1
|
Wang K, Guo G, Bai S, Ma J, Zhang Z, Xing Z, Wang W, Li H, Liang H, Li Z, Si X, Wang J, Liu Q, Xu W, Yang C, Song RF, Li J, He T, Li J, Zeng X, Liang J, Zhang F, Qiu X, Li Y, Bu T, Liu WC, Zhao Y, Huang J, Zhou Y, Song CP. Horizontally acquired CSP genes contribute to wheat adaptation and improvement. NATURE PLANTS 2025; 11:761-774. [PMID: 40148598 DOI: 10.1038/s41477-025-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 02/25/2025] [Indexed: 03/29/2025]
Abstract
Although horizontal gene transfer (HGT) often facilitates environmental adaptation of recipient organisms, whether and how they might affect crop evolution and domestication is unclear. Here we show that three genes encoding cold-shock proteins (CSPs) were transferred from bacteria to Triticeae, a tribe of the grass family that includes several major staple crops such as wheat, barley and rye. The acquired CSP genes in wheat (TaCSPs) are functionally conserved in their bacterial homologues by encoding a nucleic acid-binding protein. Experimental evidence indicates that TaCSP genes positively regulate drought response and improve photosynthetic efficiency under water-deficient conditions by directly targeting a type 1 metallothionein gene to increase reactive oxygen species scavenging, which in turn contributed to the geographic expansion of wheat. We identified an elite CSP haplotype in Aegilops tauschii, introduction of which to wheat significantly increased drought tolerance, photosynthetic efficiency and grain yields. These findings not only provide major insights into the role of HGT in crop adaptation and domestication, but also demonstrate that novel microbial genes introduced through HGT offer a stable and naturally optimized resource for transgenic crop breeding and improvement.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Guanghui Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Shenglong Bai
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jianchao Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhen Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zeyu Xing
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Wei Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Hao Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Huihui Liang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zheng Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiaomin Si
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jinjin Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Qian Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Wenyao Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Cuicui Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Ru-Feng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Junrong Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Tiantian He
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jingyao Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiaoyu Zeng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jingge Liang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Fang Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiaolong Qiu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuanyuan Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Tiantian Bu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yusheng Zhao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jinling Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
- Department of Biology, East Carolina University, Greenville, NC, USA.
| | - Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
2
|
Zheng Y, Cai Z, Wang Z, Maruza TM, Zhang G. The Genetics and Breeding of Heat Stress Tolerance in Wheat: Advances and Prospects. PLANTS (BASEL, SWITZERLAND) 2025; 14:148. [PMID: 39861500 PMCID: PMC11768744 DOI: 10.3390/plants14020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/27/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025]
Abstract
Heat stress is one of the major concerns for wheat production worldwide. Morphological parameters such as germination, leaf area, shoot, and root growth are affected by heat stress, with affected physiological parameters including photosynthesis, respiration, and water relation. Heat stress also leads to the generation of reactive oxygen species that disrupt the membrane systems of thylakoids, chloroplasts, and the plasma membrane. The deactivation of the photosystems, reduction in photosynthesis, and inactivation of Rubisco affect the production of photo-assimilates and their allocation, consequently resulting in reduced grain yield and quality. The development of thermo-tolerant wheat varieties is the most efficient and fundamental approach for coping with global warming. This review provides a comprehensive overview of various aspects related to heat stress tolerance in wheat, including damages caused by heat stress, mechanisms of heat stress tolerance, genes or QTLs regulating heat stress tolerance, and the methodologies of breeding wheat cultivars with high heat stress tolerance. Such insights are essential for developing thermo-tolerant wheat cultivars with high yield potential in response to an increasingly warmer environment.
Collapse
Affiliation(s)
| | | | | | | | - Guoping Zhang
- Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Department of Agronomy, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (Z.C.); (Z.W.); (T.M.M.)
| |
Collapse
|
3
|
Chen L, Zhang J, Ma P, Miao Y, Wu L, Zhou K, Yang J, Zhang M, Liu X, Jiang B, Hao M, Huang L, Ning S, Chen X, Chen X, Liu D, Wan H, Zhang L. Identification of a recessive gene RgM4G52 conferring red glume, stem, and rachis in a Triticum boeoticum mutant. FRONTIERS IN PLANT SCIENCE 2024; 15:1459505. [PMID: 39253576 PMCID: PMC11381283 DOI: 10.3389/fpls.2024.1459505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/01/2024] [Indexed: 09/11/2024]
Abstract
Anthocyanins are plant secondary metabolites belonging to the polyphenol class of natural water-soluble phytopigments. The accumulation of anthocyanins in different plant tissues can improve plant survival under adverse conditions. In addition, plants with the resulting colorful morphology can be utilized as landscape plants. Triticum boeoticum (syn. Triticum monococcum ssp. aegilopoides, 2n=2x=14, AbAb) serves as a valuable genetic resource for the improvement of its close relative common wheat in terms of enhancing resilience to various biotic and abiotic stresses. In our previous study, the EMS-mutagenized mutant Z2921 with a red glume, stem, and rachis was generated from T. boeoticum G52, which has a green glume, stem, and rachis. In this study, the F1, F2, and F2:3 generations of a cross between mutant-type Z2921 and wild-type G52 were developed. A single recessive gene, tentatively designated RgM4G52, was identified in Z2921 via genetic analysis. Using bulked segregant exome capture sequencing (BSE-Seq) analysis, RgM4G52 was mapped to chromosome 6AL and was flanked by the markers KASP-58 and KASP-26 within a 3.40-cM genetic interval corresponding to 1.71-Mb and 1.61-Mb physical regions in the Chinese Spring (IWGSC RefSeq v1.1) and Triticum boeoticum (TA299) reference genomes, respectively, in which seven and four genes related to anthocyanin synthesis development were annotated. Unlike previously reported color morphology-related genes, RgM4G52 is a recessive gene that can simultaneously control the color of glumes, stems, and rachis in wild einkorn. In addition, a synthetic Triticum dicoccum-T. boeoticum amphiploid Syn-ABAb-34, derived from the colchicine treatment of F1 hybrids between tetraploid wheat PI 352367 (T. dicoccum, AABB) and Z2921, expressed the red stems of Z2921. The flanking markers of RgM4G52 developed in this study could be useful for developing additional common wheat lines with red stems, laying the foundation for marker-assisted breeding and the fine mapping of RgM4G52.
Collapse
Affiliation(s)
- Longyu Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Junqing Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pan Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yongping Miao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lei Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ke Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jiaru Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Minghu Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xin Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Bo Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lin Huang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuejiao Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hongshen Wan
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Affairs), Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Lianquan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Laskoś K, Czyczyło-Mysza IM, Waligórski P, Dziurka K, Skrzypek E, Warchoł M, Juzoń-Sikora K, Janowiak F, Dziurka M, Grzesiak MT, Grzesiak S, Quarrie S, Marcińska I. Characterising Biological and Physiological Drought Signals in Diverse Parents of a Wheat Mapping Population. Int J Mol Sci 2024; 25:6573. [PMID: 38928284 PMCID: PMC11203422 DOI: 10.3390/ijms25126573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Water deficit affects the growth as well as physiological and biochemical processes in plants. The aim of this study was to determine differences in physiological and biochemical responses to drought stress in two wheat cultivars-Chinese Spring (CS) and SQ1 (which are parents of a mapping population of doubled haploid lines)-and to relate these responses to final yield and agronomic traits. Drought stress was induced by withholding water for 14 days, after which plants were re-watered and maintained until harvest. Instantaneous gas exchange parameters were evaluated on the 3rd, 5th, 10th, and 14th days of seedling growth under drought. After 14 days, water content and levels of chlorophyll a+b, carotenoids, malondialdehyde, soluble carbohydrates, phenolics, salicylic acid, abscisic acid (ABA), and polyamines were measured. At final maturity, yield components (grain number and weight), biomass, straw weight, and harvest index were evaluated. Physiological and biochemical parameters of CS responded more than those of SQ1 to the 14-day drought, reflected in a greater reduction in final biomass and yield in CS. Marked biochemical differences between responses of CS and SQ1 to the drought were found for soluble carbohydrates and polyamines. These would be good candidates for testing in the mapping population for the coincidence of the genetic control of these traits and final biomass and yield.
Collapse
Affiliation(s)
- Kamila Laskoś
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (K.L.); (P.W.); (K.D.); (E.S.); (M.W.); (K.J.-S.); (F.J.); (M.D.); (M.T.G.); (S.G.); (I.M.)
| | - Ilona Mieczysława Czyczyło-Mysza
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (K.L.); (P.W.); (K.D.); (E.S.); (M.W.); (K.J.-S.); (F.J.); (M.D.); (M.T.G.); (S.G.); (I.M.)
| | - Piotr Waligórski
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (K.L.); (P.W.); (K.D.); (E.S.); (M.W.); (K.J.-S.); (F.J.); (M.D.); (M.T.G.); (S.G.); (I.M.)
| | - Kinga Dziurka
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (K.L.); (P.W.); (K.D.); (E.S.); (M.W.); (K.J.-S.); (F.J.); (M.D.); (M.T.G.); (S.G.); (I.M.)
| | - Edyta Skrzypek
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (K.L.); (P.W.); (K.D.); (E.S.); (M.W.); (K.J.-S.); (F.J.); (M.D.); (M.T.G.); (S.G.); (I.M.)
| | - Marzena Warchoł
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (K.L.); (P.W.); (K.D.); (E.S.); (M.W.); (K.J.-S.); (F.J.); (M.D.); (M.T.G.); (S.G.); (I.M.)
| | - Katarzyna Juzoń-Sikora
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (K.L.); (P.W.); (K.D.); (E.S.); (M.W.); (K.J.-S.); (F.J.); (M.D.); (M.T.G.); (S.G.); (I.M.)
| | - Franciszek Janowiak
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (K.L.); (P.W.); (K.D.); (E.S.); (M.W.); (K.J.-S.); (F.J.); (M.D.); (M.T.G.); (S.G.); (I.M.)
| | - Michał Dziurka
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (K.L.); (P.W.); (K.D.); (E.S.); (M.W.); (K.J.-S.); (F.J.); (M.D.); (M.T.G.); (S.G.); (I.M.)
| | - Maciej T. Grzesiak
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (K.L.); (P.W.); (K.D.); (E.S.); (M.W.); (K.J.-S.); (F.J.); (M.D.); (M.T.G.); (S.G.); (I.M.)
| | - Stanisław Grzesiak
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (K.L.); (P.W.); (K.D.); (E.S.); (M.W.); (K.J.-S.); (F.J.); (M.D.); (M.T.G.); (S.G.); (I.M.)
| | - Steve Quarrie
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia;
| | - Izabela Marcińska
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (K.L.); (P.W.); (K.D.); (E.S.); (M.W.); (K.J.-S.); (F.J.); (M.D.); (M.T.G.); (S.G.); (I.M.)
| |
Collapse
|
5
|
Liu X, Jiang X, Zhang J, Ye H, Shen M, Wu L, Miao Y, Chen L, Zhou K, Hao M, Jiang B, Huang L, Ning S, Chen X, Chen X, Liu D, Zhang L. Molecular cytogenetic identification and nutritional composition evaluation of newly synthesized Triticum turgidum- Triticum boeoticum amphiploids (AABBA bA b). FRONTIERS IN PLANT SCIENCE 2023; 14:1285847. [PMID: 38143580 PMCID: PMC10748598 DOI: 10.3389/fpls.2023.1285847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
Triticum boeoticum Boiss. (AbAb, 2n = 2x = 14) is a wheat-related species with the blue aleurone trait. In this study, 18 synthetic Triticum turgidum-Triticum boeoticum amphiploids were identified, which were derived from crosses between T. boeoticum and T. turgidum. Three probes (Oligo-pTa535, Oligo-pSc119.2, and Oligo-pTa713) for multicolor fluorescence in situ hybridization (mc-FISH) were combined with genomic in situ hybridization (GISH) to identify chromosomal composition. Seven nutritional indices (anthocyanins, protein, total essential amino acids TEAA, Fe, Zn, Mn and Cu) were measured, and the nutritional components of 18 synthetic amphiploids were comprehensively ranked by principal component analysis (PCA). The results showed that all three synthetic amphiploids used for cytological identification contained 42 chromosomes, including 14 A, 14 B, and 14 Ab chromosomes. The average anthocyanin content was 82.830 μg/g to 207.606 μg/g in the whole meal of the 17 blue-grained lines (Syn-ABAb-1 to Syn-ABAb-17), which was obviously higher than that in the yellow-grained line Syn-ABAb-18 (6.346 μg/g). The crude protein content was between 154.406 and 180.517 g/kg, and the EAA content was 40.193-63.558 mg/g. The Fe, Zn, Mn and Cu levels in the 17 blue-grained lines were 60.55 to 97.41 mg/kg, 60.55-97.41 mg/kg, 35.11 to 65.20 mg/kg and 5.74 to 7.22 mg/kg, respectively, which were higher than those in the yellow-grained line. The contribution of the first three principal components reached 84%. The first principal component was mainly anthocyanins, Fe, Zn and Mn. The second principal component contained protein and amino acids, and the third component contained only Cu. The top 5 Triticum turgidum-Triticum boeoticum amphiploids were Syn-ABAb-11, Syn-ABAb-17, Syn-ABAb-5, Syn-ABAb-8 and Syn-ABAb-4. These amphidiploids exhibited the potential to serve as candidates for hybridization with common wheat, as indicated by comprehensive score rankings, toward enhancing the nutritional quality of wheat.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaomei Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Junqing Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hong Ye
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mang Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lei Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yongping Miao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Longyu Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ke Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Bo Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuejiao Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lianquan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Gruet C, Alaoui M, Gerin F, Prigent-Combaret C, Börner A, Muller D, Moënne-Loccoz Y. Genomic content of wheat has a higher influence than plant domestication status on the ability to interact with Pseudomonas plant growth-promoting rhizobacteria. PLANT, CELL & ENVIRONMENT 2023; 46:3933-3948. [PMID: 37614118 DOI: 10.1111/pce.14698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/10/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
Plant evolutionary history has had profound effects on belowground traits, which is likely to have impacted the ability to interact with microorganisms, but consequences on root colonization and gene expression by plant growth-promoting rhizobacteria (PGPR) remain poorly understood. Here, we tested the hypothesis that wheat genomic content and domestication are key factors determining the capacity for PGPR interaction. Thus, 331 wheat representatives from eight Triticum or Aegilops species were inoculated under standardized conditions with the generalist PGPR Pseudomonas ogarae F113, using an autofluorescent reporter system for monitoring F113 colonization and expression of phl genes coding for the auxinic inducing signal 2,4-diacetylphloroglucinol. The interaction with P. ogarae F113 was influenced by ploidy level, presence of genomes AA, BB, DD, and domestication. While root colonization was higher for hexaploid and tetraploid species, and phl expression level higher for hexaploid wheat, the diploid Ae. tauschii displayed higher phl induction rate (i.e., expression:colonisation ratio) on roots. However, a better potential of interaction with F113 (i.e., under non-stress gnotobiotic conditions) did not translate, after seed inoculation, into better performance of wheat landraces in non-sterile soil under drought. Overall, results showed that domestication and especially plant genomic content modulate the PGPR interaction potential of wheats.
Collapse
Affiliation(s)
- Cécile Gruet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Maroua Alaoui
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Florence Gerin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Claire Prigent-Combaret
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Andreas Börner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, OT Gatersleben, Germany
| | - Daniel Muller
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Yvan Moënne-Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
7
|
Orlovskaya ОA, Leonova IN, Solovey LA, Dubovets NI. Molecular cytological analysis of alien introgressions in common wheat lines created by crossing of Triticum aestivum with T. dicoccoides and T. dicoccum. Vavilovskii Zhurnal Genet Selektsii 2023; 27:553-564. [PMID: 38023811 PMCID: PMC10643109 DOI: 10.18699/vjgb-23-67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 12/01/2023] Open
Abstract
Wild and domesticated emmer (ВВАА, 2n = 28) are of significant interest for expanding the genetic diversity of common wheat as sources of a high protein and microelement grain content, resistance to many biotic and abiotic factors. Particular interest in these species is also determined by their close relationship with Triticum aestivum L., which facilitates interspecific hybridization. The objective of this work was to analyze the nature of alien introgressions in hybrid lines from crossing common wheat varieties with T. dicoccoides and T. dicoccum, and to assess the effect of their genome fragments on the cytological stability of introgression lines. A C-banding technique and genotyping with SNP and SSR markers were used to determine localization and length of introgression fragments. Assessment of cytological stability was carried out on the basis of chromosome behavior in microsporogenesis. A molecular cytogenetic analysis of introgression wheat lines indicated that the inclusion of the genetic material of wild and domesticated emmer was carried out mainly in the form of whole arms or large fragments in the chromosomes of the B genome and less extended inserts in the A genome. At the same time, the highest frequency of introgressions of the emmer genome was observed in chromosomes 1A, 1B, 2B, and 3B. The analysis of the final stage of meiosis showed a high level of cytological stability in the vast majority of introgression wheat lines (meiotic index was 83.0-99.0 %), which ensures the formation of functional gametes in an amount sufficient for successful reproduction. These lines are of interest for the selection of promising material with agronomically valuable traits and their subsequent inclusion in the breeding process.
Collapse
Affiliation(s)
- О A Orlovskaya
- Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - I N Leonova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Department of Genetics and Selection, Novosibirsk State Agricultural University, Novosibirsk, Russia
| | - L A Solovey
- Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - N I Dubovets
- Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Minsk, Belarus
| |
Collapse
|
8
|
Liu G, Liu D, Zhang A, Liu H, Mia MS, Mullan D, Yan G. Identification of KASP markers and candidate genes for drought tolerance in wheat using 90K SNP array genotyping of near-isogenic lines targeting a 4BS quantitative trait locus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:190. [PMID: 37584740 PMCID: PMC10432333 DOI: 10.1007/s00122-023-04438-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
KEY MESSAGE This study identified a novel SNP and developed a highly efficient KASP marker for drought tolerance in wheat by genotyping NILs targeting a major QTL for drought tolerance using an SNP array and validation with commercial varieties. Common wheat (Triticum aestivum L.) is an important winter crop worldwide and a typical allopolyploid with a large and complex genome. With global warming, the environmental volatility and incidence of drought in wheat-producing areas will increase. Molecular markers for drought tolerance are urgently needed to enhance drought tolerance breeding. Here, we genotyped four near-isogenic line (NIL) pairs targeting a major QTL qDSI.4B.1 on wheat chromosome arm 4BS for drought tolerance using the 90K SNP Illumina iSelect array and discovered a single nucleotide polymorphism (SNP) (Excalibur_c100336_106) with consistent genotype-phenotype associations among all four NIL pairs and their parents. Then, we converted the SNP into a Kompetitive Allele-Specific PCR (KASP) marker, with an accuracy of 100% for the four NIL pairs and their parents and as high as 81.8% for the 44 tested wheat lines with known phenotypes collected from Australia and China. Two genes near this SNP were suggested as candidate genes for drought tolerance in wheat after checking the Chinese Spring reference genome annotation version 1.1. One gene, TraesCS4B02G085300, encodes an F-box protein reportedly related to the ABA network, a main pathway for drought tolerance, and another gene, TraesCS4B02G085400, encodes a calcineurin-like metallophos-phoesterase transmembrane protein, which participates in Ca2+-dependent phosphorylation regulatory system. Based on this work and previous research on pre-harvest sprouting, we established a quick and efficient general SQV-based approach for KASP marker development, integrating genotyping by SNP arrays (S) using NILs targeting major QTL for a specific trait (Q) and validating them with commercial varieties (V). The identified SNP and developed KASP marker could be applied to marker-assisted selection in drought breeding, and further study of the candidate genes may improve our understanding of drought tolerance in wheat.
Collapse
Affiliation(s)
- Guannan Liu
- UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009 Australia
| | - Dongcheng Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agriculture University, Baoding, 071000 Hebei China
| | - Aimin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agriculture University, Baoding, 071000 Hebei China
| | - Hui Liu
- UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009 Australia
| | - Md Sultan Mia
- UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009 Australia
| | - Daniel Mullan
- UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009 Australia
- InterGrain Pty. Ltd., 19 Ambitious Link, Bibra Lake, WA 6163 Australia
| | - Guijun Yan
- UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009 Australia
| |
Collapse
|
9
|
Du L, Ma Z, Mao H. Duplicate Genes Contribute to Variability in Abiotic Stress Resistance in Allopolyploid Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:2465. [PMID: 37447026 DOI: 10.3390/plants12132465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 07/15/2023]
Abstract
Gene duplication is a universal biological phenomenon that drives genomic variation and diversity, plays a crucial role in plant evolution, and contributes to innovations in genetic engineering and crop development. Duplicated genes participate in the emergence of novel functionality, such as adaptability to new or more severe abiotic stress resistance. Future crop research will benefit from advanced, mechanistic understanding of the effects of gene duplication, especially in the development and deployment of high-performance, stress-resistant, elite wheat lines. In this review, we summarize the current knowledge of gene duplication in wheat, including the principle of gene duplication and its effects on gene function, the diversity of duplicated genes, and how they have functionally diverged. Then, we discuss how duplicated genes contribute to abiotic stress response and the mechanisms of duplication. Finally, we have a future prospects section that discusses the direction of future efforts in the short term regarding the elucidation of replication and retention mechanisms of repetitive genes related to abiotic stress response in wheat, excellent gene function research, and practical applications.
Collapse
Affiliation(s)
- Linying Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Zhenbing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
10
|
Shen QQ, Wang TJ, Wang JG, He LL, Zhao TT, Zhao XT, Xie LY, Qian ZF, Wang XH, Liu LF, Chen SY, Zhang SZ, Li FS. The SsWRKY1 transcription factor of Saccharum spontaneum enhances drought tolerance in transgenic Arabidopsis thaliana and interacts with 21 potential proteins to regulate drought tolerance in S. spontaneum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107706. [PMID: 37119548 DOI: 10.1016/j.plaphy.2023.107706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/28/2023] [Accepted: 04/13/2023] [Indexed: 05/01/2023]
Abstract
In this study, we characterized a WRKY family member gene, SsWRKY1, which is located in the nucleus and contains multiple stress-related cis-acting elements. In addition, constructed SsWRKY1-overexpressing Arabidopsis thaliana had higher antioxidant enzyme activity and proline content under drought stress conditions, with lower malondialdehyde content and reactive oxygen species (ROS) accumulation, and the expression levels of six stress-related genes were significantly upregulated. This indicates that the overexpression of SsWRKY1 in Arabidopsis thaliana improves resistance to drought stress. SsWRKY1 does not have transcriptional autoactivation activity in yeast cells. The yeast two-hybrid (Y2H) system and the S. spontaneum cDNA library were used to screen 21 potential proteins that interact with SsWRKY1, and the interaction between SsWRKY1 and ATAF2 was verified by GST pull-down assay. In summary, our results indicate that SsWRKY1 plays an important role in the response to drought stress and provide initial insights into the molecular mechanism of SsWRKY1 in response to drought stress.
Collapse
Affiliation(s)
- Qing-Qing Shen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Tian-Ju Wang
- Institute for Bio-resources Research and Development of Central Yunnan Plateau, Chuxiong Normal University, Chuxiong, Yunnan, 675000, People's Republic of China
| | - Jun-Gang Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, People's Republic of China
| | - Li-Lian He
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Ting-Ting Zhao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, People's Republic of China
| | - Xue-Ting Zhao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Lin-Yan Xie
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Zhen-Feng Qian
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Xian-Hong Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Lu-Feng Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Shu-Ying Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Shu-Zhen Zhang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, People's Republic of China.
| | - Fu-Sheng Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China; Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China.
| |
Collapse
|
11
|
Yang YL, Cushman SA, Wang SC, Wang F, Li Q, Liu HL, Li Y. Genome-wide investigation of the WRKY transcription factor gene family in weeping forsythia: expression profile and cold and drought stress responses. Genetica 2023; 151:153-165. [PMID: 36853516 PMCID: PMC9973247 DOI: 10.1007/s10709-023-00184-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/21/2023] [Indexed: 03/01/2023]
Abstract
Weeping forsythia is a wide-spread shrub in China with important ornamental, medicinal and ecological values. It is widely distributed in China's warm temperate zone. In plants, WRKY transcription factors play important regulatory roles in seed germination, flower development, fruit ripening and coloring, and biotic and abiotic stress response. To date, WRKY transcription factors have not been systematically studied in weeping forsythia. In this study, we identified 79 WRKY genes in weeping forsythia and classified them according to their naming rules in Arabidopsis thaliana. Phylogenetic tree analysis showed that, except for IIe subfamily, whose clustering was inconsistent with A. thaliana clustering, other subfamily clustering groups were consistent. Cis-element analysis showed that WRKY genes related to pathogen resistance in weeping forsythia might be related to methyl jasmonate and salicylic acid-mediated signaling pathways. Combining cis-element and expression pattern analyses of WRKY genes showed that more than half of WRKY genes were involved in light-dependent development and morphogenesis in different tissues. The gene expression results showed that 13 WRKY genes were involved in drought response, most of which might be related to the abscisic acid signaling pathway, and a few of which might be regulated by MYB transcription factors. The gene expression results under cold stress showed that 17 WRKY genes were involved in low temperature response, and 9 of them had low temperature responsiveness cis-elements. Our study of WRKY family in weeping forsythia provided useful resources for molecular breeding and important clues for their functional verification.
Collapse
Affiliation(s)
- Ya-Lin Yang
- Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou, China
| | - Samuel A Cushman
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA
| | - Shu-Chen Wang
- Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou, China
| | - Fan Wang
- Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou, China
| | - Qian Li
- Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou, China
| | - Hong-Li Liu
- Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou, China
| | - Yong Li
- College of Life Science and Technology, Inner Mongolia Normal University, Huhehaote, China. .,State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.
| |
Collapse
|
12
|
Das S, Singh D, Meena HS, Jha SK, Kumari J, Chinnusamy V, Sathee L. Long term nitrogen deficiency alters expression of miRNAs and alters nitrogen metabolism and root architecture in Indian dwarf wheat (Triticum sphaerococcum Perc.) genotypes. Sci Rep 2023; 13:5002. [PMID: 36973317 PMCID: PMC10043004 DOI: 10.1038/s41598-023-31278-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/09/2023] [Indexed: 03/29/2023] Open
Abstract
The important roles of plant microRNAs (miRNAs) in adaptation to nitrogen (N) deficiency in different crop species especially cereals (rice, wheat, maize) have been under discussion since last decade with little focus on potential wild relatives and landraces. Indian dwarf wheat (Triticum sphaerococcum Percival) is an important landrace native to the Indian subcontinent. Several unique features, especially high protein content and resistance to drought and yellow rust, make it a very potent landrace for breeding. Our aim in this study is to identify the contrasting Indian dwarf wheat genotypes based on nitrogen use efficiency (NUE) and nitrogen deficiency tolerance (NDT) traits and the associated miRNAs differentially expressed under N deficiency in selected genotypes. Eleven Indian dwarf wheat genotypes and a high NUE bread wheat genotype (for comparison) were evaluated for NUE under control and N deficit field conditions. Based on NUE, selected genotypes were further evaluated under hydroponics and miRNome was compared by miRNAseq under control and N deficit conditions. Among the identified, differentially expressed miRNAs in control and N starved seedlings, the target gene functions were associated with N metabolism, root development, secondary metabolism and cell-cycle associated pathways. The key findings on miRNA expression, changes in root architecture, root auxin abundance and changes in N metabolism reveal new information on the N deficiency response of Indian dwarf wheat and targets for genetic improvement of NUE.
Collapse
Affiliation(s)
- Samrat Das
- Division of Plant Physiology, ICAR-IARI, New Delhi, India
| | - Dalveer Singh
- Division of Plant Physiology, ICAR-IARI, New Delhi, India
| | - Hari S Meena
- Division of Plant Physiology, ICAR-IARI, New Delhi, India
| | | | - Jyoti Kumari
- Division of Germplasm Evaluation, ICAR-NBPGR, New Delhi, India
| | | | - Lekshmy Sathee
- Division of Plant Physiology, ICAR-IARI, New Delhi, India.
| |
Collapse
|
13
|
Licaj I, Di Meo MC, Fiorillo A, Samperna S, Marra M, Rocco M. Comparative Analysis of the Response to Polyethylene Glycol-Simulated Drought Stress in Roots from Seedlings of "Modern" and "Ancient" Wheat Varieties. PLANTS (BASEL, SWITZERLAND) 2023; 12:428. [PMID: 36771510 PMCID: PMC9921267 DOI: 10.3390/plants12030428] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Durum wheat is widely cultivated in the Mediterranean, where it is the basis for the production of high added-value food derivatives such as pasta. In the next few years, the detrimental effects of global climate change will represent a serious challenge to crop yields. For durum wheat, the threat of climate change is worsened by the fact that cultivation relies on a few genetically uniform, elite varieties, better suited to intensive cultivation than "traditional" ones but less resistant to environmental stress. Hence, the renewed interest in "ancient" traditional varieties are expected to be more tolerant to environmental stress as a source of genetic resources to be exploited for the selection of useful agronomic traits such as drought tolerance. The aim of this study was to perform a comparative analysis of the effect and response of roots from the seedlings of two durum wheat cultivars: Svevo, a widely cultivated elite variety, and Saragolla, a traditional variety appreciated for its organoleptic characteristics, to Polyethylene glycol-simulated drought stress. The effect of water stress on root growth was analyzed and related to biochemical data such as hydrogen peroxide production, electrolyte leakage, membrane lipid peroxidation, proline synthesis, as well as to molecular data such as qRT-PCR analysis of drought responsive genes and proteomic analysis of changes in the protein repertoire of roots from the two cultivars.
Collapse
Affiliation(s)
- Ilva Licaj
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Maria Chiara Di Meo
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Anna Fiorillo
- Department of Biology, University of Tor Vergata, 00133 Rome, Italy
| | - Simone Samperna
- Department of Biology, University of Tor Vergata, 00133 Rome, Italy
| | - Mauro Marra
- Department of Biology, University of Tor Vergata, 00133 Rome, Italy
| | - Mariapina Rocco
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| |
Collapse
|
14
|
Liu X, Chen L, Zhang M, Li H, Jiang X, Zhang J, Jia Z, Ma P, Hao M, Jiang B, Huang L, Ning S, Yuan Z, Chen X, Chen X, Liu D, Zhang L. Cytogenetic Characterization and Molecular Marker Development for a Wheat- T. boeoticum 4A b (4B) Disomic Substitution Line with Stripe Rust Resistance. PLANT DISEASE 2023; 107:125-130. [PMID: 35698253 DOI: 10.1094/pdis-04-22-0865-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Triticum boeoticum (2n = 2x = 14, AbAb) is an important relative of wheat. This species tolerates many different types of environmental stresses, including drought, salt, and pathogenic infection, and is lower in dietary fiber and higher in antioxidants, protein (15 to 18%), lipids, and trace elements than common wheat. However, the gene transfer rate from this species to common wheat is low, and few species-specific molecular markers are available. In this study, the wheat-T. boeoticum substitution line Z1889, derived from a cross between the common wheat cultivar Crocus and T. boeoticum line G52, was identified using multicolor fluorescence in situ hybridization, multicolor genomic in situ hybridization, and a 55K single-nucleotide polymorphism array. Z1889 was revealed to be a 4Ab (4B) substitution line with a high degree of resistance to stripe rust pathogen strains prevalent in China. In addition, 22 4Ab chromosome-specific molecular markers and 11 T. boeoticum genome-specific molecular markers were developed from 1,145 4Ab chromosome-specific fragments by comparing the sequences generated by specific-length amplified fragment sequencing, with an efficiency of up to 55.0%. Furthermore, the specificity of these markers was verified in four species containing the Ab genome. These markers not only can be used for the detection of the 4Ab chromosome but also provide a basis for molecular marker-assisted, selection-based breeding in wheat.
Collapse
Affiliation(s)
- Xin Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Longyu Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Minghu Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Hui Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Xiaomei Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Junqing Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Zhenjiao Jia
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Pan Ma
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Bo Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Lin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Xuejiao Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Xue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Lianquan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| |
Collapse
|
15
|
Islam W, Idrees A, Waheed A, Zeng F. Plant responses to drought stress: microRNAs in action. ENVIRONMENTAL RESEARCH 2022; 215:114282. [PMID: 36122702 DOI: 10.1016/j.envres.2022.114282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Drought is common in most regions of the world, and it has a significant impact on plant growth and development. Plants, on the other hand, have evolved their own defense systems to deal with the extreme weather. The reprogramming of gene expression by microRNAs (miRNAs) is one of these defense mechanisms. miRNAs are short noncoding RNAs that have emerged as key post-transcriptional gene regulators in a variety of species. Drought stress modulates the expression of certain miRNAs that are functionally conserved across plant species. These characteristics imply that miRNA-based genetic changes might improve drought resistance in plants. This study highlights current knowledge of plant miRNA biogenesis, regulatory mechanisms and their role in drought stress responses. miRNAs functions and their adaptations by plants during drought stress has also been explained that can be exploited to promote drought-resistance among economically important crops.
Collapse
Affiliation(s)
- Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Atif Idrees
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Abdul Waheed
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Fanjiang Zeng
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Ullah S, Khan MN, Lodhi SS, Ahmed I, Tayyab M, Mehmood T, Din IU, Khan M, Sohail Q, Akram M. Targeted metabolomics reveals fatty acid abundance adjustments as playing a crucial role in drought-stress response and post-drought recovery in wheat. Front Genet 2022; 13:972696. [PMID: 36437965 PMCID: PMC9691424 DOI: 10.3389/fgene.2022.972696] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/19/2022] [Indexed: 07/30/2023] Open
Abstract
Drought stress is one of the abiotic stresses restricting plant development, reproductive growth, and survival. In the present study, the effect of drought stress and post-drought recovery for the selected local wheat cultivar, Atta Habib, was studied. Wheat was grown for 16 days followed by drought stress for 7 days and allowed to recover for 7 days after the removal of the drought stress. Same-aged untreated plants were also grown as a control. The effect of drought stress and post-drought recovery on morphology (root length, shoot length, root weight, and shoot weight), enzymatic activity, and fatty acid profile were analyzed. The results showed that shoot weight (93.1 mg), root weight (85.2 mg), and shoot length (11.1 cm) decreased in the stressed plants but increased steadily in the recovered plants compared to the same-aged control plants, while root length showed a higher increase (14.0 cm) during drought stress and tended to normalize during the recovery phase (13.4 cm). The ascorbate peroxidase activity increased in the stressed plants (5.44 unit/mg protein) compared to the control, while gradually normalizing in the recovery phase (5.41 unit/mg protein). Gas chromatography coupled mass spectrometric analysis revealed abundance changes in important fatty acids, such as palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid. Palmitic acid (39.1%) and oleic acid (2.11%) increased in the drought-stressed plants, while a reduction in linoleic acid (6.85%) and linolenic acid (51.18%) was observed compared to the same-aged control plants, i.e., palmitic (33.71%), oleic (0.95%), linoleic (7.52%), and linolenic acid (55.23%). The results suggest that wheat tries to recover in the post-drought stage by repairing oxidative damage through ascorbate peroxidase, and by adjusting fatty acid abundances under drought stress and during the post-drought phase in an effort to maintain membranes' integrity and a suitable fat metabolism route, thus helping recovery. Targeted metabolomics may be further used to explore the role of other metabolites in the drought-stress response mechanism in wheat. Furthermore, this relatively little explored avenue of post-drought recovery needs more detailed studies involving multiple stress durations.
Collapse
Affiliation(s)
- Safi Ullah
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Mudassar Nawaz Khan
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Mansehra, Pakistan
| | | | - Iftikhar Ahmed
- National Culture Collection of Pakistan, Land Resources Research Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Muhammad Tayyab
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Tariq Mehmood
- Department of Agriculture, Hazara University Mansehra, Mansehra, Pakistan
| | - Israr Ud Din
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Majid Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Quahir Sohail
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, Pakistan
- AgroBioSiences, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco
| | - Muhammad Akram
- Medicinal Botanic Centre, PCSIR Labs Complex Peshawar, Peshawar, Pakistan
| |
Collapse
|
17
|
Karimi E, Aliasgharzad N, Esfandiari E, Hassanpouraghdam MB, Neu TR, Buscot F, Reitz T, Breitkreuz C, Tarkka MT. Biofilm forming rhizobacteria affect the physiological and biochemical responses of wheat to drought. AMB Express 2022; 12:93. [PMID: 35834031 PMCID: PMC9283637 DOI: 10.1186/s13568-022-01432-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/02/2022] [Indexed: 11/10/2022] Open
Abstract
Plant growth promoting rhizobacteria (PGPR) can attenuate the adverse effects of water deficit on plant growth. Since drought stress tolerance of bacteria has earlier been associated to biofilm formation, we aimed to investigate the role of bacterial biofilm formation in their PGPR activity upon drought stress. To this end, a biofilm-forming bacterial collection was isolated from the rhizospheres of native arid grassland plants, and characterized by their drought tolerance and evaluated on their plant growth promoting properties. Most bacterial strains formed biofilm in vitro. Most isolates were drought tolerant, produced auxins, showed 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity and solubilized mineral phosphate and potassium, but at considerably different levels. Greenhouse experiments with the most promising isolates, B1, B2 and B3, under three levels of water deficit and two wheat varieties led to an increased relative water content and increased harvest index at both moderate and severe water deficit. However, the bacteria did not affect these plant parameters upon regular watering. In addition, decreased hydrogen peroxide levels and increased glutathione S-transferase activity occurred under water deficit. Based on these results, we conclude that by improving root traits and antioxidant defensive system of wheat, arid grassland rhizospheric biofilm forming bacilli may promote plant growth under water scarcity. Numerous biofilm forming PGPR reside in grass rhizospheres from arid grasslands. Drought tolerance of wheat is enhanced by bacterial inoculations. Wheat variety and the level of drought stress modify the plant’s response to the bacteria.
Collapse
Affiliation(s)
- Esmaeil Karimi
- Department of Soil Science, University of Maragheh, Maragheh, Iran
| | | | - Ezatollah Esfandiari
- Department of Agronomy and Plant Breeding, University of Maragheh, Maragheh, Iran
| | | | - Thomas R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research-UFZ, Magdeburg, Germany
| | - François Buscot
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Thomas Reitz
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Claudia Breitkreuz
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle, Germany
| | - Mika T Tarkka
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle, Germany. .,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| |
Collapse
|
18
|
Lalarukh I, Al-Dhumri SA, Al-Ani LKT, Hussain R, Al Mutairi KA, Mansoora N, Amjad SF, Abbas MHH, Abdelhafez AA, Poczai P, Meena KR, Galal TM. A Combined Use of Rhizobacteria and Moringa Leaf Extract Mitigates the Adverse Effects of Drought Stress in Wheat ( Triticum aestivum L.). Front Microbiol 2022; 13:813415. [PMID: 35801109 PMCID: PMC9253557 DOI: 10.3389/fmicb.2022.813415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Less nutrient availability and drought stress are some serious concerns of agriculture. Both biotic and abiotic stress factors have the potential to limit crop productivity. However, several organic extracts obtained from moringa leaves may induce immunity in plants under nutritional and drought stress for increasing their survival. Additionally, some rhizobacterial strains have the ability to enhance root growth for better nutrient and water uptake in stress conditions. To cover the knowledge gap on the interactive effects of beneficial rhizobacteria and moringa leaf extracts (MLEs), this study was conducted. The aim of this experimental study was to investigate the effectiveness of sole and combined use of rhizobacteria and MLEs against nutritional and drought stress in wheat. Nitrogen-fixing bacteria Pseudomonas aeruginosa (Pa) (108 CFU ml-1) was inoculated to wheat plants with and without foliar-applied MLEs at two different concentrations (MLE 1 = 1:15 v/v and MLE 2 = 1:30 v/v) twice at 25 and 35 days after seed sowing (50 ml per plant) after the establishment of drought stress. Results revealed that Pa + MLE 2 significantly increased fresh weight (FW), dry weight (DW), lengths of roots and shoot and photosynthetic contents of wheat. A significant enhancement in total soluble sugars, total soluble proteins, calcium, potassium, phosphate, and nitrate contents validated the efficacious effect of Pa + MLE 2 over control-treated plants. Significant decrease in sodium, proline, glycine betaine, electrolyte leakage, malondialdehyde, hydrogen peroxide, superoxide dismutase (SOD), and peroxide (POD) concentrations in wheat cultivated under drought stress conditions also represents the imperative role of Pa + MLE 2 over control. In conclusion, Pa + MLE 2 can alleviate nutritional stress and drought effects in wheat. More research in this field is required to proclaim Pa + MLE 2 as the most effective amendment against drought stress in distinct agroecological zones, different soil types, and contrasting wheat cultivars worldwide.
Collapse
Affiliation(s)
- Irfana Lalarukh
- Department of Botany, Government College Women University, Faisalabad, Pakistan
| | - Sami A. Al-Dhumri
- Department of Biology, Al Khumra University College, Taif University, Taif, Saudi Arabia
| | - Laith Khalil Tawfeeq Al-Ani
- Department of Plant Protection, College of Agriculture Engineering Science, University of Baghdad, Baghdad, Iraq
- School of Biology Science, Universiti Sains Malaysia, George Town, Malaysia
| | - Rashid Hussain
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Nida Mansoora
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Syeda Fasiha Amjad
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Mohamed H. H. Abbas
- Department of Soils and Water, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Ahmed A. Abdelhafez
- Department of Soils and Water, Faculty of Agriculture, New Valley University, Kharga, Egypt
- National Committee of Soils Science, Academy of Scientific Research and Technology, Cairo, Egypt
| | - Peter Poczai
- Botany Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Khem Raj Meena
- Department of Microbiology, College of Basic Sciences and Humanities, Dr. Rajendra Prasad Central Agricultural University, Pusa, India
| | - Tarek M. Galal
- Department of Botany and Microbiology, Faculty of Science, Helwan University, Cairo, Egypt
- Department of Biology, College of Sciences, Taif University, Taif, Saudi Arabia
| |
Collapse
|
19
|
Ali Z, Merrium S, Habib-Ur-Rahman M, Hakeem S, Saddique MAB, Sher MA. Wetting mechanism and morphological adaptation; leaf rolling enhancing atmospheric water acquisition in wheat crop-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30967-30985. [PMID: 35102510 PMCID: PMC9054867 DOI: 10.1007/s11356-022-18846-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/20/2022] [Indexed: 05/10/2023]
Abstract
Several plant species such as grasses are dominant in many habitats including arid and semi-arid areas. These species survive in these regions by developing exclusive structures, which helps in the collection of atmospheric water. Before the collected water evaporates, these structures have unique canopy structure for water transportation that plays an equivalent share in the fog-harvesting mechanism. In this review, the atmospheric gaseous water harvesting mechanisms and their affinity of measurements were discussed. Morphological adaptations and their role in the capturing of atmospheric gaseous water of various species were also discussed. The key factor for the water collection and its conduction in the wheat plant is the information of contact angle hysteresis. In wheat, leaf rolling and its association with wetting property help the plant in water retention. Morphological adaptations, i.e., leaf erectness, grooves, and prickle hairs, also help in the collection and acquisition of water droplets by stem flows in directional guide toward the base of the plant and allow its rapid uptake. Morphological adaptation strengthens the harvesting mechanism by preventing the loss of water through shattering. Thus, wheat canopy architecture can be modified to harvest the atmospheric water and directional movement of water towards the root zone for self-irrigation. Moreover, these morphological adaptations are also linked with drought avoidance and corresponding physiological processes to resist water stress. The combination of these traits together with water use efficiency in wheat contributes to a highly efficient atmospheric water harvesting system that enables the wheat plants to reduce the cost of production. It also increases the yielding potential of the crop in arid and semi-arid environments. Further investigating the ecophysiology and molecular pathways of these morphological adaptations in wheat may have significant applications in varying climatic scenarios.
Collapse
Affiliation(s)
- Zulfiqar Ali
- Institute of Plant Breeding and Biotechnology, MNS-University of Agriculture, Multan, 60000, Pakistan.
| | - Sabah Merrium
- Institute of Plant Breeding and Biotechnology, MNS-University of Agriculture, Multan, 60000, Pakistan
| | - Muhammad Habib-Ur-Rahman
- Institute of Crop Science and Resource Conservation (INRES), Crop Science Group, University of Bonn, Bonn, Germany.
- Department of Agronomy, MNS-University of Agriculture, Multan, 60000, Pakistan.
| | - Sadia Hakeem
- Institute of Plant Breeding and Biotechnology, MNS-University of Agriculture, Multan, 60000, Pakistan
| | | | - Muhammad Ali Sher
- Institute of Plant Breeding and Biotechnology, MNS-University of Agriculture, Multan, 60000, Pakistan
| |
Collapse
|
20
|
Zhang J, Xiong H, Guo H, Li Y, Xie X, Xie Y, Zhao L, Gu J, Zhao S, Ding Y, Liu L. Identification of the Q Gene Playing a Role in Spike Morphology Variation in Wheat Mutants and Its Regulatory Network. FRONTIERS IN PLANT SCIENCE 2022; 12:807731. [PMID: 35087560 PMCID: PMC8787668 DOI: 10.3389/fpls.2021.807731] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/13/2021] [Indexed: 05/27/2023]
Abstract
The wheat AP2 family gene Q controls domestication traits, including spike morphology and threshability, which are critical for the widespread cultivation and yield improvement of wheat. Although many studies have investigated the molecular mechanisms of the Q gene, its direct target genes, especially those controlling spike morphology, are not clear, and its regulatory pathways are not well established. In this study, we conducted gene mapping of a wheat speltoid spike mutant and found that a new allele of the Q gene with protein truncation played a role in spike morphology variation in the mutant. Dynamic expression levels of the Q gene throughout the spike development process suggested that the transcript abundances of the mutant were decreased at the W6 and W7 scales compared to those of the WT. We identified several mutation sites on the Q gene and showed that mutations in different domains resulted in distinct phenotypes. In addition, we found that the Q gene produced three transcripts via alternative splicing and that they exhibited differential expression patterns in nodes, internodes, flag leaves, and spikes. Finally, we identified several target genes directly downstream of Q, including TaGRF1-2D and TaMGD-6B, and proposed a possible regulatory network. This study uncovered the target genes of Q, and the results can help to clarify the mechanism of wheat spike morphology and thereby improve wheat grain yield.
Collapse
|
21
|
Wasaya A, Rehman I, Mohi Ud Din A, Hayder Bin Khalid M, Ahmad Yasir T, Mansoor Javaid M, El-Hefnawy M, Brestic M, Rahman MA, El Sabagh A. Foliar application of putrescine alleviates terminal drought stress by modulating water status, membrane stability, and yield- related traits in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1000877. [PMID: 37151567 PMCID: PMC10160385 DOI: 10.3389/fpls.2022.1000877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/29/2022] [Indexed: 05/09/2023]
Abstract
Drought stress is one of the major limitations to the growth and yield productivity of cereal crops. It severely impairs the early growing and grain -filling stages of wheat. Therefore, cost- effective and eco-friendly approaches for alleviating drought stress in cereal crops are in high demand. Polyamines, such as putrescine, have a significant effect on improving crop yield under drought- stress conditions. Therefore, the current study was executed with the aim of exploring the significance of putrescine in alleviating drought stress and improving yield- related traits in wheat. Two distinct wheat cultivars (Fakhar-e-Bhakkar and Anaj-2017) were treated with the foliar application of different concentrations (control, 0.5, 1.0, and 1.5 PPM) of putrescine (put) under two moisture conditions (well- watered and terminal drought stress). The results demonstrate that the imposition of terminal drought stress significantly reduces different physiological and yield- related traits of both wheat cultivars. The reduction of relative water content (RWC%), membrane stability index (MSI), leaf area, tillers per plant, biomass yield, number of spikelets per spike, 100-grain weight, grain yield per plant, and straw yield was greater in Anaj-2017 than in Fakhar-e-Bhakkar cultivar. The results further explain that the foliar application of increased concentrations of putrescine from 0.0 to 1.0 PPM gradually improved physiological and yield traits, whereas these traits declined with the application of putrescine at the highest dose (1.5 PPM). The exogenous application of 1.0 PPM putrescine improved the relative water content (19.76%), specific leaf area (41.47%), and leaf area ratio (35.84%) compared with the controlled treatment. A higher grain yield (28.0 g plant-1) and 100-grain weight (3.8 g) were obtained with the foliar application of 1.0 PPM putrescine compared with controlled treatments. The findings of this study confirm the protective role of putrescine against terminal drought stress. It is therefore recommended to use putrescine at a concentration of 1.0 PPM, which could help alleviate terminal drought stress and attain better wheat yield.
Collapse
Affiliation(s)
- Allah Wasaya
- Department of Agronomy, Bahauddin Zakariya University Multan, Multan, Pakistan
- College of Agriculture, University of Layyah, Layyah, Pakistan
- *Correspondence: Allah Wasaya, ; Marian Brestic, ; Ayman El Sabagh,
| | - Iqra Rehman
- Department of Agronomy, Bahauddin Zakariya University Multan, Multan, Pakistan
- College of Agriculture, University of Layyah, Layyah, Pakistan
| | - Atta Mohi Ud Din
- National Research Center of Intercropping , The Islamia University of Bahawalpur, Multan, Pakistan
| | | | | | | | - Mohamed El-Hefnawy
- Department of Chemistry, Rabigh College of Sciences and Arts, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
- *Correspondence: Allah Wasaya, ; Marian Brestic, ; Ayman El Sabagh,
| | - Md Atikur Rahman
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, Republic of Korea
| | - Ayman El Sabagh
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr al-Sheik, Egypt
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Türkiye
- *Correspondence: Allah Wasaya, ; Marian Brestic, ; Ayman El Sabagh,
| |
Collapse
|
22
|
Abady S, Shimelis H, Janila P, Yaduru S, Shayanowako AIT, Deshmukh D, Chaudhari S, Manohar SS. Assessment of the genetic diversity and population structure of groundnut germplasm collections using phenotypic traits and SNP markers: Implications for drought tolerance breeding. PLoS One 2021; 16:e0259883. [PMID: 34788339 PMCID: PMC8598071 DOI: 10.1371/journal.pone.0259883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 10/28/2021] [Indexed: 01/15/2023] Open
Abstract
Profiling the genetic composition and relationships among groundnut germplasm collections is essential for the breeding of new cultivars. The objectives of this study were to assess the genetic diversity and population structure among 100 improved groundnut genotypes using agronomic traits and high-density single nucleotide polymorphism (SNP) markers. The genotypes were evaluated for agronomic traits and drought tolerance at the International Crop Research Institute for the Semi-Arid Tropics (ICRISAT)/India across two seasons. Ninety-nine of the test genotypes were profiled with 16363 SNP markers. Pod yield per plant (PY), seed yield per plant (SY), and harvest index (HI) were significantly (p < 0.05) affected by genotype × environment interaction effects. Genotypes ICGV 07222, ICGV 06040, ICGV 01260, ICGV 15083, ICGV 10143, ICGV 03042, ICGV 06039, ICGV 14001, ICGV 11380, and ICGV 13200 ranked top in terms of pod yield under both drought-stressed and optimum conditions. PY exhibited a significant (p ≤ 0.05) correlation with SY, HI, and total biomass (TBM) under both test conditions. Based on the principal component (PC) analysis, PY, SY, HSW, shelling percentage (SHP), and HI were allocated in PC 1 and contributed to the maximum variability for yield under the two water regimes. Hence, selecting these traits could be successful for screening groundnut genotypes under drought-stressed and optimum conditions. The model-based population structure analysis grouped the studied genotypes into three sub-populations. Dendrogram for phenotypic and genotypic also grouped the studied 99 genotypes into three heterogeneous clusters. Analysis of molecular variance revealed that 98% of the total genetic variation was attributed to individuals, while only 2% of the total variance was due to variation among the subspecies. The genetic distance between the Spanish bunch and Virginia bunch types ranged from 0.11 to 0.52. The genotypes ICGV 13189, ICGV 95111, ICGV 14421, and ICGV 171007 were selected for further breeding based on their wide genetic divergence. Data presented in this study will guide groundnut cultivar development emphasizing economic traits and adaptation to water-limited agro-ecologies, including in Ethiopia.
Collapse
Affiliation(s)
- Seltene Abady
- African Centre for Crop Improvement (ACCI), School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, South Africa
- School of Plant Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Hussein Shimelis
- African Centre for Crop Improvement (ACCI), School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, South Africa
| | - Pasupuleti Janila
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Telangana, India
| | - Shasidhar Yaduru
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Telangana, India
| | - Admire I. T. Shayanowako
- African Centre for Crop Improvement (ACCI), School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, South Africa
| | - Dnyaneshwar Deshmukh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Telangana, India
| | - Sunil Chaudhari
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Telangana, India
| | - Surendra S. Manohar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Telangana, India
| |
Collapse
|
23
|
Mehari TG, Xu Y, Umer MJ, Shiraku ML, Hou Y, Wang Y, Yu S, Zhang X, Wang K, Cai X, Zhou Z, Liu F. Multi-Omics-Based Identification and Functional Characterization of Gh_A06G1257 Proves Its Potential Role in Drought Stress Tolerance in Gossypium hirsutum. FRONTIERS IN PLANT SCIENCE 2021; 12:746771. [PMID: 34745180 PMCID: PMC8567990 DOI: 10.3389/fpls.2021.746771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/31/2021] [Indexed: 05/08/2023]
Abstract
Cotton is one of the most important fiber crops globally. Despite this, various abiotic stresses, including drought, cause yield losses. We used transcriptome profiles to investigate the co-expression patterns of gene networks associated with drought stress tolerance. We identified three gene modules containing 3,567 genes highly associated with drought stress tolerance. Within these modules, we identified 13 hub genes based on intramodular significance, for further validation. The yellow module has five hub genes (Gh_A07G0563, Gh_D05G0221, Gh_A05G3716, Gh_D12G1438, and Gh_D05G0697), the brown module contains three hub genes belonging to the aldehyde dehydrogenase (ALDH) gene family (Gh_A06G1257, Gh_A06G1256, and Gh_D06G1578), and the pink module has five hub genes (Gh_A02G1616, Gh_D12G2599, Gh_D07G2232, Gh_A02G0527, and Gh_D07G0629). Based on RT-qPCR results, the Gh_A06G1257 gene has the highest expression under drought stress in different plant tissues and it might be the true candidate gene linked to drought stress tolerance in cotton. Silencing of Gh_A06G1257 in cotton leaves conferred significant sensitivity in response to drought stress treatments. Overexpression of Gh_A06G1257 in Arabidopsis also confirms its role in drought stress tolerance. L-valine, Glutaric acid, L-proline, L-Glutamic acid, and L-Tryptophan were found to be the most significant metabolites playing roles in drought stress tolerance. These findings add significantly to existing knowledge of drought stress tolerance mechanisms in cotton.
Collapse
Affiliation(s)
- Teame Gereziher Mehari
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Muhammad Jawad Umer
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Margaret Linyerera Shiraku
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuhong Wang
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Evaluation of Fourteen Bread Wheat (Triticum aestivum L.) Genotypes by Observing Gas Exchange Parameters, Relative Water and Chlorophyll Content, and Yield Attributes under Drought Stress. SUSTAINABILITY 2021. [DOI: 10.3390/su13094799] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Water scarceness is a major threat to wheat productivity under changing climate scenarios, especially in arid and semi-arid regions. However, growing drought-tolerant wheat genotypes could be a sustainable option to enhance wheat productivity under drought stress conditions. The aim of this study was to evaluate the effect of mild to severe drought stress on gas exchange parameters, relative water content, SPAD-chlorophyll value, and yield-related parameters of 14 wheat genotypes being cultivated in arid to semi-arid areas on large scale. The genotypes were grown in earthen pots under three drought levels, namely (1) control-well watered, (2) mild water stress, i.e., 60% water holding capacity, and (3) severe water stress, i.e., 40% water holding capacity. The drought was imposed from the jointing stage to physiological maturity. Drought significantly decreased net photosynthesis, stomatal conductance, relative water contents, 100-grain weight, and grain yield in all genotypes. However, the reduction percentage was different in different genotypes under drought stress compared with well-watered conditions. The highest relative water content (65.2%) was maintained by the genotype Galaxy-2013, followed by AAS-2011 (64.6%) and Johar-2016 (62.3%) under severe drought conditions. Likewise, Galaxy-2013 showed the highest net photosynthesis and stomatal conductance under severe drought conditions. The highest grain yield per plant (6.2 g) and 100-grain weight (3.3 g) was also recorded in Galaxy-2013 under severe drought conditions, while the highest grain yield under well-watered conditions was recorded in Johar-2016, followed by Galaxy-2013. These results suggest that wheat variety Galaxy-2013 could be cultivated extensively to obtain good wheat yield under limited water conditions.
Collapse
|
25
|
Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. PLANTS 2021; 10:plants10020259. [PMID: 33525688 PMCID: PMC7911879 DOI: 10.3390/plants10020259] [Citation(s) in RCA: 409] [Impact Index Per Article: 102.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/20/2022]
Abstract
Drought stress, being the inevitable factor that exists in various environments without recognizing borders and no clear warning thereby hampering plant biomass production, quality, and energy. It is the key important environmental stress that occurs due to temperature dynamics, light intensity, and low rainfall. Despite this, its cumulative, not obvious impact and multidimensional nature severely affects the plant morphological, physiological, biochemical and molecular attributes with adverse impact on photosynthetic capacity. Coping with water scarcity, plants evolve various complex resistance and adaptation mechanisms including physiological and biochemical responses, which differ with species level. The sophisticated adaptation mechanisms and regularity network that improves the water stress tolerance and adaptation in plants are briefly discussed. Growth pattern and structural dynamics, reduction in transpiration loss through altering stomatal conductance and distribution, leaf rolling, root to shoot ratio dynamics, root length increment, accumulation of compatible solutes, enhancement in transpiration efficiency, osmotic and hormonal regulation, and delayed senescence are the strategies that are adopted by plants under water deficit. Approaches for drought stress alleviations are breeding strategies, molecular and genomics perspectives with special emphasis on the omics technology alteration i.e., metabolomics, proteomics, genomics, transcriptomics, glyomics and phenomics that improve the stress tolerance in plants. For drought stress induction, seed priming, growth hormones, osmoprotectants, silicon (Si), selenium (Se) and potassium application are worth using under drought stress conditions in plants. In addition, drought adaptation through microbes, hydrogel, nanoparticles applications and metabolic engineering techniques that regulate the antioxidant enzymes activity for adaptation to drought stress in plants, enhancing plant tolerance through maintenance in cell homeostasis and ameliorates the adverse effects of water stress are of great potential in agriculture.
Collapse
|
26
|
Gui Y, Sheteiwy MS, Zhu S, Zhu L, Batool A, Jia T, Xiong Y. Differentiate responses of tetraploid and hexaploid wheat ( Triticum aestivum L.) to moderate and severe drought stress: a cue of wheat domestication. PLANT SIGNALING & BEHAVIOR 2021; 16:1839710. [PMID: 33126814 PMCID: PMC7781840 DOI: 10.1080/15592324.2020.1839710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 06/02/2023]
Abstract
Differentiate mechanism of wheat species in response to contrasting drought stress gradients implies a cue of its long-term domestication. In the present study, three water regimes including well-watered control (WW, 80% field water capacity (FC)), moderate drought stress (MS, 50% FC,) and severe drought stress (SS, 30% FC) were designed to reveal different responses of eight wheat species (four tetraploid and four hexaploid) representing different breeding decades and genetic origins to drought stresses. The data indicated that 50% FC and 30% FC fell into the soil moisture threshold range of non-hydraulic and hydraulic root signal occurrence, respectively. In general, grain yield, grain number/spike weight per plant, aboveground biomass, harvest index (HI) and water use efficiency (WUE) were significantly higher in hexaploid species than those of tetraploid species under drought stress (P < .05). Particularly, non-hydraulic root signal was triggered and continuously operated under 50% FC, while hydraulic root signal was observed under 30% FC, respectively. Under 80% FC, the allometric exponent (ɑ) of Maboveground vs Mroot decreased from tetraploid to hexaploid (both were of <1), indicating that during the domestication, the hexaploid species allocated less biomass to root system. For the relationship of Mear vs Mvegetative, the ɑ value was significantly greater in the hexaploid species, showing that hexaploid wheat distributed more biomass to ear than tetraploid to improve yield. Under 50% FC, this trend was enhanced. However, under 30% FC, there was no significant difference in the ɑ value between two species. Additionally, correlation analyses on yield formation affirmed the above results. Therefore, drought tolerance tended to be enhanced in hexaploid species under the pressure of artificial selection than that of tetraploid species. When drought stress exceeded a certain threshold, both species would be negatively seriously affected and followed a similar mechanism for better survival.
Collapse
Affiliation(s)
- Yanwen Gui
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Mohamed S Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Shuangguo Zhu
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Li Zhu
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Asfa Batool
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Tingting Jia
- Department of Bioengineering, School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Youcai Xiong
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
27
|
Functional description and development of polymorphic EST-SSR markers in bread wheat and their gene interactions network. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Moosavi SS, Abdi F, Abdollahi MR, Tahmasebi-Enferadi S, Maleki M. Phenological, morpho-physiological and proteomic responses of Triticum boeoticum to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:95-104. [PMID: 32920225 DOI: 10.1016/j.plaphy.2020.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Drought is the most important abiotic stress limiting wheat production worldwide. Triticum boeoticum, as wild wheat, is a rich gene pool for breeding for drought stress tolerance. In this study, to identify the most drought-tolerant and susceptible genotypes, ten T. boeoticum accessions were evaluated under non-stress and drought-stress conditions for two years. Among the studied traits, water-use efficiency (WUE) was suggested as the most important trait to identify drought-tolerant genotypes. According to the desirable and undesirable areas of the bi-plot, Tb5 and Tb6 genotypes were less and more affected by drought stress, respectively. Therefore, their flag-leaves proteins were used for two-dimensional gel electrophoresis. While, Tb5 contained a high amount of yield, yield components, and WUE, Tb6 had higher levels of water use, phenological related traits, and root related characters. Of the 235 spots found in the studied accessions, 14 spots (11 and 3 spots of Tb5 and Tb6, respectively) were selected for sequencing. Of these 14 spots, 9 and 5 spots were upregulated and downregulated, respectively. The identified proteins were grouped into six functional protein clusters, which were mainly involved in photosynthesis (36%), carbohydrate metabolism (29%), chaperone (7%), oxidation and reduction (7%), lipid metabolism and biological properties of the membrane (7%) and unknown function (14%). We report for the first time that MICP, in the group of lipid metabolism proteins, was significantly changed into wild wheat in response to drought stress. Maybe, the present-identified proteins could play an important role to understand the molecular pathways of wheat drought tolerance. We believe comparing and evaluating the similarity-identified proteins of T. boeoticum with the previously identified proteins of Aegilops tauschii, can provide a new direction to improve wheat tolerance to drought stress.
Collapse
Affiliation(s)
- Sayyed Saeed Moosavi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
| | - Fatemeh Abdi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Reza Abdollahi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Sattar Tahmasebi-Enferadi
- Department of Molecular Plant Biotechnology, Faculty of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mahmood Maleki
- Department of Biotechnology, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
29
|
Jatayev S, Sukhikh I, Vavilova V, Smolenskaya SE, Goncharov NP, Kurishbayev A, Zotova L, Absattarova A, Serikbay D, Hu YG, Borisjuk N, Gupta NK, Jacobs B, de Groot S, Koekemoer F, Alharthi B, Lethola K, Cu DT, Schramm C, Anderson P, Jenkins CLD, Soole KL, Shavrukov Y, Langridge P. Green revolution 'stumbles' in a dry environment: Dwarf wheat with Rht genes fails to produce higher grain yield than taller plants under drought. PLANT, CELL & ENVIRONMENT 2020; 43:2355-2364. [PMID: 32515827 DOI: 10.1111/pce.13819] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Satyvaldy Jatayev
- Faculty of Agronomy, S. Seifullin Kazakh Agro-Technical University, Nur-Sultan, Kazakhstan
| | - Igor Sukhikh
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Valeriya Vavilova
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Svetlana E Smolenskaya
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Nikolay P Goncharov
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Akhylbek Kurishbayev
- Faculty of Agronomy, S. Seifullin Kazakh Agro-Technical University, Nur-Sultan, Kazakhstan
| | - Lyudmila Zotova
- Faculty of Agronomy, S. Seifullin Kazakh Agro-Technical University, Nur-Sultan, Kazakhstan
| | - Aiman Absattarova
- Faculty of Agronomy, S. Seifullin Kazakh Agro-Technical University, Nur-Sultan, Kazakhstan
| | - Dauren Serikbay
- Faculty of Agronomy, S. Seifullin Kazakh Agro-Technical University, Nur-Sultan, Kazakhstan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Yin-Gang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Nikolai Borisjuk
- School of Life Science, Huaian Normal University, Huai'an, China
| | | | - Bertus Jacobs
- LongReach Plant Breeders Management Pty Ltd, Lonsdale, South Australia, Australia
| | | | | | - Badr Alharthi
- College of Science and Engineering (Biological Sciences), Flinders University, Bedford Park, South Australia, Australia
| | - Katso Lethola
- College of Science and Engineering (Biological Sciences), Flinders University, Bedford Park, South Australia, Australia
| | - Dan T Cu
- College of Science and Engineering (Biological Sciences), Flinders University, Bedford Park, South Australia, Australia
| | - Carly Schramm
- College of Science and Engineering (Biological Sciences), Flinders University, Bedford Park, South Australia, Australia
| | - Peter Anderson
- College of Science and Engineering (Biological Sciences), Flinders University, Bedford Park, South Australia, Australia
| | - Colin L D Jenkins
- College of Science and Engineering (Biological Sciences), Flinders University, Bedford Park, South Australia, Australia
| | - Kathleen L Soole
- College of Science and Engineering (Biological Sciences), Flinders University, Bedford Park, South Australia, Australia
| | - Yuri Shavrukov
- College of Science and Engineering (Biological Sciences), Flinders University, Bedford Park, South Australia, Australia
| | - Peter Langridge
- Wheat Initiative, Julius-Kühn-Institute, Berlin, Germany
- University of Adelaide, Urrbrae, South Australia, Australia
| |
Collapse
|
30
|
Rosero A, Granda L, Berdugo-Cely JA, Šamajová O, Šamaj J, Cerkal R. A Dual Strategy of Breeding for Drought Tolerance and Introducing Drought-Tolerant, Underutilized Crops into Production Systems to Enhance Their Resilience to Water Deficiency. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1263. [PMID: 32987964 PMCID: PMC7600178 DOI: 10.3390/plants9101263] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Water scarcity is the primary constraint on crop productivity in arid and semiarid tropical areas suffering from climate alterations; in accordance, agricultural systems have to be optimized. Several concepts and strategies should be considered to improve crop yield and quality, particularly in vulnerable regions where such environmental changes cause a risk of food insecurity. In this work, we review two strategies aiming to increase drought stress tolerance: (i) the use of natural genes that have evolved over time and are preserved in crop wild relatives and landraces for drought tolerance breeding using conventional and molecular methods and (ii) exploiting the reservoir of neglected and underutilized species to identify those that are known to be more drought-tolerant than conventional staple crops while possessing other desired agronomic and nutritive characteristics, as well as introducing them into existing cropping systems to make them more resilient to water deficiency conditions. In the past, the existence of drought tolerance genes in crop wild relatives and landraces was either unknown or difficult to exploit using traditional breeding techniques to secure potential long-term solutions. Today, with the advances in genomics and phenomics, there are a number of new tools available that facilitate the discovery of drought resistance genes in crop wild relatives and landraces and their relatively easy transfer into advanced breeding lines, thus accelerating breeding progress and creating resilient varieties that can withstand prolonged drought periods. Among those tools are marker-assisted selection (MAS), genomic selection (GS), and targeted gene editing (clustered regularly interspaced short palindromic repeat (CRISPR) technology). The integration of these two major strategies, the advances in conventional and molecular breeding for the drought tolerance of conventional staple crops, and the introduction of drought-tolerant neglected and underutilized species into existing production systems has the potential to enhance the resilience of agricultural production under conditions of water scarcity.
Collapse
Affiliation(s)
- Amparo Rosero
- Corporación Colombiana de Investigación Agropecuaria–AGROSAVIA, Centro de Investigación Turipaná, Km 13 vía Montería, 250047 Cereté, Colombia;
| | - Leiter Granda
- Department of Crop Science, Breeding and Plant Medicine, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (L.G.); (R.C.)
| | - Jhon A. Berdugo-Cely
- Corporación Colombiana de Investigación Agropecuaria–AGROSAVIA, Centro de Investigación Turipaná, Km 13 vía Montería, 250047 Cereté, Colombia;
| | - Olga Šamajová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (O.Š.); (J.Š.)
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (O.Š.); (J.Š.)
| | - Radim Cerkal
- Department of Crop Science, Breeding and Plant Medicine, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (L.G.); (R.C.)
| |
Collapse
|
31
|
Proteomic profiling of developing wheat heads under water-stress. Funct Integr Genomics 2020; 20:695-710. [PMID: 32681185 DOI: 10.1007/s10142-020-00746-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 10/23/2022]
Abstract
A replicated iTRAQ (isobaric tags for relative and absolute quantification) study on developing wheat heads from two doubled haploid (DH) lines identified from a cross between cv Westonia x cv Kauz characterized the proteome changes influenced by reproductive stage water-stress. All lines were exposed to 10 days of water-stress from early booting (Zadok 40), with sample sets taken from five head developmental stages. Two sample groups (water-stressed and control) account for 120 samples that required 18 eight-plex iTRAQ runs. Based on the IWGSC RefSeq v1 wheat assembly, among the 4592 identified proteins, a total of 132 proteins showed a significant response to water-stress, including the down-regulation of a mitochondrial Rho GTPase, a regulator of intercellular fundamental biological processes (7.5 fold) and cell division protein FtsZ at anthesis (6.0 fold). Up-regulated proteins included inosine-5'-monophosphate dehydrogenase (3.83 fold) and glycerophosphodiester phosphodiesterase (4.05 fold). The Pre-FHE and FHE stages (full head emerged) of head development were differentiated by 391 proteins and 270 proteins differentiated the FHE and Post-FHE stages. Water-stress during meiosis affected seed setting with 27% and 6% reduction in the progeny DH105 and DH299 respectively. Among the 77 proteins that differentiated between the two DH lines, 7 proteins were significantly influenced by water-stress and correlated with the seed set phenotype response of the DH lines to water-stress (e.g. the up-regulation of a subtilisin-like protease in DH 299 relative to DH 105). This study provided unique insights into the biological changes in developing wheat head that occur during water-stress.
Collapse
|
32
|
Luo X, Zhang Y, Wu H, Bai J. Drought stress-induced autophagy gene expression is correlated with carbohydrate concentrations in Caragana korshinskii. PROTOPLASMA 2020; 257:1211-1220. [PMID: 32318821 DOI: 10.1007/s00709-020-01507-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
Autophagy has been reported to be an adapt function of plant cells under various stresses. In this report, autophagy-related gene expressions and carbohydrate concentrations in Caragana korshinskii leaf cells under drought stress were investigated. Leaf samples of C. korshinskii plants of an estimated 15-year-old were collected from three sites with different drought stress (annual precipitation range, 325.8 to 440.8 mm) at the Loess Plateau in northwestern China. Autophagy was observed in C. korshinskii samples from all three sites and was revealed by autophagosomes in the cytoplasm of mesophyll cells and increased chloroplasts degradation observed by transmission electron microscopy. Furthermore, with the drought stress increase, autophagy-related gene expressions were upregulated and leaf concentration of sucrose was increased, while concentrations of monosaccharide sugars such as glucose, fructose and galactose were decreased. The results suggested that drought stress induced autophagy gene expression, which may serve as a survival mechanism for nutrient remobilisation.
Collapse
Affiliation(s)
- Xinjuan Luo
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanyu Zhang
- College of Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Hongdou Wu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Juan Bai
- College of Horticulture, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| |
Collapse
|
33
|
Chen F, Fang P, Zeng W, Ding Y, Zhuang Z, Peng Y. Comparing transcriptome expression profiles to reveal the mechanisms of salt tolerance and exogenous glycine betaine mitigation in maize seedlings. PLoS One 2020; 15:e0233616. [PMID: 32470066 PMCID: PMC7259585 DOI: 10.1371/journal.pone.0233616] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/09/2020] [Indexed: 01/29/2023] Open
Abstract
Salt stress is a common abiotic stress that limits the growth, development and yield of maize (Zea mays L.). To better understand the response of maize to salt stress and the mechanism by which exogenous glycine betaine (GB) alleviates the damaging effects of salt stress, the morphology, physiological and biochemical indexes, and root transcriptome expression profiles of seedlings of salt-sensitive inbred line P138 and salt-tolerant inbred line 8723 were compared under salt stress and GB-alleviated salt stress conditions. The results showed that under salt stress the growth of P138 was significantly inhibited and the vivo ion balance was disrupted, whereas 8723 could prevent salt injury by maintaining a high ratio of K+ to Na+. The addition of a suitable concentration of GB could effectively alleviate the damage caused by salt stress, and the mitigating effect on salt-sensitive inbred line P138 was more obvious than that on 8723. Transcriptome analysis revealed that 219 differentially expressed genes (DEGs) were up-regulated and 153 DEGs were down-regulated in both P138 and 8723 under NaCl treatment, and that 487 DEGs were up-regulated and 942 DEGs were down-regulated in both P138 and 8723 under salt plus exogenous GB treatment. In 8723 the response to salt stress is mainly achieved through stabilizing ion homeostasis, strong signal transduction activation, increasing reactive oxygen scavenging. GB alleviates salt stress in maize mainly by inducing gene expression changes to enhance the ion balance, secondary metabolic level, reactive oxygen scavenging mechanism, signal transduction activation. In addition, the transcription factors involved in the regulation of salt stress response and exogenous GB mitigation mainly belong to the MYB, MYB-related, AP2-EREBP, bHLH, and NAC families. We verified 10 selected up-regulated DEGs by quantitative real-time polymerase chain reaction (qRT-PCR), and the expression results were basically consistent with the transcriptome expression profiles. Our results from this study may provide the theoretical basis for determining maize salt tolerance mechanisms and the mechanism by which GB regulates salt tolerance.
Collapse
Affiliation(s)
- Fenqi Chen
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Peng Fang
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Wenjing Zeng
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yongfu Ding
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Zelong Zhuang
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yunling Peng
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Lab of Aridland Crop Science, Lanzhou, China
| |
Collapse
|
34
|
Derakhshani B, Ayalew H, Mishina K, Tanaka T, Kawahara Y, Jafary H, Oono Y. Comparative Analysis of Root Transcriptome Reveals Candidate Genes and Expression Divergence of Homoeologous Genes in Response to Water Stress in Wheat. PLANTS 2020; 9:plants9050596. [PMID: 32392904 PMCID: PMC7284651 DOI: 10.3390/plants9050596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/15/2020] [Accepted: 05/03/2020] [Indexed: 11/16/2022]
Abstract
Crop cultivars with larger root systems have an increased ability to absorb water and nutrients under conditions of water deficit. To unravel the molecular mechanism of water-stress tolerance in wheat, we performed RNA-seq analysis on the two genotypes, Colotana 296-52 (Colotana) and Tincurrin, contrasting the root growth under polyethylene-glycol-induced water-stress treatment. Out of a total of 35,047 differentially expressed genes, 3692 were specifically upregulated in drought-tolerant Colotana under water stress. Transcription factors, pyrroline-5-carboxylate reductase and late-embryogenesis-abundant proteins were among upregulated genes in Colotana. Variant calling between Colotana and Tincurrin detected 15,207 SNPs and Indels, which may affect protein function and mediate the contrasting root length phenotype. Finally, the expression patterns of five triads in response to water, high-salinity, heat, and cold stresses were analyzed using qRT-PCR to see if there were differences in homoeologous gene expression in response to those conditions. The five examined triads showed variation in the contribution of homoeologous genes to water, high-salinity, heat, and cold stresses in the two genotypes. The variation of homoeologous gene expression in response to environmental stresses may enable plants to better cope with stresses in their natural environments.
Collapse
Affiliation(s)
- Behnam Derakhshani
- Department of Agronomy & Plant Breeding, Faculty of Agriculture, University of Zanjan, Zanjan 45371-38791, Iran;
- Breeding Material Development Unit, Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8518, Japan
| | - Habtamu Ayalew
- Small Grains Breeding Laboratory, Noble Research Institute LLC, Ardmore, OK 73401, USA;
| | - Kohei Mishina
- Plant Genome Research Unit, Institute of Crop Science, NARO, Tsukuba 305-8518, Japan;
| | - Tsuyoshi Tanaka
- Breeding Informatics Research Unit, Institute of Crop Science, NARO, Tsukuba 305-8518, Japan; (T.T.); (Y.K.)
- Bioinformatics Team, Advanced Analysis Center, NARO, Tsukuba 305-8518, Japan
| | - Yoshihiro Kawahara
- Breeding Informatics Research Unit, Institute of Crop Science, NARO, Tsukuba 305-8518, Japan; (T.T.); (Y.K.)
- Bioinformatics Team, Advanced Analysis Center, NARO, Tsukuba 305-8518, Japan
| | - Hossein Jafary
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran 19395-1454, Iran;
| | - Youko Oono
- Breeding Material Development Unit, Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8518, Japan
- Correspondence: ; Tel.: +81-29-838-7443
| |
Collapse
|
35
|
Li X, Tang Y, Zhou C, Zhang L, Lv J. A Wheat WRKY Transcription Factor TaWRKY46 Enhances Tolerance to Osmotic Stress in transgenic Arabidopsis Plants. Int J Mol Sci 2020; 21:ijms21041321. [PMID: 32075313 PMCID: PMC7072902 DOI: 10.3390/ijms21041321] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 11/16/2022] Open
Abstract
WRKY transcription factors play central roles in developmental processes and stress responses of wheat. Most WRKY proteins of the same group (Group III) have a similar function in abiotic stress responses in plants. TaWRKY46, a member of Group III, was up-regulated by PEG treatment. TaWRKY46-GFP fusion proteins localize to the nucleus in wheat mesophyll protoplasts. Overexpression of TaWRKY46 enhanced osmotic stress tolerance in transgenic Arabidopsis thaliana plants, which was mainly demonstrated by transgenic Arabidopsis plants forming higher germination rate and longer root length on 1/2 Murashige and Skoog (MS) medium containing mannitol. Furthermore, the expression of several stress-related genes (P5CS1, RD29B, DREB2A, ABF3, CBF2, and CBF3) was significantly increased in TaWRKY46-overexpressing transgenic Arabidopsis plants after mannitol treatment. Taken together, these findings proposed that TaWRKY46 possesses vital functions in improving drought tolerance through ABA-dependent and ABA-independent pathways when plants are exposed to adverse osmotic conditions. TaWRKY46 can be taken as a candidate gene for transgenic breeding against osmotic stress in wheat. It can further complement and improve the information of the WRKY family members of Group III.
Collapse
Affiliation(s)
| | | | | | | | - Jinyin Lv
- Correspondence: ; Tel.: +86-135-7219-6187
| |
Collapse
|
36
|
Iquebal MA, Sharma P, Jasrotia RS, Jaiswal S, Kaur A, Saroha M, Angadi UB, Sheoran S, Singh R, Singh GP, Rai A, Tiwari R, Kumar D. RNAseq analysis reveals drought-responsive molecular pathways with candidate genes and putative molecular markers in root tissue of wheat. Sci Rep 2019; 9:13917. [PMID: 31558740 PMCID: PMC6763491 DOI: 10.1038/s41598-019-49915-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 08/12/2019] [Indexed: 01/08/2023] Open
Abstract
Drought is one of the major impediments in wheat productivity. Traditional breeding and marker assisted QTL introgression had limited success. Available wheat genomic and RNA-seq data can decipher novel drought tolerance mechanisms with putative candidate gene and marker discovery. Drought is first sensed by root tissue but limited information is available about how roots respond to drought stress. In this view, two contrasting genotypes, namely, NI5439 41 (drought tolerant) and WL711 (drought susceptible) were used to generate ~78.2 GB data for the responses of wheat roots to drought. A total of 45139 DEGs, 13820 TF, 288 miRNAs, 640 pathways and 435829 putative markers were obtained. Study reveals use of such data in QTL to QTN refinement by analysis on two model drought-responsive QTLs on chromosome 3B in wheat roots possessing 18 differentially regulated genes with 190 sequence variants (173 SNPs and 17 InDels). Gene regulatory networks showed 69 hub-genes integrating ABA dependent and independent pathways controlling sensing of drought, root growth, uptake regulation, purine metabolism, thiamine metabolism and antibiotics pathways, stomatal closure and senescence. Eleven SSR markers were validated in a panel of 18 diverse wheat varieties. For effective future use of findings, web genomic resources were developed. We report RNA-Seq approach on wheat roots describing the drought response mechanisms under field drought conditions along with genomic resources, warranted in endeavour of wheat productivity.
Collapse
Affiliation(s)
- Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi, 110012, India
| | - Pradeep Sharma
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Rahul Singh Jasrotia
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi, 110012, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi, 110012, India
| | - Amandeep Kaur
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Monika Saroha
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - U B Angadi
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi, 110012, India
| | - Sonia Sheoran
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Rajender Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - G P Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi, 110012, India
| | - Ratan Tiwari
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India.
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi, 110012, India.
| |
Collapse
|
37
|
Mukami A, Ngetich A, Mweu C, Oduor RO, Muthangya M, Mbinda WM. Differential characterization of physiological and biochemical responses during drought stress in finger millet varieties. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:837-846. [PMID: 31402813 PMCID: PMC6656826 DOI: 10.1007/s12298-019-00679-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/18/2019] [Accepted: 05/14/2019] [Indexed: 05/16/2023]
Abstract
Drought is the most perilous abiotic stress that affects finger millet growth and productivity worldwide. For the successful production of finger millet, selection of drought tolerant varieties is necessary and critical stages under drought stress, germination and early seedling growth, ought to be fully understood. This study investigated the physiological and biochemical responses of six finger millet varieties (GBK043137, GBK043128, GBK043124, GBK043122, GBK043094 and GBK043050) under mannitol-induced drought stress. Seeds were germinated in sterile soil and irrigated with various concentrations of mannitol (200, 400 and 600 mM) for 2 weeks. In a comparative analysis relative water content (RWC), chlorophyll, proline and malondialdehyde (MDA) contents were measured to obtain the physiological and biochemical characteristics of drought stress. The results showed that increased levels of drought stress seriously decreased germination and early seedling growth of finger millet varieties. However, root growth was increased. In addition, exposition to drought stress triggered a significant decrease in relative water content and chlorophyll content reduction, and the biochemical parameters assay showed less reduction in RWC. Furthermore, oxidative damage indicating parameters, such as proline concentration and MDA content, increased. Varieties GBK043137 and GBK043094 were less affected by drought than the other varieties as shown by significant changes in their physiological parameters. Our findings reveal the differences between the physiological and biochemical responses of finger millet to drought and are vital for breeding and selecting drought tolerant varieties of finger millet. Further, genomic and molecular investigations need to be undertaken to gain a deeper insight into the detailed mechanisms of drought tolerance in finger millet.
Collapse
Affiliation(s)
- Asunta Mukami
- Department of Life Sciences, South Eastern Kenya University, Kitui, Kenya
| | - Alex Ngetich
- Institute of Biotechnology Research, Jomo Kenyatta University of Agriculture Technology, Nairobi, Kenya
| | - Cecilia Mweu
- Institute of Biotechnology Research, Jomo Kenyatta University of Agriculture Technology, Nairobi, Kenya
| | - Richard O. Oduor
- Department of Biochemistry and Biotechnology, Kenyatta University, Nairobi, Kenya
| | - Mutemi Muthangya
- Department of Life Sciences, South Eastern Kenya University, Kitui, Kenya
| | - Wilton Mwema Mbinda
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
| |
Collapse
|
38
|
Physiological and Proteomic Responses of Mulberry Trees ( Morus alba. L.) to Combined Salt and Drought Stress. Int J Mol Sci 2019; 20:ijms20102486. [PMID: 31137512 PMCID: PMC6566768 DOI: 10.3390/ijms20102486] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023] Open
Abstract
Intensive investigations have been conducted on the effect of sole drought or salinity stress on the growth of plants. However, there is relatively little knowledge on how plants, particularly woody species, respond to a combination of these two stresses although these stresses can simultaneously occur in the field. In this study, mulberry, an economically important resource for traditional medicine, and the sole food of domesticated silkworms was subjected to a combination of salt and drought stress and analyzed by physiological methods and TMT-based proteomics. Stressed mulberry exhibited significant alteration in physiological parameters, including root/shoot ratio, chlorophyll fluorescence, total carbon, and ion reallocation. A total of 577 and 270 differentially expressed proteins (DEPs) were identified from the stressed leaves and roots, respectively. Through KEGG analysis, these DEPs were assigned to multiple pathways, including carbon metabolism, photosynthesis, redox, secondary metabolism, and hormone metabolism. Among these pathways, the sucrose related metabolic pathway was distinctly enriched in both stressed leaves and roots, indicating an important contribution in mulberry under stress condition. The results provide a comprehensive understanding of the adaptive mechanism of mulberry in response to salt and drought stress, which will facilitate further studies on innovations in terms of crop performance.
Collapse
|
39
|
Growth, Secondary Metabolites and Enzyme Activity Responses of Two Edible Fern Species to Drought Stress and Rehydration in Northeast China. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9030137] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The drought resistance mechanism of Matteuccia struthiopteris (L.) Todar. and Athyrium multidentatum (Doll.) Ching were measured under natural drought exposure. The results showed that the two edible fern species showed stronger resistance in the early stages of drought, mainly expressed as the decrease of relative leaf water content (RLWC), increase of osmotic substances, secondary metabolites such as flavonoids (FC), total phenols (TPC), proantho cyanidins (PCC) content and enzyme activity (superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX)). The higher RLWC, FC, TPC, PCC and abscisic acid (ABA) content and lower H2O2 content indicates the stronger non-enzymatic antioxidant system and drought resistance of A. multidentatum. However, the proline (Pro) content changed slowly, and the synthesis of soluble protein (SP), total phenols, proantho cyanidins and ABA, SOD activity of two fern species were inhibited in the late stages of drought stress. This study can provide a scientific basis for the cultivation and utilization of edible fern species under forest in Northeast China.
Collapse
|
40
|
Agarwal P, Khurana P. Functional characterization of HSFs from wheat in response to heat and other abiotic stress conditions. Funct Integr Genomics 2019; 19:497-513. [PMID: 30868385 DOI: 10.1007/s10142-019-00666-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
Abstract
High temperature stress is known to be one of the major limiting factors for wheat productivity worldwide. HSFs are known to play a central role in heat stress response in plants. Hence, the current study is an attempt to explore an in-depth involvement of TaHSFs in stress responses mainly in heat and other abiotic responses like salinity, drought, and cold stress. Effort was made to understand as how the expression of HSF is able to define the differential robustness of wheat varieties. Subsequent studies were done to establish the involvement of any temporal or spatial cue on the behavior of these TaHSFs under heat stress conditions. A total of 53 HSFs have been reported until date and out of these, few TaHSFs including one identified in our library, i.e., TaHsfA2d (Traes_4AS_52EB860E7.2), were selected for the expression analysis studies. The expressions of these HSFs were found to differ in both magnitude and sensitivity to the heat as well as other abiotic stresses. Moreover, these TaHSFs displayed wide range of expression in different tissues like anther, ovary, lemma, palea, awn, glume, and different stages of seed development. Thus, TaHSFs appear to be under dynamic expression as they respond in a unique manner to spatial, temporal, and environmental cues. Therefore, these HSFs can be used as candidate genes for understanding the molecular mechanism under heat stress and can be utilized for improving crop yield by enhancing the tolerance and survival of the crop plants under adverse environment conditions.
Collapse
Affiliation(s)
- Preeti Agarwal
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, 110021, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, 110021, India.
| |
Collapse
|
41
|
Marček T, Hamow KÁ, Végh B, Janda T, Darko E. Metabolic response to drought in six winter wheat genotypes. PLoS One 2019; 14:e0212411. [PMID: 30779775 PMCID: PMC6380608 DOI: 10.1371/journal.pone.0212411] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/02/2019] [Indexed: 12/13/2022] Open
Abstract
Wheat is one of the most important cereals, whose growth and development is strongly limited by drought. This study investigated the physiological and metabolic response of six winter wheat cultivars to drought with the emphasis on the induction of dominant metabolites affected by the treatment and genotypes or both. The plants were exposed to a moderate (non-lethal) drought stress, which was induced by withholding watering for six days under controlled greenhouse conditions. A decline in CO2 assimilation (Pn) and transpiration rate, stomata closure, a decrease in relative water content (RWC) and increase of malondialdehyde content were observed in drought-treated plants of all cultivars. These changes were most pronounced in Ellvis, while Soissons was able to retain the higher RWC and Pn. Among the studied metabolites, sugars (sucrose, glucose, fructose, several disaccharides), organic acids (malic acid, oxalic acids), amino acids (proline, threonine, gamma-aminobutyric acid (GABA), glutamine) and sugar alcohols such as myo-inositol accumulated to higher levels in the plants exposed to drought stress in comparison with the control. The accumulation of several metabolites in response to drought differed between the genotypes. Drought induced the production of sucrose, malic acid and oxalic acid, unknown organic acid 1, unknown disaccharide 1, 2 and 3, GABA, L-threonine, glutamic acid in four (Soissons, Žitarka, Antonija or Toborzó) out of six genotypes. In addition, Soissons, which was the most drought tolerant genotype, accumulated the highest amount of unknown disaccharide 5, galactonic and phosphoric acids. The two most drought sensitive cultivars, Srpanjka and Ellvis, demonstrated different metabolic adjustment in response to the stress treatment. Srpanjka responded to drought by increasing the amount of glucose and fructose originated from hydrolyses of sucrose and accumulating unidentified sugar alcohols 1 and 2. In Ellvis, drought caused inhibition of photosynthetic carbon metabolism, as evidence by the decreased Pn, gs, RWC and accumulation levels of sugar metabolites (sucrose, glucose and fructose). The results revealed the differences in metabolic response to drought among the genotypes, which drew attention on metabolites related with general response and on those metabolites which are part of specific response that may play an important role in drought tolerance.
Collapse
Affiliation(s)
- Tihana Marček
- Department of Food and Nutrition Research, Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Kamirán Áron Hamow
- Department of Zoology, Plant Protection Institute, Centre for Agricultural Research of the Hungarian Academy of Sciences, Budapest, Hungary
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research of the Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Balázs Végh
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research of the Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Tibor Janda
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research of the Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Eva Darko
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research of the Hungarian Academy of Sciences, Martonvásár, Hungary
| |
Collapse
|
42
|
Dixon LS, Godoy JV, Carter AH. Evaluating the Utility of Carbon Isotope Discrimination for Wheat Breeding in the Pacific Northwest. PLANT PHENOMICS (WASHINGTON, D.C.) 2019; 2019:4528719. [PMID: 33313527 PMCID: PMC7706333 DOI: 10.34133/2019/4528719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/02/2019] [Indexed: 05/03/2023]
Abstract
Many wheat (Triticum aestivum L.) production regions are threatened annually by drought stress. Carbon isotope discrimination (Δ) has been identified as a potentially useful trait in breeding for improved drought tolerance in certain environments. Broad use of Δ as a selection criterion is limited, however, mainly due to an inconsistent relationship observed between grain yield and Δ and, to a lesser extent, because of the high resource demand associated with phenotyping. The efficiency of selection may be improved by the identification and verification of molecular markers for use in marker-assisted selection (MAS), and a reliable relationship to grain yield may be established based on a location's total amount and distribution of precipitation over the growing season. Given the environmental variability in precipitation dynamics, it is necessary to evaluate this relationship in target breeding environments. In this study, grain Δ was collected on a panel of 480 advanced soft white winter wheat varieties grown in five Pacific Northwest environments. A genome-wide association study approach was used to evaluate the amenability of grain Δ to MAS. The genetic architecture of grain Δ was determined to be characterized by multiple, small effect marker-trait associations with limited repeatability across environments, suggesting that MAS will be ineffective at improving Δ selection efficiency. Further, the relationship between grain yield and Δ ranged from neutral (r = -0.01) to moderately positive (r = 0.44) in the target environments. Such moderate correlations, coupled with variability in this relationship, indicate that direct selection for Δ may not be beneficial.
Collapse
|
43
|
Mia MS, Liu H, Wang X, Yan G. Multiple Near-Isogenic Lines Targeting a QTL Hotspot of Drought Tolerance Showed Contrasting Performance Under Post-anthesis Water Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:271. [PMID: 30906308 PMCID: PMC6418346 DOI: 10.3389/fpls.2019.00271] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/19/2019] [Indexed: 05/05/2023]
Abstract
The complex quantitative nature of drought-related traits is a major constraint to breed tolerant wheat varieties. Pairs of near-isogenic lines (NILs) with a common genetic background but differing in a particular locus could turn quantitative traits into a Mendelian factor facilitating our understanding of genotype and phenotype interactions. In this study, we report our fast track development and evaluation of NILs from C306 × Dharwar Dry targeting a wheat 4BS QTL hotspot in C306, which confers drought tolerance following the heterogeneous inbreed family (HIF) analysis coupled with immature embryo culture-based fast generation technique. Molecular marker screening and phenotyping for grain yield and related traits under post-anthesis water stress (WS) confirmed four isoline pairs, viz., qDSI.4B.1-2, qDSI.4B.1-3, qDSI.4B.1-6, and qDSI.4B.1-8. There were significant contrasts of responses between the NILs with C306 QTL (+NILs) and the NILs without C306 QTL (-NILs). Among the four confirmed NIL pairs, mean grain yield per plant of the +NILs and -NILs showed significant differences ranging from 9.61 to 10.81 and 6.30 to 7.56 g, respectively, under WS condition, whereas a similar grain yield was recorded between the +NILs and -NILs under well-watered condition. Isolines of +NIL and -NIL pairs showed similar chlorophyll content (SPAD), assimilation rate (A), and transpiration rate (Tr) at the beginning of the stress. However, the +NILs showed significantly higher SPAD (12%), A (66%), stomatal conductance (75%), and Tr (97%) than the -NILs at the seventh day of stress. Quantitative RT-PCR analysis targeting the MYB transcription factor gene Triticum aestivum MYB 82 (TaMYB82), within this genomic region which was retrieved from the wheat reference genome TGACv1, also revealed differential expression in +NILs and -NILs under stress. These results confirmed that the NILs can be invaluable resources for fine mapping of this QTL, and also for cloning and functional characterization of the gene(s) responsible for drought tolerance in wheat.
Collapse
Affiliation(s)
- Md Sultan Mia
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- Plant Breeding Division, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh
| | - Hui Liu
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Xingyi Wang
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Guijun Yan
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Perth, WA, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- *Correspondence: Guijun Yan,
| |
Collapse
|
44
|
Akpinar BA, Biyiklioglu S, Alptekin B, Havránková M, Vrána J, Doležel J, Distelfeld A, Hernandez P, Budak H. Chromosome-based survey sequencing reveals the genome organization of wild wheat progenitor Triticum dicoccoides. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:2077-2087. [PMID: 29729062 PMCID: PMC6230948 DOI: 10.1111/pbi.12940] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/11/2018] [Accepted: 04/20/2018] [Indexed: 05/20/2023]
Abstract
Wild emmer wheat (Triticum turgidum ssp. dicoccoides) is the progenitor of wheat. We performed chromosome-based survey sequencing of the 14 chromosomes, examining repetitive sequences, protein-coding genes, miRNA/target pairs and tRNA genes, as well as syntenic relationships with related grasses. We found considerable differences in the content and distribution of repetitive sequences between the A and B subgenomes. The gene contents of individual chromosomes varied widely, not necessarily correlating with chromosome size. We catalogued candidate agronomically important loci, along with new alleles and flanking sequences that can be used to design exome sequencing. Syntenic relationships and virtual gene orders revealed several small-scale evolutionary rearrangements, in addition to providing evidence for the 4AL-5AL-7BS translocation in wild emmer wheat. Chromosome-based sequence assemblies contained five novel miRNA families, among 59 families putatively encoded in the entire genome which provide insight into the domestication of wheat and an overview of the genome content and organization.
Collapse
Affiliation(s)
- Bala Ani Akpinar
- Department of Plant Sciences and Plant PathologyCereal Genomics LabMontana State UniversityBozemanMTUSA
| | - Sezgi Biyiklioglu
- Department of Plant Sciences and Plant PathologyCereal Genomics LabMontana State UniversityBozemanMTUSA
| | - Burcu Alptekin
- Department of Plant Sciences and Plant PathologyCereal Genomics LabMontana State UniversityBozemanMTUSA
| | - Miroslava Havránková
- Centre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental BotanyOlomoucCzech Republic
| | - Jan Vrána
- Centre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental BotanyOlomoucCzech Republic
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural ResearchInstitute of Experimental BotanyOlomoucCzech Republic
| | - Assaf Distelfeld
- Department of Molecular Biology and Ecology of PlantsFaculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Pilar Hernandez
- Instituto de Agricultura Sostenible (IAS)Consejo Superior de Investigaciones Científicas (CSIC)CordobaSpain
| | - The IWGSC
- International Wheat Genome Sequencing ConsortiumBethesdaMDUSA
| | - Hikmet Budak
- Department of Plant Sciences and Plant PathologyCereal Genomics LabMontana State UniversityBozemanMTUSA
| |
Collapse
|
45
|
Characterization for Drought Tolerance and Physiological Efficiency in Novel Cytoplasmic Male Sterile Sources of Sunflower (Helianthus annuus L.). AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8100232] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Sunflower is sensitive to drought, and furthermore, sunflower hybrids display limited cytoplasmic diversity. In addition, the wild cytoplasmic sources of sunflower are not well explored for their potential to introduce drought tolerance into newly developed hybrids. Therefore here, we carried out a Line × Tester-based genetic study using 19 sunflower genotypes representing, 13 cytoplasmic male sterile (CMS) lines from wild and conventional sources, 2 maintainer lines, and 4 restorer lines. The CMS and maintainer lines were crossed with restorer lines to develop sixty F1 hybrids. The parents and their hybrids were evaluated under two water regimes, normal irrigation and drought stress (i.e., withholding water). A total of twelve important plant descriptors were studied over a period of two years and the significant differences between parents and hybrids are reported here. More specifically, hybrid lines were higher in average values for all the descriptors. The contribution of female parent was more prominent in the expression of traits in hybrids as compared to male parents. The CMS sources varied significantly regarding seed yield per plant and other physiological traits. Proline content in the leaves of all the genotypes was three times higher in the water stress regime. Accession CMS-PKU-2A was identified as the best general combiner for leaf area and specific leaf weight., whereas CMS-234A was the best general combiner for biological yield and photosynthetic efficiency under both conditions. The cross combinations CMS-ARG-2A × RCR-8297, CMS-234A × P124R, and CMS-38A × P124R were found significant for biological yield, seed yield and oil content under both environments. Overall, this study provides useful information about the cytoplasmic effects on important sunflower traits and drought stress tolerance.
Collapse
|
46
|
Wani SH, Tripathi P, Zaid A, Challa GS, Kumar A, Kumar V, Upadhyay J, Joshi R, Bhatt M. Transcriptional regulation of osmotic stress tolerance in wheat (Triticum aestivum L.). PLANT MOLECULAR BIOLOGY 2018; 97:469-487. [PMID: 30109563 DOI: 10.1007/s11103-018-0761-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/31/2018] [Indexed: 05/24/2023]
Abstract
The current review provides an updated, new insights into the regulation of transcription mediated underlying mechanisms of wheat plants to osmotic stress perturbations. Osmotic stress tolerance mechanisms being complex are governed by multiple factors at physiological, biochemical and at the molecular level, hence approaches like "OMICS" that can underpin mechanisms behind osmotic tolerance in wheat is of paramount importance. The transcription factors (TFs) are a class of molecular proteins, which are involved in regulation, modulation and orchestrating the responses of plants to a variety of environmental stresses. Recent reports have provided novel insights on the role of TFs in osmotic stress tolerance via direct molecular links. However, our knowledge on the regulatory role TFs during osmotic stress tolerance in wheat remains limited. The present review in its first part sheds light on the importance of studying the role of osmotic stress tolerance in wheat plants and second aims to decipher molecular mechanisms of TFs belonging to several classes, including DREB, NAC, MYB, WRKY and bHLH, which have been reported to engage in osmotic stress mediated gene expression in wheat and third part covers the systems biology approaches to understand the transcriptional regulation of osmotic stress and the role of long non-coding RNAs in response to osmotic stress with special emphasis on wheat. The current concept may lead to an understanding in molecular regulation and signalling interaction of TFs under osmotic stress to clarify challenges and problems for devising potential strategies to improve complex regulatory events involved in plant tolerance to osmotic stress adaptive pathways in wheat.
Collapse
Affiliation(s)
- Shabir H Wani
- Mountain Research Centre for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, J&K, 192101, India.
| | - Prateek Tripathi
- Department of Cell & Molecular Biology, The Scripps Research Institute, Jolla, CA, 92037, USA
| | - Abbu Zaid
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Ghana S Challa
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Anuj Kumar
- Advance Centre for Computational and Applied Biotechnology, Uttarakhand Council for Biotechnology (UCB), Dehradun, Uttarakhand, 248007, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule, Pune University, Pune, India
| | - Jyoti Upadhyay
- Department of Pharmaceutical Sciences, Kumaun University, Campus Bhimtal, Bhimtal, Uttarakhand, 293136, India
| | - Rohit Joshi
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Manoj Bhatt
- Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
47
|
Hu L, Xie Y, Fan S, Wang Z, Wang F, Zhang B, Li H, Song J, Kong L. Comparative analysis of root transcriptome profiles between drought-tolerant and susceptible wheat genotypes in response to water stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:276-293. [PMID: 29807601 DOI: 10.1016/j.plantsci.2018.03.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/13/2018] [Accepted: 03/20/2018] [Indexed: 05/13/2023]
Abstract
Water deficit is one of the major factors limiting crop productivity worldwide. Plant roots play a key role in uptaking water, perceiving and transducing of water deficit signals to shoot. Although the mechanisms of drought-tolerance have been reported recently, the transcriptional regulatory network of wheat root response to water stress has not been fully understood. In this study, drought-tolerant cultivar JM-262 and susceptible cultivar LM-2 are planted to characterize the root transcriptional changes and physiological responses to water deficit. A total of 8197 drought tolerance-associated differentially expressed genes (DEGs) are identified, these genes are mainly mapped to carbon metabolism, flavonoid biosynthesis, and phytohormone signal transduction. The number and expression level of DEGs involved in antioxidative and antiosmotic stresses are more enhanced in JM-262 under water stress. Furthermore, we find the DEGs related to root development are much more induced in JM-262 in phytohormone signal transduction and carbon metabolism pathway. In conclusion, JM-262 may alleviate the damage of drought by producing more osmoprotectants, ROS scavengers, biomass and energy. Interestingly, hormone signaling and cross-talk probably play an important role in promoting JM-262 greater root systems to take up more water, higher capabilities to induce more drought-related DEGs and higher resisitance to oxidative stresse.
Collapse
Affiliation(s)
- Ling Hu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yan Xie
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shoujin Fan
- College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Zongshuai Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Fahong Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Bin Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Haosheng Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jie Song
- College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Lingan Kong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
48
|
Genetic improvement of heat tolerance in wheat: Recent progress in understanding the underlying molecular mechanisms. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2017.09.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
49
|
Alahmad S, Dinglasan E, Leung KM, Riaz A, Derbal N, Voss-Fels KP, Able JA, Bassi FM, Christopher J, Hickey LT. Speed breeding for multiple quantitative traits in durum wheat. PLANT METHODS 2018; 14:36. [PMID: 29785201 PMCID: PMC5950182 DOI: 10.1186/s13007-018-0302-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 04/26/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND Plant breeding requires numerous generations to be cycled and evaluated before an improved cultivar is released. This lengthy process is required to introduce and test multiple traits of interest. However, a technology for rapid generation advance named 'speed breeding' was successfully deployed in bread wheat (Triticum aestivum L.) to achieve six generations per year while imposing phenotypic selection for foliar disease resistance and grain dormancy. Here, for the first time the deployment of this methodology is presented in durum wheat (Triticum durum Desf.) by integrating selection for key traits, including above and below ground traits on the same set of plants. This involved phenotyping for seminal root angle (RA), seminal root number (RN), tolerance to crown rot (CR), resistance to leaf rust (LR) and plant height (PH). In durum wheat, these traits are desirable in environments where yield is limited by in-season rainfall with the occurrence of CR and epidemics of LR. To evaluate this multi-trait screening approach, we applied selection to a large segregating F2 population (n = 1000) derived from a bi-parental cross (Outrob4/Caparoi). A weighted selection index (SI) was developed and applied. The gain for each trait was determined by evaluating F3 progeny derived from 100 'selected' and 100 'unselected' F2 individuals. RESULTS Transgressive segregation was observed for all assayed traits in the Outrob4/Caparoi F2 population. Application of the SI successfully shifted the population mean for four traits, as determined by a significant mean difference between 'selected' and 'unselected' F3 families for CR tolerance, LR resistance, RA and RN. No significant shift for PH was observed. CONCLUSIONS The novel multi-trait phenotyping method presents a useful tool for rapid selection of early filial generations or for the characterization of fixed lines out-of-season. Further, it offers efficient use of resources by assaying multiple traits on the same set of plants. Results suggest that when performed in parallel with speed breeding in early generations, selection will enrich recombinant inbred lines with desirable alleles and will reduce the length and number of years required to combine these traits in elite breeding populations and therefore cultivars.
Collapse
Affiliation(s)
- Samir Alahmad
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, QLD 4072 Australia
| | - Eric Dinglasan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, QLD 4072 Australia
| | - Kung Ming Leung
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, QLD 4072 Australia
| | - Adnan Riaz
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, QLD 4072 Australia
| | - Nora Derbal
- Department of Ecology and Environmental Engineering, The University of 8 Mai 1945, 24000 Guelma, Algeria
| | - Kai P. Voss-Fels
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, QLD 4072 Australia
| | - Jason A. Able
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Urrbrae, Adelaide, SA 5064 Australia
| | - Filippo M. Bassi
- International Center for the Agricultural Research in the Dry Areas, 10000 Rabat, Morocco
| | - Jack Christopher
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Leslie Research Facility, Toowoomba, 4350 QLD Australia
| | - Lee T. Hickey
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Brisbane, QLD 4072 Australia
| |
Collapse
|
50
|
Ullah N, Yüce M, Neslihan Öztürk Gökçe Z, Budak H. Comparative metabolite profiling of drought stress in roots and leaves of seven Triticeae species. BMC Genomics 2017; 18:969. [PMID: 29246190 PMCID: PMC5731210 DOI: 10.1186/s12864-017-4321-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/21/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Drought is a lifestyle disease. Plant metabolomics has been exercised for understanding the fine-tuning of the potential pathways to surmount the adverse effects of drought stress. A broad spectrum of morphological and metabolic responses from seven Triticeae species including wild types with different drought tolerance/susceptibility level was investigated under control and water scarcity conditions. RESULTS Significant morphological parameters measured were root length, surface area, average root diameter and overall root development. Principal Component Analysis, Partial Least-Squares-Discriminant Analysis and Hierarchical Cluster Analysis were applied to the metabolomic data obtained by Gas Chromatography-Mass Spectrometry technique in order to determine the important metabolites of the drought tolerance across seven different Triticeae species. The metabolites showing significant accumulation under the drought stress were considered as the key metabolites and correlated with potential biochemical pathways, enzymes or gene locations for a better understanding of the tolerance mechanisms. In all tested species, 45 significantly active metabolites with possible roles in drought stress were identified. Twenty-one metabolites out of forty-five including sugars, amino acids, organic acids and low molecular weight compounds increased in both leaf and root samples of TR39477, IG132864 and Bolal under the drought stress, contrasting to TTD-22, Tosunbey, Ligustica and Meyeri samples. Three metabolites including succinate, aspartate and trehalose were selected for further genome analysis due to their increased levels in TR39477, IG132864, and Bolal upon drought stress treatment as well as their significant role in energy producing biochemical pathways. CONCLUSION These results demonstrated that the genotypes with high drought tolerance skills, especially wild emmer wheat, have a great potential to be a genetic model system for experiments aiming to validate metabolomics-genomics networks.
Collapse
Affiliation(s)
- Naimat Ullah
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
| | - Meral Yüce
- Nanotechnology Research and Application Centre, Sabanci University, 34956, Istanbul, Turkey
| | - Z Neslihan Öztürk Gökçe
- Ayhan Sahenk Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51240, Nigde, Turkey
| | - Hikmet Budak
- Department of Plant Science and Plant Pathology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|