1
|
Identification of Hub Genes for Colorectal Cancer with Liver Metastasis Using miRNA-mRNA Network. DISEASE MARKERS 2023; 2023:2295788. [PMID: 36798788 PMCID: PMC9928517 DOI: 10.1155/2023/2295788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/17/2022] [Accepted: 11/25/2022] [Indexed: 02/10/2023]
Abstract
Background Liver metastasis is an important cause of death in patients with colorectal cancer (CRC). Increasing evidence indicates that microRNAs (miRNAs) are involved in the pathogenesis of colorectal cancer liver metastasis (CRLM). This study is aimed at exploring the potential miRNA-mRNA regulatory network. Methods From the GEO database, we downloaded the microarray datasets GSE56350 and GSE73178. GEO2R was used to conduct differentially expressed miRNAs (DEMs) between CRC and CRLM using the GEO2R tool. Then, GO and KEGG pathway analysis for differentially expressed genes (DEGs) performed via DAVID. A protein-protein interaction (PPI) network was constructed by the STRING and identified by Cytoscape. Hub genes were identified by miRNA-mRNA network. Finally, the expression of the hub gene expression was assessed in the GSE81558. Results The four DEMs (hsa-miR-204-5p, hsa-miR-122-5p, hsa-miR-95-3p, and hsa-miR-552-3p) were identified as common DEMs in GSE56350 and GSE73178 datasets. The SP1 was likely to adjust the upregulated DEMs; however, the YY1 could regulate both the upregulated and downregulated DEMs. A total of 3925 genes (3447 upregulated DEM genes and 478 downregulated DEM genes) were screened. These predicted genes were mainly linked to Platinum drug resistance, Cellular senescence, and ErbB signaling pathway. Through the gene network construction, most of the hub genes were found to be modulated by hsa-miR-204-5p, hsa-miR-122-5p, hsa-miR-95-3p, and hsa-miR-552-3p. Among the top 20 hub genes, the expression of CREB1, RHOA, and EGFR was significantly different in the GSE81558 dataset. Conclusion In this study, miRNA-mRNA networks in CRLM were screened between CRC patients and CRLM patients to provide a new method to predict for the pathogenesis and development of CRC.
Collapse
|
2
|
Chen F, Zhong Z, Zhang C, Lu Y, Chan YT, Wang N, Zhao D, Feng Y. Potential Focal Adhesion Kinase Inhibitors in Management of Cancer: Therapeutic Opportunities from Herbal Medicine. Int J Mol Sci 2022; 23:13334. [PMID: 36362132 PMCID: PMC9659249 DOI: 10.3390/ijms232113334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 08/15/2024] Open
Abstract
Focal adhesion kinase (FAK) is a multifunctional protein involved in cellular communication, integrating and transducing extracellular signals from cell-surface membrane receptors. It plays a central role intracellularly and extracellularly within the tumor microenvironment. Perturbations in FAK signaling promote tumor occurrence and development, and studies have revealed its biological behavior in tumor cell proliferation, migration, and adhesion. Herein we provide an overview of the complex biology of the FAK family members and their context-dependent nature. Next, with a focus on cancer, we highlight the activities of FAK signaling in different types of cancer and how knowledge of them is being used for screening natural compounds used in herbal medicine to fight tumor development.
Collapse
Affiliation(s)
- Feiyu Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yuanjun Lu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yau-Tuen Chan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Di Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Curcumin Modulates Oxidative Stress, Fibrosis, and Apoptosis in Drug-Resistant Cancer Cell Lines. Life (Basel) 2022; 12:life12091427. [PMID: 36143462 PMCID: PMC9504331 DOI: 10.3390/life12091427] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
In cancer management, drug resistance remains a challenge that reduces the effectiveness of chemotherapy. Several studies have shown that curcumin resensitizes cancer cells to chemotherapeutic drugs to overcome resistance. In the present study, we investigate the potential therapeutic role of curcumin in regulating the proliferation of drug-resistant cancers. Six drug-sensitive (MCF7, HCT116, and A549) and -resistant (MCF7/TH, HCT116R, and A549/ADR) cancer cell lines were treated with curcumin followed by an analysis of cytotoxicity, LDH enzyme, total reactive oxygen species, antioxidant enzymes (SOD and CAT), fibrosis markers (TGF-β1 protein, fibronectin, and hydroxyproline), and expression of cellular apoptotic markers (Bcl-2, Bax, Bax/Bcl-2 ratio, Annexin V, cytochrome c, and caspase-8). Additionally, the expression of cellular SIRT1 was estimated by ELISA and RT-PCR analysis. Curcumin treatment at doses of 2.7–54.3 µM significantly reduced the growth of sensitive and resistant cells as supported with decreased viability and increased cellular LDH enzyme of treated cells compared to controls non-treated cells. Curcumin also at doses of 2.7 and 54.3 µM regulated the fibrogenesis by reducing the expression of fibrotic markers in treated cells. Analysis of apoptotic markers indicated increased Bax, Bax, Bax/Bcl-2 ratio, Annexin V, caspase-8, and cytochrome c expression, while Bcl-2 expressions were significantly reduced. In curcumin-treated cells at 2.7 μM, non-significant change in ROS with significant increase in SOD and CAT activity was observed, whereas an increase in ROS with a reduction in respective antioxidant enzymes were seen at higher concentrations along with significant upregulation of SIRT1. In conclusion, the present study shows that curcumin induces anticancer activity against resistant cancer cell lines in a concentration- and time-dependent manner. The protective activities of curcumin against the growth of cancer cells are mediated by modulating oxidative stress, regulating fibrosis, SIRT1 activation, and inducing cellular apoptosis. Therefore, curcumin could be tested as an auxiliary therapeutic agent to improve the prognosis in patients with resistant cancers.
Collapse
|
4
|
Fan Y, Zhang X, Tong Y, Chen S, Liang J. Curcumin against gastrointestinal cancer: A review of the pharmacological mechanisms underlying its antitumor activity. Front Pharmacol 2022; 13:990475. [PMID: 36120367 PMCID: PMC9478803 DOI: 10.3389/fphar.2022.990475] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Gastrointestinal cancer (GIC) poses a serious threat to human health globally. Curcumin (CUR), a hydrophobic polyphenol extracted from the rhizome of Curcuma longa, has shown reliable anticancer function and low toxicity, thereby offering broad research prospects. Numerous studies have demonstrated the pharmacological mechanisms underlying the effectiveness of CUR against GIC, including the induction of apoptosis and autophagy, arrest of the cell cycle, inhibition of the epithelial–mesenchymal transition (EMT) processes, inhibition of cell invasion and migration, regulation of multiple signaling pathways, sensitization to chemotherapy and reversal of resistance to such treatments, and regulation of the tumor survival environment. It has been confirmed that CUR exerts its antitumor effects on GIC through these mechanisms in vitro and in vivo. Moreover, treatment with CUR is safe and tolerable. Newly discovered types of regulated cell death (RCD), such as pyroptosis, necroptosis, and ferroptosis, may provide a new direction for research on the efficacy of CUR against GIC. In this review, we discuss the recently found pharmacological mechanisms underlying the effects of CUR against GIC (gastric and colorectal cancers). The objective is to provide a reference for further research on treatments against GIC.
Collapse
Affiliation(s)
- Yuanyuan Fan
- Department of Traditional Chinese Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiqin Zhang
- Department of Traditional Chinese Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuxin Tong
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Suning Chen
- Department of Traditional Chinese Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingjing Liang
- Department of Traditional Chinese Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Jingjing Liang,
| |
Collapse
|
5
|
Davoodvandi A, Farshadi M, Zare N, Akhlagh SA, Alipour Nosrani E, Mahjoubin-Tehran M, Kangari P, Sharafi SM, Khan H, Aschner M, Baniebrahimi G, Mirzaei H. Antimetastatic Effects of Curcumin in Oral and Gastrointestinal Cancers. Front Pharmacol 2021; 12:668567. [PMID: 34456716 PMCID: PMC8386020 DOI: 10.3389/fphar.2021.668567] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
Gastrointestinal (GI) cancers are known as frequently occurred solid malignant tumors that can cause the high rate mortality in the world. Metastasis is a significant destructive feature of tumoral cells, which directly correlates with decreased prognosis and survival. Curcumin, which is found in turmeric, has been identified as a potent therapeutic natural bioactive compound (Curcuma longa). It has been traditionally applied for centuries to treat different diseases, and it has shown efficacy for its anticancer properties. Numerous studies have revealed that curcumin inhibits migration and metastasis of GI cancer cells by modulating various genes and proteins, i.e., growth factors, inflammatory cytokines and their receptors, different types of enzymes, caspases, cell adhesion molecules, and cell cycle proteins. Herein, we summarized the antimetastatic effects of curcumin in GI cancers, including pancreatic cancer, gastric cancer, colorectal cancer, oral cancer, and esophageal cancer.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Noushid Zare
- Faculty of Pharmacy, International Campus, Tehran University of Medical Science, Tehran, Iran
| | | | - Esmail Alipour Nosrani
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parisa Kangari
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh Maryam Sharafi
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ghazaleh Baniebrahimi
- Department of Pediatric Dentistry, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
6
|
Oo Y, Nealiga JQL, Suwanborirux K, Chamni S, Ecoy GAU, Pongrakhananon V, Chanvorachote P, Chaotham C. 22-O-(N-Boc-L-glycine) ester of renieramycin M inhibits migratory activity and suppresses epithelial-mesenchymal transition in human lung cancer cells. J Nat Med 2021; 75:949-966. [PMID: 34287745 DOI: 10.1007/s11418-021-01549-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/04/2021] [Indexed: 12/19/2022]
Abstract
The incidence of metastasis stage crucially contributes to high recurrence and mortality rate in lung cancer patients. Unfortunately, no available treatment inhibits migration, a key metastasis process in lung cancer. In this study, the effect of 22-O-(N-Boc-L-glycine) ester of renieramycin M (22-Boc-Gly-RM), a semi-synthetic amino ester derivative of bistetrahydroisoquinolinequinone alkaloid isolated from Xestospongia sp., on migratory behavior of human lung cancer cells was investigated. Following 24 h of treatment, 22-Boc-Gly-RM at non-toxic concentrations (0.5-1 μM) effectively restrained motility of human lung cancer H460 cells assessed through wound healing, transwell migration, and multicellular spheroid models. The capability to invade through matrix component was also repressed in H460 cells cultured with 0.1-1 µM 22-Boc-Gly-RM. The dose-dependent reduction of phalloidin-stained actin stress fibers corresponded with the downregulated Rac1-GTP level presented via western blot analysis in 22-Boc-Gly-RM-treated cells. Treatment with 0.1-1 μM of 22-Boc-Gly-RM obviously caused suppression of p-FAK/p-Akt signal and consequent inhibition of epithelial-to-mesenchymal transition (EMT), which was evidenced with augmented level of E-cadherin and reduction of N-cadherin expression. The alteration of invasion-related proteins in 22-Boc-Gly-RM-treated H460 cells was indicated by the diminution of matrix metalloproteinases (MT1-MMP, MMP-2, MMP-7, and MMP-9), as well as the upregulation of tissue inhibitors of metalloproteinases (TIMP), TIMP2, and TIMP3. Thus, 22-Boc-Gly-RM is a promising candidate for anti-metastasis treatment in lung cancer through inhibition of migratory features associated with suppression on EMT.
Collapse
Affiliation(s)
- Yamin Oo
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Justin Quiel Lasam Nealiga
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Khanit Suwanborirux
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supakarn Chamni
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.,Natural Products and Nanoparticles Research Unit (NP2), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Gea Abigail Uy Ecoy
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.,Department of Pharmacy, School of Health Care Professions, University of San Carlos, 6000, Cebu, Philippines
| | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.,Cell-Based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand. .,Cell-Based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
Morshedi K, Borran S, Ebrahimi MS, Masoud Khooy MJ, Seyedi ZS, Amiri A, Abbasi-Kolli M, Fallah M, Khan H, Sahebkar A, Mirzaei H. Therapeutic effect of curcumin in gastrointestinal cancers: A comprehensive review. Phytother Res 2021; 35:4834-4897. [PMID: 34173992 DOI: 10.1002/ptr.7119] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/18/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Gastrointestinal (GI) cancers with a high global prevalence are a leading cause of morbidity and mortality. Accordingly, there is a great need to develop efficient therapeutic approaches. Curcumin, a naturally occurring agent, is a promising compound with documented safety and anticancer activities. Recent studies have demonstrated the activity of curcumin in the prevention and treatment of different cancers. According to systematic studies on curcumin use in various diseases, it can be particularly effective in GI cancers because of its high bioavailability in the gastrointestinal tract. Nevertheless, the clinical applications of curcumin are largely limited because of its low solubility and low chemical stability in water. These limitations may be addressed by the use of relevant analogues or novel delivery systems. Herein, we summarize the pharmacological effects of curcumin against GI cancers. Moreover, we highlight the application of curcumin's analogues and novel delivery systems in the treatment of GI cancers.
Collapse
Affiliation(s)
- Korosh Morshedi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sarina Borran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Zeynab Sadat Seyedi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Fallah
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
8
|
Villalobo A, Berchtold MW. The Role of Calmodulin in Tumor Cell Migration, Invasiveness, and Metastasis. Int J Mol Sci 2020; 21:ijms21030765. [PMID: 31991573 PMCID: PMC7037201 DOI: 10.3390/ijms21030765] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Calmodulin (CaM) is the principal Ca2+ sensor protein in all eukaryotic cells, that upon binding to target proteins transduces signals encoded by global or subcellular-specific changes of Ca2+ concentration within the cell. The Ca2+/CaM complex as well as Ca2+-free CaM modulate the activity of a vast number of enzymes, channels, signaling, adaptor and structural proteins, and hence the functionality of implicated signaling pathways, which control multiple cellular functions. A basic and important cellular function controlled by CaM in various ways is cell motility. Here we discuss the role of CaM-dependent systems involved in cell migration, tumor cell invasiveness, and metastasis development. Emphasis is given to phosphorylation/dephosphorylation events catalyzed by myosin light-chain kinase, CaM-dependent kinase-II, as well as other CaM-dependent kinases, and the CaM-dependent phosphatase calcineurin. In addition, the role of the CaM-regulated small GTPases Rac1 and Cdc42 (cell division cycle protein 42) as well as CaM-binding adaptor/scaffold proteins such as Grb7 (growth factor receptor bound protein 7), IQGAP (IQ motif containing GTPase activating protein) and AKAP12 (A kinase anchoring protein 12) will be reviewed. CaM-regulated mechanisms in cancer cells responsible for their greater migratory capacity compared to non-malignant cells, invasion of adjacent normal tissues and their systemic dissemination will be discussed, including closely linked processes such as the epithelial–mesenchymal transition and the activation of metalloproteases. This review covers as well the role of CaM in establishing metastatic foci in distant organs. Finally, the use of CaM antagonists and other blocking techniques to downregulate CaM-dependent systems aimed at preventing cancer cell invasiveness and metastasis development will be outlined.
Collapse
Affiliation(s)
- Antonio Villalobo
- Cancer and Human Molecular Genetics Area—Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046 Madrid, Spain
- Correspondence: (A.V.); (M.W.B.)
| | - Martin W. Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen, Denmark
- Correspondence: (A.V.); (M.W.B.)
| |
Collapse
|
9
|
Wong KM, Song J, Saini V, Wong YH. Small Molecules as Drugs to Upregulate Metastasis Suppressors in Cancer Cells. Curr Med Chem 2019; 26:5876-5899. [PMID: 29788870 DOI: 10.2174/0929867325666180522090842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/20/2018] [Accepted: 05/18/2018] [Indexed: 12/26/2022]
Abstract
It is well-recognized that the majority of cancer-related deaths is attributed to metastasis, which can arise from virtually any type of tumor. Metastasis is a complex multistep process wherein cancer cells must break away from the primary tumor, intravasate into the circulatory or lymphatic systems, extravasate, proliferate and eventually colonize secondary sites. Since these molecular processes involve the coordinated actions of numerous proteins, targeted disruptions of key players along these pathways represent possible therapeutic interventions to impede metastasis formation and reduce cancer mortality. A diverse group of proteins with demonstrated ability to inhibit metastatic colonization have been identified and they are collectively known as metastasis suppressors. Given that the metastasis suppressors are often downregulated in tumors, drug-induced re-expression or upregulation of these proteins represents a promising approach to limit metastasis. Indeed, over 40 compounds are known to exhibit efficacy in upregulating the expression of metastasis suppressors via transcriptional or post-transcriptional mechanisms, and the most promising ones are being evaluated for their translational potentials. These small molecules range from natural products to drugs in clinical use and they apparently target different molecular pathways, reflecting the diverse nature of the metastasis suppressors. In this review, we provide an overview of the different classes of compounds known to possess the ability to upregulate one or more metastasis suppressors, with an emphasis on their mechanisms of action and therapeutic potentials.
Collapse
Affiliation(s)
- Ka Ming Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jiaxing Song
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Vasu Saini
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yung H Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.,State Key Laboratory of Molecular Neuroscience, and the Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
10
|
Subramaniam S, Selvaduray KR, Radhakrishnan AK. Bioactive Compounds: Natural Defense Against Cancer? Biomolecules 2019; 9:biom9120758. [PMID: 31766399 PMCID: PMC6995630 DOI: 10.3390/biom9120758] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer is a devastating disease that has claimed many lives. Natural bioactive agents from plants are gaining wide attention for their anticancer activities. Several studies have found that natural plant-based bioactive compounds can enhance the efficacy of chemotherapy, and in some cases ameliorate some of the side-effects of drugs used as chemotherapeutic agents. In this paper, we have reviewed the literature on the anticancer effects of four plant-based bioactive compounds namely, curcumin, myricetin, geraniin and tocotrienols (T3) to provide an overview on some of the key findings that are related to this effect. The molecular mechanisms through which the active compounds may exert their anticancer properties in cell and animal-based studies also discussed.
Collapse
Affiliation(s)
- Shonia Subramaniam
- Pathology Division, School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur 50050, Malaysia;
- Product Development and Advisory Services, Malaysian Palm Oil Board, Kajang, Selangor 43000, Malaysia;
| | - Kanga Rani Selvaduray
- Product Development and Advisory Services, Malaysian Palm Oil Board, Kajang, Selangor 43000, Malaysia;
| | - Ammu Kutty Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia
- Correspondence: ; Tel.: +60-355-144-902
| |
Collapse
|
11
|
Bahrami A, Majeed M, Sahebkar A. Curcumin: a potent agent to reverse epithelial-to-mesenchymal transition. Cell Oncol (Dordr) 2019; 42:405-421. [PMID: 30980365 DOI: 10.1007/s13402-019-00442-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) is involved in tumor progression, invasion, migration and metastasis. EMT is a process by which polarized epithelial cells acquire motile mesothelial phenotypic features. This process is initiated by disassembly of cell-cell contacts through the loss of epithelial markers and replacement of these markers by mesenchymal markers. Reconstruction of the cytoskeleton and degradation of the tumor basement membrane ensures the spread of invasive malignant tumor cells to distant locations. Accumulating evidence indicates that curcumin, as a well-known phytochemical, can inhibit EMT/metastasis through various mechanisms and pathways in human tumors. CONCLUSIONS In this review, we summarize the mechanisms by which curcumin may affect EMT in cells under pathological conditions to understand its potential as a novel anti-tumor agent. Curcumin can exert chemo-preventive effects by inhibition and reversal of the EMT process through both TGF-β-dependent (e.g. in hepatoma and retinal pigment epithelial cancer) and -independent (e.g. in oral cancer, colorectal cancer, pancreatic cancer, hepatocellular carcinoma, breast cancer, melanoma, prostate cancer, bladder cancer, thyroid cancer and lung cancer) pathways. Curcumin can also mitigate chemoresistance through EMT suppression and promotion of the antiproliferative effects of conventional chemotherapeutics. Therefore, curcumin has the potential to be used as a novel adjunctive agent to prevent tumor metastasis, which may at least partly be attributed to its hampering of the EMT process.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Amirhossein Sahebkar
- Department of Medical Biotechnology Research Center, School of Medicine, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P.O. Box: 91779-48564, Mashhad, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Meiyanto E, Larasati YA. The Chemopreventive Activity of Indonesia Medicinal Plants Targeting on Hallmarks of Cancer. Adv Pharm Bull 2019; 9:219-230. [PMID: 31380247 PMCID: PMC6664113 DOI: 10.15171/apb.2019.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 03/05/2019] [Accepted: 04/14/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer remains a complex disease with increasing global mortality and morbidity. Numerous theories have been established to understand the biological mechanism underlying cancer. One of the most renowned frameworks is the hallmark of cancer proposed by Hanahan and Weinberg that covers ten eminent characteristics of cancer: (i) genome instability and mutation, (ii) sustaining proliferative signaling, (iii) evading growth suppressor, (iv) enabling replicative immortality, (v) resisting cell death, (vi) inducing angiogenesis, (vii) activating invasion and metastasis, (viii) avoiding immune destruction, (ix) tumor-promoting inflammation, and (x) deregulating cellular energetics. These hallmarks provide a rational approach to design an anticancer therapy. In the current review, we summarized specific target molecules on each hallmark of cancer. Further, we evaluated the biological activity of several Indonesia medicinal plants against those specific targets. We explicated the anticancer and chemopreventive activities of some medicinal plants that have been used for centuries by local communities in Indonesia, including Curcuma genus, Brucea javanica, Boesenbergia pandurata, Caesalpinia sappan, and Nigella sativa. Interestingly, these medicinal plants target several hallmarks of cancer, and even Curcuma genus exhibited biological activities that target all hallmarks of cancer. Further, we also discuss several strategies to develop those medicinal plants and/or their active compounds as anticancer and chemopreventive agents.
Collapse
Affiliation(s)
- Edy Meiyanto
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Yonika Arum Larasati
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
| |
Collapse
|
13
|
Ibrahim IM, Abdelmalek DH, Elfiky AA. GRP78: A cell's response to stress. Life Sci 2019; 226:156-163. [PMID: 30978349 PMCID: PMC7094232 DOI: 10.1016/j.lfs.2019.04.022] [Citation(s) in RCA: 416] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/01/2019] [Accepted: 04/09/2019] [Indexed: 12/24/2022]
Abstract
Background Glucose-Regulated Protein 78 (GRP78) is a chaperone heat shock protein that has been intensely studied in the last two decades. GRP78 is the master of the unfolded protein response (UBR) in the Endoplasmic Reticulum (ER) in normal cells. GRP78 force the unfolded proteins to refold or degrade using cellular degradation mechanisms. Scope Under stress, the overexpression of GRP78 on the cell membrane mediates the vast amount of disordered proteins. Unfortunately, this makes it a tool for pathogens (bacterial, fungal and viral) to enter the cell and to start different pathways leading to pathogenesis. Additionally, GRP78 is overexpressed on the membranes of various cancer cells and increase the aggressiveness of the disease. Major conclusions The current review summarizes structure, function, and different mechanisms GRP78 mediate in response to normal or stress conditions. General significance GRP78 targeting and possible inhibition mechanisms are also covered in the present review aiming to prevent the virulence of pathogens and cancer.
Collapse
Affiliation(s)
- Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Doaa H Abdelmalek
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Abdo A Elfiky
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
14
|
Khandelwal P, Alam A, Choksi A, Chattopadhyay S, Poddar P. Retention of Anticancer Activity of Curcumin after Conjugation with Fluorescent Gold Quantum Clusters: An in Vitro and in Vivo Xenograft Study. ACS OMEGA 2018; 3:4776-4785. [PMID: 30023902 PMCID: PMC6045371 DOI: 10.1021/acsomega.8b00113] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/23/2018] [Indexed: 05/05/2023]
Abstract
Gold nanoparticles (Au NPs) have been thoroughly investigated for anti-cancer therapy. However, their undesired high gold content remains a problem when injected into the body for drug delivery applications. In this report, we made an effort to conjugate the curcumin molecules on the surface of gold quantum clusters (Au QCs) by a novel in situ synthesis method which provides an alternative route to not only reduce the metallic content but also increase the water solubility of curcumin and the loading efficiency. Here, curcumin itself acts as a reducing and capping agent for the synthesis of Au QCs. The UV-vis absorption, fluorescence, transmission electron microscopy, and electrospray ionization mass spectrometry results confirmed the synthesis of fluorescent Au QCs. Curcumin-conjugated Au NPs (C-Au NPs) and glutathione (GSH)-conjugated Au QCs (GSH-Au QCs) were also synthesized to visualize the effect of particle size and the capping agent, respectively, on the cytotoxicity to normal and cancer cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that the curcumin-conjugated Au QCs (C-Au QCs) were less cytotoxic to normal cells while almost the same cytotoxic to cancer cells in comparison to curcumin itself, which indicates that curcumin preserves its anticancer property even after binding to the Au QCs. However, C-Au NPs and GSH-Au QCs did not show any cytotoxicity against the normal and cancer cells at the concentration used. The western blot assay indicated that C-Au QCs promote apoptosis in cancer cells. Further, the in vivo study on severe combined immunodeficiency mice showed that C-Au QCs also inhibited the tumor growth efficiently without showing significant toxicity to internal organs.
Collapse
Affiliation(s)
- Puneet Khandelwal
- Physical
& Materials Chemistry Division, CSIR-National
Chemical Laboratory, Pune 411008, India
| | - Aftab Alam
- National
Center for Cell Science, Ganeshkhind, Pune 411 007, India
| | | | - Samit Chattopadhyay
- CSIR-Indian
Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Pankaj Poddar
- Physical
& Materials Chemistry Division, CSIR-National
Chemical Laboratory, Pune 411008, India
| |
Collapse
|
15
|
Chen H, Liu RH. Potential Mechanisms of Action of Dietary Phytochemicals for Cancer Prevention by Targeting Cellular Signaling Transduction Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3260-3276. [PMID: 29498272 DOI: 10.1021/acs.jafc.7b04975] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cancer is a severe health problem that significantly undermines life span and quality. Dietary approach helps provide preventive, nontoxic, and economical strategies against cancer. Increased intake of fruits, vegetables, and whole grains are linked to reduced risk of cancer and other chronic diseases. The anticancer activities of plant-based foods are related to the actions of phytochemicals. One potential mechanism of action of anticancer phytochemicals is that they regulate cellular signal transduction pathways and hence affects cancer cell behaviors such as proliferation, apoptosis, and invasion. Recent publications have reported phytochemicals to have anticancer activities through targeting a wide variety of cell signaling pathways at different levels, such as transcriptional or post-transcriptional regulation, protein activation and intercellular messaging. In this review, we discuss major groups of phytochemicals and their regulation on cell signaling transduction against carcinogenesis via key participators, such as Nrf2, CYP450, MAPK, Akt, JAK/STAT, Wnt/β-catenin, p53, NF-κB, and cancer-related miRNAs.
Collapse
Affiliation(s)
- Hongyu Chen
- Department of Food Science , Cornell University , Ithaca , New York 14853-7201 , United States
- Institute of Edible Fungi , Shanghai Academy of Agriculture Science , Shanghai 201403 , China
| | - Rui Hai Liu
- Department of Food Science , Cornell University , Ithaca , New York 14853-7201 , United States
| |
Collapse
|
16
|
Woo JK, Jung HJ, Park JY, Kang JH, Lee BI, Shin D, Nho CW, Cho SY, Seong JK, Oh SH. Daurinol blocks breast and lung cancer metastasis and development by inhibition of focal adhesion kinase (FAK). Oncotarget 2017; 8:57058-57071. [PMID: 28915654 PMCID: PMC5593625 DOI: 10.18632/oncotarget.18983] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/18/2017] [Indexed: 01/16/2023] Open
Abstract
FAK overexpression has been reported in diverse primary and metastatic tumor tissues, supporting its pro-tumorigenic and pro-metastatic roles. Therefore, we have developed a neo-treatment strategy using daurinol to effectively treat cancer metastasis. Daurinol blocked cancer cell migration and invasion in vitro and exhibited anti-metastatic activity in an experimental metastasis model of breast and lung cancer. Daurinol selectively inhibited phosphorylation of FAK at Tyr925, Tyr576/577, and Tyr397 sites in a dose- and time-dependent manner. Daurinol effectively suppressed migration and invasion of MDA-MB-231 and A549 cancer cells. These data were associated with inhibition of expression and secretion of invasion factors, including matrix metalloproteinase (MMP) 2, MMP9, and urokinase plasminogen activator (uPA). Consistent with these in vitro results, daurinol (10 mg/kg; Oral gavage) effectively inhibited breast and lung cancer metastasis in a mouse model. In addition, daurinol showed strong suppressive activity of cell survival as revealed by colony formation assays. Analysis of cellular phenotypes revealed that inhibition of FAK phosphorylation in cancer cells limited colony formation, cell migration, and invasion, thereby reducing the cell proliferation rate. Furthermore, daurinol significantly reduced tumor development in 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK)/benzo(a)pyrene (BaP)-treated A/J mice. Our results suggest that daurinol suppresses lung metastasis through inhibition of migration and survival via blockade of FAK activity.
Collapse
Affiliation(s)
- Jong Kyu Woo
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea.,Korea Mouse Phenotyping Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyun Jin Jung
- Korea Mouse Phenotyping Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ji-Youn Park
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
| | - Ju-Hee Kang
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
| | - Byung Il Lee
- National Cancer Center, Goyang-si, Republic of Korea
| | - DongYun Shin
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
| | - Chu Won Nho
- Korea Institute of Science and Technology (KIST), Gangneung Institute, Gangneung-si, Republic of Korea
| | - Soo-Young Cho
- National Cancer Center, Goyang-si, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Seung Hyun Oh
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
17
|
Pavan AR, Silva GDBD, Jornada DH, Chiba DE, Fernandes GFDS, Man Chin C, Dos Santos JL. Unraveling the Anticancer Effect of Curcumin and Resveratrol. Nutrients 2016; 8:nu8110628. [PMID: 27834913 PMCID: PMC5133053 DOI: 10.3390/nu8110628] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 09/24/2016] [Accepted: 09/27/2016] [Indexed: 12/16/2022] Open
Abstract
Resveratrol and curcumin are natural products with important therapeutic properties useful to treat several human diseases, including cancer. In the last years, the number of studies describing the effect of both polyphenols against cancer has increased; however, the mechanism of action in all of those cases is not completely comprehended. The unspecific effect and the ability to interfere in assays by both polyphenols make this challenge even more difficult. Herein, we analyzed the anticancer activity of resveratrol and curcumin reported in the literature in the last 11 years, in order to unravel the molecular mechanism of action of both compounds. Molecular targets and cellular pathways will be described. Furthermore, we also discussed the ability of these natural products act as chemopreventive and its use in association with other anticancer drugs.
Collapse
Affiliation(s)
- Aline Renata Pavan
- School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Araraquara 14800903, Brazil.
| | | | | | - Diego Eidy Chiba
- School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Araraquara 14800903, Brazil.
| | | | - Chung Man Chin
- School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Araraquara 14800903, Brazil.
| | - Jean Leandro Dos Santos
- School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Araraquara 14800903, Brazil.
| |
Collapse
|
18
|
Huang C, Liu H, Gong X, Wen B, Chen D, Liu J, Hu F. Analysis of different components in the peritumoral tissue microenvironment of colorectal cancer: A potential prospect in tumorigenesis. Mol Med Rep 2016; 14:2555-65. [PMID: 27484148 PMCID: PMC4991672 DOI: 10.3892/mmr.2016.5584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 06/02/2016] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to observe the varying expression of biomarkers in the microenvironment adjacent to colorectal cancer lesions to provide additional insight into the functions of microenvironment components in carcinogenesis and present a novel or improved indicator for early diagnosis of cancer. A total of 144 human samples from three different locations in 48 patients were collected, these locations were 10, 5 and 2 cm from the colorectal cancer lesion, respectively. The biomarkers analyzed included E‑cadherin, cytokeratin 18 (CK18), hyaluronidase‑1 (Hyal‑1), collagen type I (Col‑I), Crumbs3 (CRB3), vimentin, proteinase activated receptor 3 (PAR‑3), α‑smooth muscle actin (α‑SMA), cyclin D1 (CD1) and cluster of differentiation (CD)133. In addition, crypt architecture was observed. Related functional analysis of proteins was performed using hierarchical index cluster analysis. More severe destroyed crypt architecture closer to the cancer lesions was observed compared with the 10 cm sites, with certain crypts degraded entirely. Expression levels of E‑cadherin, CK18, CRB3 and PAR‑3 were lower in 2 cm sites compared with the 10 cm sites (all P<0.001), while the expression levels of the other biomarkers in the 2 cm sites were increased compared with 10 cm sites (all P<0.0001). Notably, the expression of CK18 in 2 cm sites was higher than in the 5 cm site (P<0.0001), which was different from the expression of E‑cadherin, CRB3 and PAR‑3. The expression levels of Hyal‑1 and Col‑I at the 2 cm sites were lower than that of the 5 cm sites (P>0.05 and P=0.0001, respectively), while the expression of vimentin, α‑SMA, CD1 and CD133 were not. Hyal‑1 and Col‑I may be independently important in cancer initiation in the tumor microenvironment. The results of the present study suggest that the biomarkers in the tissue microenvironment are associated with early tumorigenesis and may contribute to the development of carcinomas. These observations may be useful for early diagnosis of colorectal cancer.
Collapse
Affiliation(s)
- Chao Huang
- Spleen‑Stomach Institute, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Hong Liu
- Spleen‑Stomach Institute, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Xiuli Gong
- Spleen‑Stomach Institute, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Bin Wen
- Spleen‑Stomach Institute, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Dan Chen
- Spleen‑Stomach Institute, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Jinyuan Liu
- Pathology Department, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Fengliang Hu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
19
|
Kalaiselvan S, Rasool MK. Triphala herbal extract suppresses inflammatory responses in LPS-stimulated RAW 264.7 macrophages and adjuvant-induced arthritic rats via inhibition of NF-κB pathway. J Immunotoxicol 2016; 13:509-25. [DOI: 10.3109/1547691x.2015.1136010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Sowmiya Kalaiselvan
- Immunopathology Lab, School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Mahaboob Khan Rasool
- Immunopathology Lab, School of Bio Sciences and Technology, VIT University, Vellore, India
| |
Collapse
|
20
|
Sathe G, Pinto SM, Syed N, Nanjappa V, Solanki HS, Renuse S, Chavan S, Khan AA, Patil AH, Nirujogi RS, Nair B, Mathur PP, Prasad TSK, Gowda H, Chatterjee A. Phosphotyrosine profiling of curcumin-induced signaling. Clin Proteomics 2016; 13:13. [PMID: 27307780 PMCID: PMC4908701 DOI: 10.1186/s12014-016-9114-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 05/04/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Curcumin, derived from the rhizome Curcuma longa, is a natural anti-cancer agent and has been shown to inhibit proliferation and survival of tumor cells. Although the anti-cancer effects of curcumin are well established, detailed understanding of the signaling pathways altered by curcumin is still lacking. In this study, we carried out SILAC-based quantitative proteomic analysis of a HNSCC cell line (CAL 27) to investigate tyrosine signaling in response to curcumin. RESULTS Using high resolution Orbitrap Fusion Tribrid Fourier transform mass spectrometer, we identified 627 phosphotyrosine sites mapping to 359 proteins. We observed alterations in the level of phosphorylation of 304 sites corresponding to 197 proteins upon curcumin treatment. We report here for the first time, curcumin-induced alterations in the phosphorylation of several kinases including TNK2, FRK, AXL, MAPK12 and phosphatases such as PTPN6, PTPRK, and INPPL1 among others. Pathway analysis revealed that the proteins differentially phosphorylated in response to curcumin are known to be involved in focal adhesion kinase signaling and actin cytoskeleton reorganization. CONCLUSIONS The study indicates that curcumin may regulate cellular processes such as proliferation and migration through perturbation of the focal adhesion kinase pathway. This is the first quantitative phosphoproteomics-based study demonstrating the signaling events that are altered in response to curcumin. Considering the importance of curcumin as an anti-cancer agent, this study will significantly improve the current knowledge of curcumin-mediated signaling in cancer.
Collapse
Affiliation(s)
- Gajanan Sathe
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,Manipal University, Madhav Nagar, Manipal, 576104 India
| | - Sneha M Pinto
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018 India
| | - Nazia Syed
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605014 India
| | - Vishalakshi Nanjappa
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,Amrita School of Biotechnology, Amrita University, Kollam, 690525 India
| | - Hitendra S Solanki
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,School of Biotechnology, KIIT University, Bhubaneswar, 751024 India
| | - Santosh Renuse
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,Amrita School of Biotechnology, Amrita University, Kollam, 690525 India
| | - Sandip Chavan
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,Manipal University, Madhav Nagar, Manipal, 576104 India
| | - Aafaque Ahmad Khan
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,School of Biotechnology, KIIT University, Bhubaneswar, 751024 India
| | - Arun H Patil
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,School of Biotechnology, KIIT University, Bhubaneswar, 751024 India
| | - Raja Sekhar Nirujogi
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,Centre of Excellence in Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, 605014 India
| | - Bipin Nair
- Amrita School of Biotechnology, Amrita University, Kollam, 690525 India
| | | | - T S Keshava Prasad
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018 India.,NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, 560029 India
| | - Harsha Gowda
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018 India
| | - Aditi Chatterjee
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018 India
| |
Collapse
|
21
|
Protective effect of gallic acid against bleomycin-induced pulmonary fibrosis in rats. Pharmacol Rep 2015; 67:1061-7. [DOI: 10.1016/j.pharep.2015.03.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/22/2015] [Accepted: 03/25/2015] [Indexed: 12/24/2022]
|
22
|
Zhang L, Wang X, Lai M. Modulation of epithelial-to-mesenchymal cancerous transition by natural products. Fitoterapia 2015; 106:247-55. [PMID: 26386389 DOI: 10.1016/j.fitote.2015.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/13/2015] [Accepted: 09/15/2015] [Indexed: 12/11/2022]
Abstract
Metastasis is mainly responsible for poor prognosis of cancer, and epithelial-to-mesenchymal transition (EMT) is a significant process often activated during cancer invasion and metastasis. Therefore EMT could be an effective target of chemotherapy to inhibit cancer metastasis and improve prognosis. Considering that many chemotherapeutics are plant-based, we reviewed recent reports about natural products extracted from plants and cancer EMT prevention.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Xue Wang
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Maode Lai
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China; Department of Pathology, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
23
|
Wang T, Zhai L, Guo Y, Pei H, Zhang M. Picroside II has a neuroprotective effect by inhibiting ERK1/2 activation after cerebral ischemic injury in rats. Clin Exp Pharmacol Physiol 2015; 42:930-939. [PMID: 26175147 DOI: 10.1111/1440-1681.12445] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 06/01/2015] [Accepted: 06/19/2015] [Indexed: 12/11/2022]
Abstract
In the study, the neuroprotective effect and underlying mechanism of picroside II were explored, and its involvement in the ERK1/2 signal pathway after cerebral ischemia injury in rats. A monofilament thread was inserted to generate middle cerebral artery occlusion (MCAO) in 100 Wistar rats that were administered an intraperitoneal injection of picroside II (20 mg/kg). The neurobehavioural function of rats was evaluated using a modified neurological severity score (mNSS) test. The cerebral infarct volume (CIV) was measured using tetrazolium chloride (TTC) staining. The morphology and ultra-structure of the nerve cells in the cortex were observed using hematoxylin and eosin (HE) staining and transmission electron microscopy (TEM), respectively. The apoptotic cells were counted using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The expression of extracellular signal-regulated kinase 1/2 (pERK1/2) in the cortex was determined using immunohistochemistry and Western blot analysis. Neurological dysfunction was observed in all rats with MCAO. In both the model and lipopolysaccharide (LPS) groups, the CIV increased, the neuronal damage in the cortex was more severe, and the number of apoptotic cells and the pERK1/2 expression significantly increased compared with the control group (P < 0.05). In treatment and U0126 groups, the neurological function was improved, the CIV decreased, the neuronal damage in the cortex was attenuated, and the number of apoptotic cells and the pERK1/2 expression significantly decreased compared with the model group (P < 0.05). No significant differences in these indices were observed between model and LPS groups or treatment and U0126 groups (P > 0.05). The results suggest that activation of ERK1/2 in cerebral ischaemia induces neuronal apoptosis and picroside II may reduce neuronal apoptosis to confer protection against cerebral ischemic injury by inhibiting ERK1/2 activation.
Collapse
Affiliation(s)
- Tingting Wang
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.,Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao, China
| | - Li Zhai
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.,Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao, China
| | - Yunliang Guo
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.,Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao, China
| | - Haitao Pei
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.,Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao, China
| | - Meizeng Zhang
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.,Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao, China
| |
Collapse
|
24
|
Liao H, Wang Z, Deng Z, Ren H, Li X. Curcumin inhibits lung cancer invasion and metastasis by attenuating GLUT1/MT1-MMP/MMP2 pathway. Int J Clin Exp Med 2015; 8:8948-8957. [PMID: 26309547 PMCID: PMC4538170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/03/2015] [Indexed: 06/04/2023]
Abstract
Glucose transporter (GLUT) 1 is found highly expressed in malignant tumors and considered a mediator inducing cancer metastasis. Curcumin is a natural product which exerts anti-invasion and metastasis effects in cancer. This study aimed at evaluating whether attenuating GLUT1 was involved in curcumin's anti-invasion and metastasis effects. In the in vitro part, constricted pcDNA3.1-GLUT1 vector was transfected into A549 cells. MTT assay was used to assess the curcumin's effects on proliferation in lung cancer A549 cells. Transwell assay was used to evaluate the anti-invasion effect of curcumin on A549 cells. Real-time PCR and Western-blotting were employed to examine the expression levels of GLUT1, membrane type 1-MMP (MT1-MMP) and matrix metalloproteinase (MMP) 2 in curcumin- incubated A549 cells. In the in vivo part, tumor weight and metastatic rate were assessed in nude mice bearing untransfected, empty vector transfected and pcDNA3.1-GLUT1 transfected A549 cells originated tumors. In this study, we found that curcumin began to show significant cytotoxicity against proliferation effect at 45 μmol/L. Curcumin inhibited invasion and expressions of GLUT1, MT1-MMP and MMP2 untransfected A549 cells in a concentration-dependent manner. pcDNA3.1-GLUT1 transfected A549 cells exhibited resistance to curcumin's anti-invasion effect by up-regulating expressions of GLUT2, MT1-MMP and MMP2. Furthermore, curcumin failed to decrease the metastatic rate in nude mice bearing pcDNA3.1-GLUT1 transfected A549 cells originated tumors. These results suggested that curcumin inhibit lung cancer invasion and metastasis by attenuating GLUT1/MT1-MMP/MMP2 pathway.
Collapse
Affiliation(s)
- Hehe Liao
- Second Department of Throcic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University277 West Yanta Road, Xi’an, Shaanxi 710061, China
- Department of Oncology, The 215 Hospital of Nuclear Industry35 West Weiyang Road, Xianyang, Shaanxi 712000, China
| | - Zhouquan Wang
- Department of Oncology, Shannxi Sengong Hospital9 Huanzhan Street of Huxian, Xi’an, Shaanxi 710300, China
| | - Zhiping Deng
- Department of Surgery, The Tumor Hospital of Shaanxi Province309 West Yanta Road, Xi’an, Shaanxi 710061, China
| | - Hong Ren
- Second Department of Throcic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University277 West Yanta Road, Xi’an, Shaanxi 710061, China
| | - Xiaojun Li
- Second Department of Throcic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University277 West Yanta Road, Xi’an, Shaanxi 710061, China
| |
Collapse
|
25
|
Zhao M, Qian D, Liu P, Shang EX, Jiang S, Guo J, Su SL, Duan JA, Du L, Tao J. Comparative pharmacokinetics of catalpol and acteoside in normal and chronic kidney disease rats after oral administration of Rehmannia glutinosa extract. Biomed Chromatogr 2015; 29:1842-8. [PMID: 26031219 DOI: 10.1002/bmc.3505] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 04/23/2015] [Accepted: 05/01/2015] [Indexed: 12/22/2022]
Abstract
In this study, a sensitive and robust ultra-performance liquid chromatography-mass spectrometry method with multiple-reaction monitoring mode was developed, validated, and applied to determine pharmacokinetics of catalpol and acteoside in normal and doxorubicin-induced chronic kidney disease rats after oral administration of Rehmannia glutinosa extract. The lower limits of quantification for catalpol and acteoside in rat plasma were 2.62 and 0.61 ng/mL, with a signal-to-noise ratio of ≥10. Precision and accuracy studies showed that catalpol and acteoside plasma concentrations were within the 10% range in all studies. The extraction recoveries of catalpol and acteoside were both >68.24% and the matrix effects ranged from 96.59 to 101.62%. The method was successfully applied to the pharmacokinetic study of catalpol and acteoside after oral administration of RG extract to normal and model rats, respectively. This study might further support the traditional use of RG to treat kidney diseases clinically.
Collapse
Affiliation(s)
- Min Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Pei Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Er-xin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Jianming Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Shu-lan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Jin-ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Leyue Du
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Jinhua Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| |
Collapse
|
26
|
Khazaei Koohpar Z, Entezari M, Movafagh A, Hashemi M. Anticancer Activity of Curcumin on Human Breast Adenocarcinoma: Role of Mcl-1 Gene. IRANIAN JOURNAL OF CANCER PREVENTION 2015; 8:e2331. [PMID: 26413251 PMCID: PMC4581370 DOI: 10.17795/ijcp2331] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 04/25/2015] [Accepted: 05/08/2015] [Indexed: 11/25/2022]
Abstract
Background: Breast cancer is the second leading cause of cancer-related death among females in the world. To date, chemotherapy has been the most frequently used treatment for breast cancer and other cancers. However, some natural products have been used, as alternative treatments for cancers including breast cancer, due to their wide range of biological activities and low toxicity in animal models. Objectives: The present study examined the anti-proliferative activity of curcumin and its effect(s) on the apoptosis of breast cancer cells. Materials and Methods: This study was performed by an in vitro assay and the anticancer effects of curcumin were determined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide). We used quantitative real time Polymerase Chain Reaction (PCR) for detection of Mcl-1 gene expression in treated groups and then compared them to control samples. Results: In the treatment group, there were higher levels of cell death changes than the control group. The results also showed that the Mcl-1 gene expression declined in the tested group as compared to the control group. Conclusions: Our present findings indicated that curcumin significantly inhibited the growth of human breast cancer cell MCF-7 by inducing apoptosis in a dose- and time- dependent manner, accompanied by a decrease in MCF-7 cell viability. Furthermore, our results showed that quantitative real-time PCR could be used as a direct method for detection Mcl-1 gene expression in tested samples and normal samples.
Collapse
Affiliation(s)
- Zeinab Khazaei Koohpar
- Department of Herbal Medicine, Institute of Islamic and Complementary Medicine, Iran University of Medical Sciences, Tehran, IR Iran ; Department of Biology, Tonekabon Branch, Islamic Azad University, Tonekabon, IR Iran
| | - Maliheh Entezari
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, IR Iran
| | - Abolfazl Movafagh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Mehrdad Hashemi
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, IR Iran
| |
Collapse
|
27
|
de Paiva Gonçalves V, Ortega AAC, Guimarães MR, Curylofo FA, Junior CR, Ribeiro DA, Spolidorio LC. Chemopreventive Activity of Systemically Administered Curcumin on Oral Cancer in the 4-Nitroquinoline 1-Oxide Model. J Cell Biochem 2015; 116:787-96. [DOI: 10.1002/jcb.25035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/11/2014] [Indexed: 01/05/2023]
Affiliation(s)
- Vinícius de Paiva Gonçalves
- Department of Diagnosis and Surgery; Araraquara School of Dentistry; University of São Paulo State UNESP; Araraquara SP Brazil
| | - Adriana Alicia C. Ortega
- Department of Diagnosis and Surgery; Araraquara School of Dentistry; University of São Paulo State UNESP; Araraquara SP Brazil
| | - Morgana R. Guimarães
- Department of Diagnosis and Surgery; Araraquara School of Dentistry; University of São Paulo State UNESP; Araraquara SP Brazil
| | - Fabiana Almeida Curylofo
- Department of Diagnosis and Surgery; Araraquara School of Dentistry; University of São Paulo State UNESP; Araraquara SP Brazil
| | - Carlos Rossa Junior
- Department of Diagnosis and Surgery; Araraquara School of Dentistry; University of São Paulo State UNESP; Araraquara SP Brazil
| | - Daniel Araki Ribeiro
- Department of Biosciences; Federal University of São Paulo UNIFESP; Santos SP Brazil
| | - Luis C. Spolidorio
- Department of Physiology and Pathology; Araraquara School of Dentistry; University of São Paulo State UNESP; Araraquara SP Brazil
| |
Collapse
|
28
|
Guo Y, Shu L, Zhang C, Su ZY, Kong ANT. Curcumin inhibits anchorage-independent growth of HT29 human colon cancer cells by targeting epigenetic restoration of the tumor suppressor gene DLEC1. Biochem Pharmacol 2015; 94:69-78. [PMID: 25640947 DOI: 10.1016/j.bcp.2015.01.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/13/2015] [Accepted: 01/21/2015] [Indexed: 01/25/2023]
Abstract
Colorectal cancer remains the most prevalent malignancy in humans. The impact of epigenetic alterations on the development of this complex disease is now being recognized. The dynamic and reversible nature of epigenetic modifications makes them a promising target in colorectal cancer chemoprevention and treatment. Curcumin (CUR), the major component in Curcuma longa, has been shown as a potent chemopreventive phytochemical that modulates various signaling pathways. Deleted in lung and esophageal cancer 1 (DLEC1) is a tumor suppressor gene with reduced transcriptional activity and promoter hypermethylation in various cancers, including colorectal cancer. In the present study, we aimed to investigate the inhibitory role of DLEC1 in anchorage-independent growth of the human colorectal adenocarcinoma HT29 cells and epigenetic regulation by CUR. Specifically, we found that CUR treatment inhibited colony formation of HT29 cells, whereas stable knockdown of DLEC1 using lentiviral short hairpin RNA vector increased cell proliferation and colony formation. Knockdown of DLEC1 in HT29 cells attenuated the ability of CUR to inhibit anchorage-independent growth. Methylation-specific polymerase chain reaction (MSP), bisulfite genomic sequencing, and methylated DNA immunoprecipitation revealed that CUR decreased CpG methylation of the DLEC1 promoter in HT29 cells after 5 days of treatment, corresponding to increased mRNA expression of DLEC1. Furthermore, CUR decreased the protein expression of DNA methyltransferases and subtypes of histone deacetylases (HDAC4, 5, 6, and 8). Taken together, our results suggest that the inhibitory effect of CUR on anchorage-independent growth of HT29 cells could, at least in part, involve the epigenetic demethylation and up-regulation of DLEC1.
Collapse
Affiliation(s)
- Yue Guo
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Room 228, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Limin Shu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Room 228, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Chengyue Zhang
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Room 228, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Zheng-Yuan Su
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Room 228, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Room 228, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
29
|
Kwak TK, Sohn EJ, Kim S, Won G, Choi JU, Jeong K, Jeong M, Kwon OS, Kim SH. Inhibitory effect of ethanol extract of Ocimum sanctum on osteopontin mediated metastasis of NCI-H460 non-small cell lung cancer cells. Altern Ther Health Med 2014; 14:419. [PMID: 25345853 PMCID: PMC4219006 DOI: 10.1186/1472-6882-14-419] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 06/27/2014] [Indexed: 01/10/2023]
Abstract
Background Osteopontin (OPN) is one of important molecular targets in cancer progression, metastasis as a calcium-binding, extracellular-matrix-associated protein of the small integrin-binding ligand and, N-linked glycoprotein. In the present study, anti-metastatic mechanism of ethanol extracts of Ocimum sanctum (EEOS) was elucidated on OPN enhanced metastasis in NCI-H460 non- small cell lung cancer cells. Methods Cell viability was measured by MTT assay. Adhesion and invasion assays were carried out to see that EEOS inhibited cell adhesion and invasion in OPN treated and non-treated NCI-H 460 cells. RT-PCR was used to determine the mRNA levels of uPA, uPAR, and EGFR. Results EEOS significantly inhibited cell adhesion and invasion in OPN treated and non treated NCI-H460 cells, though EEOS did not show any toxicity up to 200 μg/ml. EEOS effectively attenuated the expression of OPN and CD44 and also OPN activated the expression of CD44 in NCI-H460 cells. In addition, EEOS effectively suppressed the expression of phosphatidylinositide 3-kinases (PI3K) and cyclooxygenase 2 (COX-2) and the phosphorylation of Akt at protein level in OPN treated NCI-H460 cells. Also, EEOS significantly attenuated the expression of urokinase plasminogen activator (uPA), its receptor (uPAR) and epidermal growth factor receptor (EGFR) at mRNA level and reduced vascular endothelial growth factor (VEGF) production and MMP-9 activity in OPN treated NCI-H460 cells. Furthermore, PI3K/Akt inhibitor LY294002 enhanced anti-metastatic potential of EEOS to attenuate the expression of uPA and MMP-9 in OPN treated NCI-H 460 cells. Conclusion Overall, our findings suggest that anti-metastatic mechanism of EEOS is mediated by inhibition of PI3K/Akt in OPN treated NCI-H460 non-small cell lung cancer cells.
Collapse
|
30
|
Sui H, Zhu L, Deng W, Li Q. Epithelial-mesenchymal transition and drug resistance: role, molecular mechanisms, and therapeutic strategies. Oncol Res Treat 2014; 37:584-9. [PMID: 25342509 DOI: 10.1159/000367802] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 07/31/2014] [Indexed: 11/19/2022]
Abstract
Chemotherapy is an important therapeutic option for most cancer patients; however, one major obstacle is the occurrence of drug resistance which usually leads to failure of the chemotherapy. Emerging evidence suggests that there are intricate links between epithelial-mesenchymal transition (EMT)-type cells and drug resistance in tumors. The process of drug resistance can be regulated by a diverse array of cytokines and growth factors, higher apoptotic threshold, aerobic glycolysis, regions of hypoxia, and elevated activity of drug efflux transporters. Moreover, recent reports have indicated that the emergence of drug resistance may occur as a result of EMT. In this regard, most drug-resistant cancers contain a subpopulation of cells with stem-like and mesenchymal features that are resistant to chemotherapy. In this review, we will explain potential mechanisms for the association between EMT induction and the emergence of drug resistance, and discuss new approaches and drugs for the clinical management of drug-resistant cancer induced by EMT.
Collapse
Affiliation(s)
- Hua Sui
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | | | | |
Collapse
|
31
|
GRP78 promotes the invasion of pancreatic cancer cells by FAK and JNK. Mol Cell Biochem 2014; 398:55-62. [PMID: 25218495 DOI: 10.1007/s11010-014-2204-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/30/2014] [Indexed: 01/11/2023]
Abstract
The major characteristics of pancreatic cancer are its excessive local invasion and early systemic dissemination. The glucose-regulated protein is over-expressed in many human cancers including pancreatic cancer and correlated with invasion and metastasis in many cancers. To investigate the effect of Grp78 on the invasion of pancreatic cancer, we used western blot and Transwell assay. We found Grp78 is expressed at lower levels in capan-2 and higher expressed in MiaPaCa-2 cells, and Grp78 expression levels were correlated with the invasion potentials of tumor cells. Then,we increased the expression of Grp78 in capan-2 cells and decreased the expression of Grp78 in MiaPaCa-2 cells. We found that over-expression of Grp78 caused significant increase in the expression of TIMP-1, TIMP-2, MMP-14, MMP-2, and MMP-9 in Capan-2 cells. Consistently, knockdown of Grp78 decreased the expression of them in MiaPaCa-2 cells. Gelatin zymography showed Grp78 over-expression stimulated the activities of MMP-2 and MMP-9, while GRP78 knockdown reduced the activities of MMP-2 and MMP-9. Cytoskeleton staining showed that knockdown of Grp78 caused a marked increase in cytoskeleton F-actin stress fibers in MiaPaCa-2 cells. Consistently, GRP78 knockdown hyperactivated RhoA and inhibited significantly Rac activity. Grp78 over-expression decreases the RhoA and stimulated Rac activity. We also found that Grp78 modulated FAK and JNK signaling pathways. Over-expression of GRP78 in Capan-2 activated FAK and JNK. Finally, we demonstrated that knockdown of FAK by shRNA in combination with blockade of JNK signaling pathway with SP600125 completely inhibited GRP78-induced cancer cell invasion. GRP78 is involved in the regulation of pancreatic cancer invasion. FAK and JNK are the key downstream effectors of GRP78.
Collapse
|
32
|
Landis-Piwowar KR, Iyer NR. Cancer chemoprevention: current state of the art. CANCER GROWTH AND METASTASIS 2014; 7:19-25. [PMID: 24987270 PMCID: PMC4064948 DOI: 10.4137/cgm.s11288] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 05/01/2014] [Accepted: 05/02/2014] [Indexed: 12/20/2022]
Abstract
The aim of cancer chemoprevention is disruption or delay of the molecular pathways that lead to carcinogenesis. Chemopreventive blocking and/or suppressing agents disrupt the molecular mechanisms that drive carcinogenesis such as DNA damage by reactive oxygen species, increased signal transduction to NF-κB, epigenomic deregulation, and the epithelial mesenchymal transition that leads to metastatic progression. Numerous dietary phytochemicals have been observed to inhibit the initiation phase of carcinogenesis, and therefore are useful in primary chemoprevention. Moreover, phytochemicals are capable of interfering with the molecular mechanisms of metastasis. Likewise, numerous synthetic compounds are relevant and clinically viable as chemopreventive agents during the fundamental stages of carcinogenesis. While molecularly targeted anti-cancer therapies are in constant stages of development, superior patient outcomes are observed if carcinogenic processes are prevented altogether. This article reviews the role of chemopreventive compounds in inhibition of cancer initiation and their ability to reduce cancer progression.
Collapse
Affiliation(s)
- Kristin R Landis-Piwowar
- Biomedical Diagnostic and Therapeutic Sciences, School of Health Sciences, Oakland University, Rochester, MI, USA
| | - Neena R Iyer
- Biomedical Diagnostic and Therapeutic Sciences, School of Health Sciences, Oakland University, Rochester, MI, USA
| |
Collapse
|
33
|
Lv ZD, Liu XP, Zhao WJ, Dong Q, Li FN, Wang HB, Kong B. Curcumin induces apoptosis in breast cancer cells and inhibits tumor growth in vitro and in vivo. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:2818-2824. [PMID: 25031701 PMCID: PMC4097278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/28/2014] [Indexed: 06/03/2023]
Abstract
Curcumin has shown therapeutic and/or adjuvant therapeutic effects on the treatment of some patients with breast cancer. However, its mechanisms of action are largely unknown. This study was designed to investigate its antitumor effect and underlying mechanisms in human breast cancer MDA-MB-231 and MCF-7 cells. The MTT assay was used to evaluate cell viability, and flow cytometry, acridine orange staining and transmission electron microscopy were used to detect apoptosis for cultured cells. The protein expression in cells was evaluated by western blot analysis. Breast tumors were established by subcutaneous injection of MDA-MB-231 cells in nude BALB/c mice, and curcumin was administered to the mice. The size of tumors was monitored and the weight of tumors was examined. The exposure of breast cancer cells to curcumin resulted in growth inhibition and the induction of apoptosis in a dose-dependent manner. We also found that the expression of Bcl-2 protein decreased and the expression of Bax protein increased which lead to an increase of the Bax/Bcl-2 ratio. In mice bearing MDA-MB-231 xenograft tumors, administration of curcumin showed a significant decrease of tumor volumes and tumor weight compared with the control. Our results showed that curcumin exhibited antitumor effects in breast cancer cells with an induction of apoptosis.
Collapse
Affiliation(s)
- Zhi-Dong Lv
- Department of Breast Surgery, The Affiliated Hospital of Medical College, Qingdao UniversityQingdao 266003, P.R. China
| | - Xiang-Ping Liu
- Central Laboratory of Molecular Biology, The Affiliated Hospital of Medical College, Qingdao UniversityQingdao 266003, P.R. China
| | - Wei-Jun Zhao
- Department of General Surgery, The Affiliated Hospital of Chifeng UniversityChifeng 024000, Inner Mongolia, China
| | - Qian Dong
- Pediatric Surgery, The Affiliated Hospital of Medical College, Qingdao UniversityQingdao 266003, P.R. China
| | - Fu-Nian Li
- Department of Breast Surgery, The Affiliated Hospital of Medical College, Qingdao UniversityQingdao 266003, P.R. China
| | - Hai-Bo Wang
- Department of Breast Surgery, The Affiliated Hospital of Medical College, Qingdao UniversityQingdao 266003, P.R. China
| | - Bin Kong
- Department of Breast Surgery, The Affiliated Hospital of Medical College, Qingdao UniversityQingdao 266003, P.R. China
| |
Collapse
|
34
|
Wu J, Tang Q, Zhao S, Zheng F, Wu Y, Tang G, Hahn SS. Extracellular signal-regulated kinase signaling-mediated induction and interaction of FOXO3a and p53 contribute to the inhibition of nasopharyngeal carcinoma cell growth by curcumin. Int J Oncol 2014; 45:95-103. [PMID: 24806432 PMCID: PMC4079154 DOI: 10.3892/ijo.2014.2420] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/02/2014] [Indexed: 01/03/2023] Open
Abstract
Curcumin, one of the main bioactive components extracted from a traditional Chinese medicinal herb, exhibits potent anticancer activity against many types of cancer cells including nasopharyngeal carcinoma (NPC). However, the detailed molecular mechanism underlying this is not clearly understood. In this study, we showed that curcumin significantly inhibited the growth of NPC cells in a dose-and time-dependent manner as determined by MTT assays, while increasing apoptosis was also observed as measured by flow cytometry for the FITC-Annexin V and propidium iodide (PI) label and Hoechst 33258 staining. To further explore the potential mechanism, we showed that curcumin increased the phosphorylation of ERK1/2 but not p38 MAPK in a time-dependent manner, and induced protein expression of the tumor suppressors FOXO3a and p53 in a dose-dependent manner, which were not observed in the presence of PD98059, an inhibitor of ERK1/2. Furthermore, silencing of FOXO3a and p53 genes by siRNAs overcame the inhibitory effect of curcumin on cell proliferation. Silencing or blockade of p53 using siRNA or chemical inhibitor abrogated the effect of curcumin on expression of FOXO3a protein; silencing or overexpression of FOXO3a had no further effect on curcumin-induced p53 protein expression. Furthermore, blockade of ERK1/2 and exogenous expression of FOXO3a restored the effect of curcumin on growth of cells. Together, our studies show that curcumin inhibits growth and induces apoptosis of NPC cells through ERK1/2-mediated increase in the protein expression and interaction of p53 and FOXO3a. p53 is upstream of FOXO3a, which form a regulatory loop that mediates the effect of curcumin. This study unveils a new mechanism by which curcumin inhibits the proliferation and induces apoptosis of human NPC cells.
Collapse
Affiliation(s)
- Jingjing Wu
- Laboratory of Tumor Molecular Biology and Targeted Therapies of Chinese Medicine, University of Guangzhou Traditional Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, P.R. China
| | - Qin Tang
- Laboratory of Tumor Molecular Biology and Targeted Therapies of Chinese Medicine, University of Guangzhou Traditional Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, P.R. China
| | - Shunyu Zhao
- Laboratory of Tumor Molecular Biology and Targeted Therapies of Chinese Medicine, University of Guangzhou Traditional Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, P.R. China
| | - Fang Zheng
- Laboratory of Tumor Molecular Biology and Targeted Therapies of Chinese Medicine, University of Guangzhou Traditional Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, P.R. China
| | - Yan Wu
- Laboratory of Tumor Molecular Biology and Targeted Therapies of Chinese Medicine, University of Guangzhou Traditional Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, P.R. China
| | - Ge Tang
- Laboratory of Tumor Molecular Biology and Targeted Therapies of Chinese Medicine, University of Guangzhou Traditional Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, P.R. China
| | - Swei Sunny Hahn
- Laboratory of Tumor Molecular Biology and Targeted Therapies of Chinese Medicine, University of Guangzhou Traditional Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, P.R. China
| |
Collapse
|