1
|
Xiong L, Cao J, Yang X, Chen S, Wu M, Wang C, Xu H, Chen Y, Zhang R, Hu X, Chen T, Tang J, Deng Q, Li D, Yang Z, Xiao G, Zhang X. Exploring the mechanism of action of Xuanfei Baidu granule (XFBD) in the treatment of COVID-19 based on molecular docking and molecular dynamics. Front Cell Infect Microbiol 2022; 12:965273. [PMID: 36034710 PMCID: PMC9399524 DOI: 10.3389/fcimb.2022.965273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeThe Corona Virus Disease 2019 (COVID-19) pandemic has become a challenge of world. The latest research has proved that Xuanfei Baidu granule (XFBD) significantly improved patient’s clinical symptoms, the compound drug improves immunity by increasing the number of white blood cells and lymphocytes, and exerts anti-inflammatory effects. However, the analysis of the effective monomer components of XFBD and its mechanism of action in the treatment of COVID-19 is currently lacking. Therefore, this study used computer simulation to study the effective monomer components of XFBD and its therapeutic mechanism.MethodsWe screened out the key active ingredients in XFBD through TCMSP database. Besides GeneCards database was used to search disease gene targets and screen intersection gene targets. The intersection gene targets were analyzed by GO and KEGG. The disease-core gene target-drug network was analyzed and molecular docking was used for verification. Molecular dynamics simulation verification was carried out to combine the active ingredient and the target with a stable combination. The supercomputer platform was used to measure and analyze the number of hydrogen bonds, the binding free energy, the stability of protein target at the residue level, the solvent accessible surface area, and the radius of gyration.ResultsXFBD had 1308 gene targets, COVID-19 had 4600 gene targets, the intersection gene targets were 548. GO and KEGG analysis showed that XFBD played a vital role by the signaling pathways of immune response and inflammation. Molecular docking showed that I-SPD, Pachypodol and Vestitol in XFBD played a role in treating COVID-19 by acting on NLRP3, CSF2, and relieve the clinical symptoms of SARS-CoV-2 infection. Molecular dynamics was used to prove the binding stability of active ingredients and protein targets, CSF2/I-SPD combination has the strongest binding energy.ConclusionFor the first time, it was found that the important active chemical components in XFBD, such as I-SPD, Pachypodol and Vestitol, reduce inflammatory response and apoptosis by inhibiting the activation of NLRP3, and reduce the production of inflammatory factors and chemotaxis of inflammatory cells by inhibiting the activation of CSF2. Therefore, XFBD can effectively alleviate the clinical symptoms of COVID-19 through NLRP3 and CSF2.
Collapse
Affiliation(s)
- Li Xiong
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Junfeng Cao
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xingyu Yang
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Shengyan Chen
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Mei Wu
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Chaochao Wang
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Hengxiang Xu
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Yijun Chen
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Ruijiao Zhang
- Chengdu Medical College of Basic Medical Sciences, Chengdu, China
| | - Xiaosong Hu
- Chengdu Medical College of Basic Medical Sciences, Chengdu, China
| | - Tian Chen
- Chengdu Medical College of Basic Medical Sciences, Chengdu, China
| | - Jing Tang
- Department of Infectious Diseases, First People’s Hospital of Ziyang, Ziyang, China
| | - Qin Deng
- Department of Infectious Diseases, First People’s Hospital of Ziyang, Ziyang, China
| | - Dong Li
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Zheng Yang
- Chengdu Medical College of Basic Medical Sciences, Chengdu, China
- *Correspondence: Xiao Zhang, ; Guibao Xiao, ; Zheng Yang,
| | - Guibao Xiao
- Department of Infectious Diseases, First People’s Hospital of Ziyang, Ziyang, China
- *Correspondence: Xiao Zhang, ; Guibao Xiao, ; Zheng Yang,
| | - Xiao Zhang
- Chengdu Medical College of Basic Medical Sciences, Chengdu, China
- *Correspondence: Xiao Zhang, ; Guibao Xiao, ; Zheng Yang,
| |
Collapse
|
2
|
Bouredji Z, Hamoudi D, Marcadet L, Argaw A, Frenette J. Testing the efficacy of a human full-length OPG-Fc analog in a severe model of cardiotoxin-induced skeletal muscle injury and repair. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:559-573. [PMID: 33997104 PMCID: PMC8102421 DOI: 10.1016/j.omtm.2021.03.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 03/25/2021] [Indexed: 11/19/2022]
Abstract
Although receptor-activator of nuclear factor κB (RANK), its ligand RANKL, and osteoprotegerin (OPG), which are members of the tumor necrosis factor (TNF) superfamily, were first discovered in bone cells, they are also expressed in other cells, including skeletal muscle. We previously showed that the RANK/RANKL/OPG pathway is involved in the physiopathology of Duchenne muscular dystrophy and that a mouse full-length OPG-Fc (mFL-OPG-Fc) treatment is superior to muscle-specific RANK deletion in protecting dystrophic muscles. Although mFL-OPG-Fc has a beneficial effect in the context of muscular dystrophy, the function of human FL-OPG-Fc (hFL-OPG-Fc) during muscle repair is not yet known. In the present study, we investigated the impacts of an hFL-OPG-Fc treatment following the intramuscular injection of cardiotoxin (CTX). We show that a 7-day hFL-OPG-Fc treatment improved force production of soleus muscle. hFL-OPG-Fc also improved soleus muscle integrity and regeneration by increasing satellite cell density and fiber cross-sectional area, attenuating neutrophil inflammatory cell infiltration at 3 and 7 days post-CTX injury, increasing the anti-inflammatory M2 macrophages 7 days post-CTX injury. hFL-OPG-Fc treatment also favored M2 over M1 macrophage phenotypic polarization in vitro. We show for the first time that hFL-OPG-Fc improved myotube maturation and fusion in vitro and reduced cytotoxicity and cell apoptosis. These findings demonstrate that hFL-OPG-Fc has therapeutic potential for muscle diseases in which repair and regeneration are impaired.
Collapse
Affiliation(s)
- Zineb Bouredji
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l’Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC G1V 4G2, Canada
| | - Dounia Hamoudi
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l’Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC G1V 4G2, Canada
| | - Laetitia Marcadet
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l’Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC G1V 4G2, Canada
| | - Anteneh Argaw
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l’Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC G1V 4G2, Canada
| | - Jérôme Frenette
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l’Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC G1V 4G2, Canada
- Département de Réadaptation, Faculté de Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Corresponding author: Jérôme Frenette, Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l’Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC G1V 4G2, Canada.
| |
Collapse
|
3
|
Kakareko K, Rydzewska-Rosołowska A, Zbroch E, Hryszko T. TRAIL and Cardiovascular Disease-A Risk Factor or Risk Marker: A Systematic Review. J Clin Med 2021; 10:jcm10061252. [PMID: 33803523 PMCID: PMC8002847 DOI: 10.3390/jcm10061252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a pro-apoptotic protein showing broad biological functions. Data from animal studies indicate that TRAIL may possibly contribute to the pathophysiology of cardiomyopathy, atherosclerosis, ischemic stroke and abdominal aortic aneurysm. It has been also suggested that TRAIL might be useful in cardiovascular risk stratification. This systematic review aimed to evaluate whether TRAIL is a risk factor or risk marker in cardiovascular diseases (CVDs) focusing on major adverse cardiovascular events. Two databases (PubMed and Cochrane Library) were searched until December 2020 without a year limit in accordance to the PRISMA guidelines. A total of 63 eligible original studies were identified and included in our systematic review. Studies suggest an important role of TRAIL in disorders such as heart failure, myocardial infarction, atrial fibrillation, ischemic stroke, peripheral artery disease, and pulmonary and gestational hypertension. Most evidence associates reduced TRAIL levels and increased TRAIL-R2 concentration with all-cause mortality in patients with CVDs. It is, however, unclear whether low TRAIL levels should be considered as a risk factor rather than a risk marker of CVDs. Further studies are needed to better define the association of TRAIL with cardiovascular diseases.
Collapse
Affiliation(s)
- Katarzyna Kakareko
- 2nd Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Białystok, 15-276 Białystok, Poland; (A.R.-R.); (T.H.)
- Correspondence:
| | - Alicja Rydzewska-Rosołowska
- 2nd Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Białystok, 15-276 Białystok, Poland; (A.R.-R.); (T.H.)
| | - Edyta Zbroch
- Department of Internal Medicine and Hypertension, Medical University of Białystok, 15-276 Białystok, Poland;
| | - Tomasz Hryszko
- 2nd Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Białystok, 15-276 Białystok, Poland; (A.R.-R.); (T.H.)
| |
Collapse
|
4
|
Cytokines Produced by Lymphocytes in the Incompetent Great Saphenous Vein. Mediators Inflamm 2018; 2018:7161346. [PMID: 30013452 PMCID: PMC6022273 DOI: 10.1155/2018/7161346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/20/2018] [Accepted: 05/29/2018] [Indexed: 11/17/2022] Open
Abstract
The pathogenesis of chronic venous disease (CVD) remains unclear, but lately inflammation is suggested to have an important role in its development. This study is aimed at assessing cytokines released by lymphocytes in patients with great saphenous vein (GSV) incompetence. In 34 patients exhibiting oscillatory flow (reflux) in GSV, blood was derived from the cubital vein and from the incompetent sapheno-femoral junction. In 12 healthy controls, blood was derived from the cubital vein. Lymphocyte culture with and without stimulation by phytohemagglutinin (PHA) was performed. Interleukins (IL) 1β, 2, 4, 10, 12 (p70), and 17A; interleukin 1 receptor α (IL-1ra); tumor necrosis factor-α (TNF-α); interferon-gamma (IFN-γ); and RANTES were assessed in culture supernatants by the Bio-Plex assay. In both stimulated and unstimulated samples, in the examined group, IL-1β and IFN-γ had higher concentrations and RANTES had lower concentrations when compared to those in the control group. In the examined group, IL-4 and IL-17A had higher concentrations without stimulation and TNF-α had higher concentrations with stimulation. The GSV samples had higher IL-2, IL-4, IL-12 (p70), and IFN-γ concentrations without stimulation and lower IL-2 and TNF-α concentrations with stimulation when compared to those of the upper limb in the examined group. These observations indicate that the oscillatory flow present in incompetent veins causes changes in the cytokine production by lymphocytes, promoting a proinflammatory profile. However, the relations between immunological cells, cytokines, and the endothelium require more insight.
Collapse
|
5
|
Li W, Xu H, Testai FD. Mechanism of Action and Clinical Potential of Fingolimod for the Treatment of Stroke. Front Neurol 2016; 7:139. [PMID: 27617002 PMCID: PMC4999895 DOI: 10.3389/fneur.2016.00139] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/15/2016] [Indexed: 01/23/2023] Open
Abstract
Fingolimod (FTY720) is an orally bio-available immunomodulatory drug currently approved by the FDA for the treatment of multiple sclerosis. Currently, there is a significant interest in the potential benefits of FTY720 on stroke outcomes. FTY720 and the sphingolipid signaling pathway it modulates has a ubiquitous presence in the central nervous system and both rodent models and pilot clinical trials seem to indicate that the drug may improve overall functional recovery in different stroke subtypes. Although the precise mechanisms behind these beneficial effects are yet unclear, there is evidence that FTY720 has a role in regulating cerebrovascular responses, blood-brain barrier permeability, and cell survival in the event of cerebrovascular insult. In this article, we critically review the data obtained from the latest laboratory findings and clinical trials involving both ischemic and hemorrhagic stroke, and attempt to form a cohesive picture of FTY720's mechanisms of action in stroke.
Collapse
Affiliation(s)
- Wentao Li
- Department of Neurology and Rehabilitation, University of Illinois College of Medicine , Chicago, IL , USA
| | - Haoliang Xu
- Department of Pathology, University of Illinois College of Medicine , Chicago, IL , USA
| | - Fernando D Testai
- Department of Neurology and Rehabilitation, University of Illinois College of Medicine , Chicago, IL , USA
| |
Collapse
|
6
|
Hong IS. Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types. Exp Mol Med 2016; 48:e242. [PMID: 27364892 PMCID: PMC4973317 DOI: 10.1038/emm.2016.64] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/11/2016] [Accepted: 03/23/2016] [Indexed: 12/18/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF, also called CSF-2) is best known for its critical role in immune modulation and hematopoiesis. A large body of experimental evidence indicates that GM-CSF, which is frequently upregulated in multiple types of human cancers, effectively marks cancer cells with a ‘danger flag' for the immune system. In this context, most studies have focused on its function as an immunomodulator, namely its ability to stimulate dendritic cell (DC) maturation and monocyte/macrophage activity. However, recent studies have suggested that GM-CSF also promotes immune-independent tumor progression by supporting tumor microenvironments and stimulating tumor growth and metastasis. Although some studies have suggested that GM-CSF has inhibitory effects on tumor growth and metastasis, an even greater number of studies show that GM-CSF exerts stimulatory effects on tumor progression. In this review, we summarize a number of findings to provide the currently available information regarding the anticancer immune response of GM-CSG. We then discuss the potential roles of GM-CSF in the progression of multiple types of cancer to provide insights into some of the complexities of its clinical applications.
Collapse
Affiliation(s)
- In-Sun Hong
- Laboratory of Stem Cell Research, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea
| |
Collapse
|
7
|
Spampinato SF, Obermeier B, Cotleur A, Love A, Takeshita Y, Sano Y, Kanda T, Ransohoff RM. Sphingosine 1 Phosphate at the Blood Brain Barrier: Can the Modulation of S1P Receptor 1 Influence the Response of Endothelial Cells and Astrocytes to Inflammatory Stimuli? PLoS One 2015. [PMID: 26197437 PMCID: PMC4511229 DOI: 10.1371/journal.pone.0133392] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ability of the Blood Brain Barrier (BBB) to maintain proper barrier functions, keeping an optimal environment for central nervous system (CNS) activity and regulating leukocytes’ access, can be affected in CNS diseases. Endothelial cells and astrocytes are the principal BBB cellular constituents and their interaction is essential to maintain its function. Both endothelial cells and astrocytes express the receptors for the bioactive sphingolipid S1P. Fingolimod, an immune modulatory drug whose structure is similar to S1P, has been approved for treatment in multiple sclerosis (MS): fingolimod reduces the rate of MS relapses by preventing leukocyte egress from the lymph nodes. Here, we examined the ability of S1P and fingolimod to act on the BBB, using an in vitro co-culture model that allowed us to investigate the effects of S1P on endothelial cells, astrocytes, and interactions between the two. Acting selectively on endothelial cells, S1P receptor signaling reduced cell death induced by inflammatory cytokines. When acting on astrocytes, fingolimod treatment induced the release of a factor, granulocyte macrophage colony-stimulating factor (GM-CSF) that reduced the effects of cytokines on endothelium. In an in vitro BBB model incorporating shear stress, S1P receptor modulation reduced leukocyte migration across the endothelial barrier, indicating a novel mechanism that might contribute to fingolimod efficacy in MS treatment.
Collapse
Affiliation(s)
- Simona F. Spampinato
- Neuroinflammation Research Center, Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Birgit Obermeier
- Neuroinflammation Research Center, Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Anne Cotleur
- Neuroinflammation Research Center, Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Anna Love
- Neuroinflammation Research Center, Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Yukio Takeshita
- Neuroinflammation Research Center, Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Yasuteru Sano
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Richard M. Ransohoff
- Neuroinflammation Research Center, Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
8
|
Modulation of circulating cytokine-chemokine profile in patients affected by chronic venous insufficiency undergoing surgical hemodynamic correction. J Immunol Res 2014; 2014:473765. [PMID: 24741602 PMCID: PMC3984831 DOI: 10.1155/2014/473765] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/17/2014] [Accepted: 02/17/2014] [Indexed: 12/14/2022] Open
Abstract
The expression of proinflammatory cytokines/chemokines has been reported in in vitro/ex vivo settings of chronic venous insufficiency (CVI), but the identification of circulating mediators that might be associated with altered hemodynamic forces or might represent innovative biomarkers is still missing. In this study, the circulating levels of 31 cytokines/chemokines involved in inflammatory/angiogenic processes were analysed in (i) CVI patients at baseline before surgical hemody namic correction, (ii) healthy subjects, and (iii) CVI patients after surgery. In a subgroup of CVI patients, in whom the baseline levels of cytokines/chemokines were analyzed in paired blood samples obtained from varicose vein and forearm vein, EGF, PDGF, and RANTES were increased at the varicose vein site as compared to the general circulation. Moreover, while at baseline, CVI patients showed increased levels of 14 cytokines/chemokines as compared to healthy subjects, 6 months after surgery, 11 cytokines/chemokines levels were significantly reduced in the treated CVI patients as compared to the CVI patients before surgery. Of note, a patient who exhibited recurrence of the disease 6 months after surgery, showed higher levels of EGF, PDGF, and RANTES compared to nonrecurrent patients, highlighting the potential role of the EGF/PDGF/RANTES triad as sensitive biomarkers in the context of CVI.
Collapse
|