cardiac marker enzymes and mitochondrial electron transport system (ETS) complexes activities in situ. We also measured mitochondrial biogenesis master regulator PGC-1α and its downstream transcription factors, NRF1 and NRF2, expression at gene and protein levels. Results. Compared to C group, the EE group showed marked myocardium ultrastructure injury and decrease of mitochondrial respiratory function (P < 0.05) and protein levels of PGC-1α, NRF1, and NRF2 (P < 0.05) but a significant increase of PGC-1α, NRF1, and NRF2 genes levels (P < 0.05); compared to EE group, SAL ameliorated myocardium injury, increased mitochondrial respiratory function (P < 0.05), and elevated both gene and protein levels of PGC-1α, NRF-1, and NRF-2. Conclusion. Salidroside can protect the heart from exhaustive exercise-induced injury. It might act by improving myocardial mitochondrial respiratory function by stimulating the expression of PGC-1α–NRF1/NRF2 pathway.
Collapse
|
19
|
miR-103 Regulates Oxidative Stress by Targeting the BCL2/Adenovirus E1B 19 kDa Interacting Protein 3 in HUVECs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:489647. [PMID: 26000071 PMCID: PMC4427121 DOI: 10.1155/2015/489647] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/23/2015] [Accepted: 04/01/2015] [Indexed: 02/07/2023]
Abstract
Oxidative stress plays a critical role in cardiovascular diseases. Salidroside, a glycoside from Rhodiola rosea, has been used as an antioxidative therapy for oxidative injury in cardiac diseases. However, the mechanism underlying its antioxidant effect needs to be elucidated. Treatment of HUVECs with H2O2 significantly decreased the expression of miR-103 in a dose- and time-dependent manner, whereas pretreatment with salidroside significantly inhibited this decrease. Subsequent analysis showed that overexpression of miR-103 abrogated cell activity and ROS production induced by H2O2. Bcl2/adenovirus E1B 19 kDa interacting protein 3 (BNIP3) was determined to be a novel miR-103 target in HUVECs. Interestingly, H2O2 treatment upregulated BNIP3 expression; in turn, this effect was inhibited by pretreatment with salidroside. Further studies confirmed that the knockdown of BNIP3 enhanced cell activity and suppressed the ROS production induced by H2O2. These results demonstrated for the first time that salidroside protects HUVECs in part by upregulating the expression of miR-103, which mediates BNIP3 downregulation and plays an important role in the cytoprotective actions.
Collapse
|