1
|
Zhong WL, Yang JQ, Liu H, Wu YL, Shen HJ, Li PY, Du SY. Antithrombotic effect in zebrafish of a fibrinolytic protein EPF3 from Dilong (Pheretima vulgaris Chen) and its transport mechanism in Caco-2 monolayer through cell bypass pathway. JOURNAL OF INTEGRATIVE MEDICINE 2025:S2095-4964(25)00065-2. [PMID: 40414763 DOI: 10.1016/j.joim.2025.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 03/06/2025] [Indexed: 05/27/2025]
Abstract
OBJECTIVE EPF3 is a fibrinolysin monomer isolated and purified from Pheretima vulgaris Chen, an earthworm used in traditional Chinese medicine as Dilong for treating blood stasis syndrome. Its composition, anticoagulant and fibrinolytic activities, and relevant mechanisms have been confirmed through in vitro experiments. However, whether it has antithrombotic effects in vivo and can be absorbed by the gastrointestinal tract is unknown. This study evaluates the antithrombotic effect in zebrafish and investigates the gastrointestinal stability and intestinal absorption mechanism of this protein in vitro. METHODS The antithrombotic effect of EPF3 in vivo was verified using the zebrafish thrombus model induced by arachidonic acid and FeCl3. Then, the protein bands of EPF3 incubated with simulated gastric fluid (SGF), simulated intestinal fluid (SIF), and homogenate of Caco-2 cells (HC2C) were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to evaluate its gastrointestinal stability. Finally, the transport behavior and absorption mechanism of EPF3 were studied using Caco-2 cell monolayer. RESULTS EPF3 could significantly enhance the returned blood volume and blood flow velocity in zebrafish with platelet aggregation thrombus induced by arachidonic acid. It could also prolong the formation time of tail artery thrombus and increase the blood flow velocity in zebrafish with vessel injury thrombus induced by FeCl3. EPF3 was stable in SIF and HC2C and unstable in SGF. The permeability of EPF3 in Caco-2 monolayer was time-dependent and concentration-dependent. The efflux ratio was less than 1.2 during transport, and the transport behavior was not affected by inhibitors. EPF3 could reversibly reduce the expression of tight junction-related proteins, including zonula occludens-1, occludin, and claudin-1 in Caco-2 cells. CONCLUSION EPF3 could play a thrombolytic and antithrombotic role in zebrafish. It could be transported and absorbed into the intestine through cellular bypass pathway by opening the intestinal epithelium tight junction. This study provides a scientific explanation for the antithrombotic effect of earthworm and provides a basis for the feasibility of subsequent development of EPF3 as an antithrombotic enteric-soluble preparation. Please cite this article as: Zhong WL, Yang JQ, Liu H, Wu YL, Shen HJ, Li PY, Du SY. Antithrombotic effect in zebrafish of a fibrinolytic protein EPF3 from Dilong (Pheretima vulgaris Chen) and its transport mechanism in Caco-2 monolayer through cell bypass pathway. J Integr Med. 2025; Epub ahead of print.
Collapse
Affiliation(s)
- Wan-Ling Zhong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jian-Qiong Yang
- The Clinical Medicine Research Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000 Jiangxi Province, China
| | - Hai Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; National Engineering Research Center for Modernization of Traditional Chinese Medicine (Hakka Medical Resources Branch), Gannan Medical University, Ganzhou 341000 Jiangxi Province, China
| | - Ya-Li Wu
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000 Henan Province, China
| | - Hui-Juan Shen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Peng-Yue Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shou-Ying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
2
|
Kim YC, Won SY, Jeong BH. Abnormal Expression of Proteolytic Stress-Related Proteins and Protective Effect of Fibrinolytic Enzymes in Prion Diseases. Transbound Emerg Dis 2025; 2025:9527934. [PMID: 40302732 PMCID: PMC12017092 DOI: 10.1155/tbed/9527934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 01/11/2025] [Indexed: 05/02/2025]
Abstract
Prion diseases are fatal, irreversible, and infectious neurodegenerative diseases caused by proteinase K-resistant prion protein (PrPSc). Against PrPSc, several endogenous proteases involved in cellular degradation mechanisms can be activated to remove PrPSc. However, since PrPSc shows proteinase K resistance, we presumed that undegradable PrPSc induces positive feedback on the overactivation of the cellular degradation mechanisms and is correlated with proteolytic stress and exacerbation of the progression of prion diseases. We investigated the expression pattern of proteolytic stress-related proteins in the brains of ME7 scrapie-infected mice at 7 months postinfection and sporadic Creutzfeldt-Jakob disease (CJD) patients using western blotting and immunohistochemistry (IHC). In addition, we analyzed the 3D structure and binding complexes of prion protein (PrP) with nattokinase and lumbrokinase using in silico programs, including SWISS-MODEL and HawkDock. To fundamentally reduce proteolytic stress by the degradation of PrPSc, we performed an in vitro evaluation of the PrPSc degradation abilities of fibrinolytic enzymes, including nattokinase and lumbrokinase. Furthermore, we assessed the protective effects of nattokinase and lumbrokinase in ME7 scrapie-infected mice. We observed an abnormal accumulation of proteolytic stress-related proteins, including CD10, cathepsin B, cathepsin D, and matrix metalloproteinase 9 (MMP9), in the brains of ME7 scrapie-infected mice and sporadic CJD patients. In addition, we identified that nattokinase and lumbrokinase can stably bind to PrP. Furthermore, we identified significant in vitro degradation of PrPSc derived from ME7 scrapie-infected mice and sporadic CJD patients by nattokinase and lumbrokinase. Last, we found in vivo protective effects of nattokinase and lumbrokinase against prion disease in ME7 scrapie-infected mice. To the best of our knowledge, this is the first report on the identification of proteolytic stress-related novel potential biomarkers and the therapeutic potential of nattokinase and lumbrokinase for prion diseases.
Collapse
Affiliation(s)
- Yong-Chan Kim
- Department of Biological Sciences, Andong National University, Andong 36729, Republic of Korea
| | - Sae-Young Won
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Jeonbuk, Republic of Korea
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Jeonbuk, Republic of Korea
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea
| |
Collapse
|
3
|
Gajda Ł, Daszkowska-Golec A, Świątek P. Trophic Position of the White Worm ( Enchytraeus albidus) in the Context of Digestive Enzyme Genes Revealed by Transcriptomics Analysis. Int J Mol Sci 2024; 25:4685. [PMID: 38731903 PMCID: PMC11083476 DOI: 10.3390/ijms25094685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
To assess the impact of Enchytraeidae (potworms) on the functioning of the decomposer system, knowledge of the feeding preferences of enchytraeid species is required. Different food preferences can be explained by variations in enzymatic activities among different enchytraeid species, as there are no significant differences in the morphology or anatomy of their alimentary tracts. However, it is crucial to distinguish between the contribution of microbial enzymes and the animal's digestive capacity. Here, we computationally analyzed the endogenous digestive enzyme genes in Enchytraeus albidus. The analysis was based on RNA-Seq of COI-monohaplotype culture (PL-A strain) specimens, utilizing transcriptome profiling to determine the trophic position of the species. We also corroborated the results obtained using transcriptomics data from genetically heterogeneous freeze-tolerant strains. Our results revealed that E. albidus expresses a wide range of glycosidases, including GH9 cellulases and a specific digestive SH3b-domain-containing i-type lysozyme, previously described in the earthworm Eisenia andrei. Therefore, E. albidus combines traits of both primary decomposers (primary saprophytophages) and secondary decomposers (sapro-microphytophages/microbivores) and can be defined as an intermediate decomposer. Based on assemblies of publicly available RNA-Seq reads, we found close homologs for these cellulases and i-type lysozymes in various clitellate taxa, including Crassiclitellata and Enchytraeidae.
Collapse
Affiliation(s)
| | | | - Piotr Świątek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 9 Bankowa St., 40-007 Katowice, Poland; (Ł.G.); (A.D.-G.)
| |
Collapse
|
4
|
Wang WL, Hsu YM, Lin ML, Chen SS, Lai YH, Huang CH, Yao CH. Ex Vivo Model to Evaluate the Antibacterial and Anti-Inflammatory Effects of Gelatin-Tricalcium Phosphate Composite Incorporated with Emodin and Lumbrokinase for Bone Regeneration. Bioengineering (Basel) 2023; 10:906. [PMID: 37627791 PMCID: PMC10451264 DOI: 10.3390/bioengineering10080906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Tricalcium phosphate (TCP) has gained attention due to its interconnected porous structures which promote fibrovascular invasion and bony replacement. Moreover, when gelatin is added and crosslinked with genipin (GGT), TCP exhibits robust biocompatibility and stability, making it an excellent bone substitute. In this study, we incorporated emodin and lumbrokinase (LK) into GGT to develop an antibacterial biomaterial. Emodin, derived from various plants, possesses antibacterial and anti-inflammatory properties. LK comprises proteolytic enzymes extracted from the earthworm Lumbricus rubellus and exhibits fibrinolytic activity, enabling it to dissolve biofilms. Additionally, LK stimulates osteoblast activity while inhibiting osteoclast differentiation. GGT was combined with emodin and lumbrokinase to produce the GGTELK composite. The biomedical effects of GGTELK were assessed through in vitro assays and an ex vivo bone defect model. The GGTELK composite demonstrated antibacterial properties, inhibiting the growth of S. aureus and reducing biofilm formation. Moreover, it exhibited anti-inflammatory effects by reducing the secretion of IL-6 in both in vivo cell experiments and the ex vivo model. Therefore, the GGTELK composite, with its stability, efficient degradation, biocompatibility, and anti-inflammatory function, is expected to serve as an ideal bone substitute.
Collapse
Affiliation(s)
- Wen-Ling Wang
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung 40202, Taiwan;
- Department of Chinese Internal Medicine, China Medical University Hospital, Taichung 40202, Taiwan
- Department of Chinese Medicine, China Medical University Hospital Taipei Branch, Taipei 11449, Taiwan
| | - Yuan-Man Hsu
- Department of Animal Science and Technology, Tunghai University, Taichung 407224, Taiwan;
| | - Meng-Liang Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40202, Taiwan;
| | - Shih-Shun Chen
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan;
| | - Yi-Hui Lai
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 40202, Taiwan;
| | - Chiung-Hua Huang
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan
| | - Chun-Hsu Yao
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 40202, Taiwan;
- School of Chinese Medicine, China Medical University, Taichung 40202, Taiwan
- Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan
- Biomaterials Translational Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| |
Collapse
|
5
|
Lumbrokinase regulates endoplasmic reticulum stress to improve neurological deficits in ischemic stroke. Neuropharmacology 2022; 221:109277. [DOI: 10.1016/j.neuropharm.2022.109277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/30/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022]
|
6
|
Lyu J, Gao Y, Wei R, Cai Y, Shen X, Zhao D, Zhao X, Xie Y, Yu H, Chai Y, Xie Y. Clinical effectiveness of Qilong capsule in patients with ischemic stroke: A prospective, multicenter, non-randomized controlled trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154278. [PMID: 35780589 DOI: 10.1016/j.phymed.2022.154278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The Qilong capsule (QLC) is a Chinese patented medicine characterized by an equal emphasis on replenishing Qi and activating blood circulation. In 2000, China's FDA approved the use of QLC for ischemic stroke (IS). However, there is not yet much high-quality evidence of the clinical effectiveness of QLC combined with conventional treatment (CT) for IS with Qi deficiency and blood stasis syndrome. PURPOSE In this study, we conducted a prospective, multicenter, non-randomized controlled trial at 7 hospitals in China to investigate the clinical effectiveness of QLC combined with CT for IS with Qi deficiency and blood stasis syndrome. METHODS Participants aged 35 to 80 years old diagnosed as IS with Qi deficiency and blood stasis syndrome in TCM were recruited. Participants were treated with QLC (intervention group) or non-QLC (control group). The intervention course of QLC was 12 weeks. All participants in two groups received standard treatment. All participants returned for in-person follow-up visits at the 12th week and 24th week. Primary outcome measures included a modified Rankin Scale (mRS), the National Institute of Health Stroke Scale (NIHSS), and the Barthel Index (BI). Secondary outcome measures included TCM syndromes (Qi deficiency syndrome score, blood stasis syndrome score), psychological index (self-rating depression scale, SDS; self-rating anxiety scale, SAS), blood lipid index, blood coagulation index, homocysteine, and favorable functional outcome (mRS 0 - 3). Multiple imputations were used for any missing data. Propensity score matching (PSM) was used to deal with any confounding factors (age, gender, scale score, etc.). Rank alignment transformation variance analysis (ART ANOVA) and generalized linear mixed model (GLMM) were introduced to improve the scientific and accuracy of repeated measurement data. All statistical calculations were carried out with R 3.6.1 statistical analysis software. RESULTS A total of 2468 participants were screened from November 2016 to January 2019. Finally, 2302 eligible participants were included in the analysis. There were 1260 participants in the intervention group (QLC group) and 1042 participants in the control group (non-QLC group). After PSM matching, sub-samples of 300 participants in the QLC group and 300 participants in the non-QLC group were finally formed. The final results of clinical effectiveness are the same results shared by the total samples and sub-samples after PSM. In the 24th week after treatment, QLC combined with CT proved to be significantly better than CT alone in reducing the scores of mRS (p < 0.05), NIHSS (p < 0.001), Qi deficiency syndrome (p < 0.01), and blood stasis syndrome (p < 0.001), SAS (p < 0.05), as well as in improving BI score (p < 0.05). The favourable functional outcome (mRS score of 0 to 3 at week 12) was statistically different between QLC and non-QLC group in the sub-samples (p < 0.01, 97% vs 91.7%). The results of the ART ANOVA showed that the improvement of mRS (p < 0.01), BI (p < 0.05) and NIHSS (p < 0.001) in QLC group was better than non-QLC group when the interaction effect was considered. The results of GLMM showed that the reduction of mRS and NIHSS scores of patients in the QLC group were better than those of the non-QLC group (p < 0.001). The BI score of the QLC group in the sub-samples after PSM increased more than the non-QLC group (p < 0.001). There was no evidence showing that QLC can cause serious adverse reactions (ADRs) in treating patients with IS. CONCLUSION QLC combined with CT was better than CT alone in reducing mRS score, NIHSS score, Qi deficiency syndrome score, blood stasis syndrome score, and SAS score, as well as improving BI score after treatment. Further high-quality RCTs are needed to confirm the positive results. The study protocol was embedded in a registry study that registered in the Clinical Trials USA Registry (registration No. NCT03174535).
Collapse
Affiliation(s)
- Jian Lyu
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine & National Clinical Research Center for Chinese Medicine Cardiology, XiYuan Hospital, China Academy of Chinese Medical Sciences, No.1 Xiyuan playground Road, Haidian District, Beijing, 100091, PRChina; Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Inner Dongzhimen, Dongcheng District, Beijing, 100700, PRChina
| | - Yang Gao
- Dongfang Hospital, Beijing University of Chinese Medicine, No. 6 Fangxingyuan, Fengtai District, Beijing, 100078, PR China
| | - Ruili Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Inner Dongzhimen, Dongcheng District, Beijing, 100700, PRChina
| | - Yefeng Cai
- Guangdong Provincial Hospital of Traditional Chinese Medicine, No.111 Dade Road, Yuexiu District, Guangzhou, 510120, Guangdong, PR China
| | - Xiaoming Shen
- The First Affiliated Hospital of Henan University of Chinese Medicine, No.19 Renmin Road, Jinshui District, Zhengzhou, 450000, Henan, PR China
| | - Dexi Zhao
- Affiliated Hospital of Changchun University of Chinese Medicine, No.1478 Gongnong Road, Chaoyang District, Changchun, 130021, Jilin, PR China
| | - Xingquan Zhao
- Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, PR China
| | - Yingzhen Xie
- Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Hai Yun Cang, Dongcheng District, Beijing,100700, PR China
| | - Haiqing Yu
- Taiyuan Chinese Medicine Hospital, No. 2 Baling South Street, Xinghualing District, Taiyuan, 030009, Shanxi, PR China
| | - Yan Chai
- Department of Epidemiology, University of California, Los Angeles, 405 Hilgard Avenue, CA 90095, USA.
| | - Yanming Xie
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Inner Dongzhimen, Dongcheng District, Beijing, 100700, PRChina.
| |
Collapse
|
7
|
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J 2022; 479:1653-1708. [PMID: 36043493 PMCID: PMC9484810 DOI: 10.1042/bcj20220154] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| |
Collapse
|
8
|
Afshar M, Hassanzadeh-Taheri M, Zardast M, Naderi Z. Effect of earthworm oil on formation of collagen type III during wound healing process in BALB/c mice. Folia Med (Plovdiv) 2022; 64:267-274. [DOI: 10.3897/folmed.64.e62272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/15/2021] [Indexed: 11/12/2022] Open
Abstract
Abstract
Introduction: Eisenia fetida is a species of earthworm. The oil extracted from this species has been found to have antimicrobial and antioxidant characteristics as well as omega-3, omega-6, and omega-9 fatty acids in its contents. The regenerative properties of this compound are very impressive.
Aim: This study aimed to evaluate the effect of earthworm oil on wound healing based on collagen type III formation in the BALB/c mice.
Materials and methods: The present experimental study was conducted in Birjand, Iran, in 2019. Forty-eight male adults BALB/c mice were divided into 4 groups (12 mice in each group). The intervention group received earthworm oil, the negative and positive control groups received sesame oil and 1% nitrofurazone cream, respectively, whereas the sham group received no treatment at al. A full-thickness excision wound with a 5-mm disposable surgical punch was made on the dorsal skin of all mice after anesthesia. The wounds in groups 1, 2, and 3 were dressed twice a day. At days 4, 7, 10, and 14 after wounding, excisional biopsy was performed and the sample was examined histologically and immunohistochemically using the ImageJ software. Data were analysed by ANOVA and Tukey tests using SPSS software version 22.
Results: In the tissue samples treated with earthworm oil, the number of fibroblast cells and granulation tissue formation and epithelialization significantly increased; the thickness of type III collagen fibers in this group predominantly increased in comparison to other control groups.
Conclusions: This study has demonstrated that the earthworm oil has a positive effect on the wound healing process, especially by promoting the collagen synthesis.
Collapse
|
9
|
In silico analyses of predicted substitutions in fibrinolytic protein ‘Lumbrokinase-6’ suggest enhanced activity. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Liu M, Pu Y, Gu J, He Q, Liu Y, Zeng Y, Li J, Long X, Yang S, Wu Q, Zhou H. Evaluation of Zhilong Huoxue Tongyu capsule in the treatment of acute cerebral infarction: A systematic review and meta-analysis of randomized controlled trials. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 86:153566. [PMID: 33940333 DOI: 10.1016/j.phymed.2021.153566] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/24/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Zhilong Huoxue Tongyu capsule (ZL) is a Chinese patent medicine and used for the treatment of acute cerebral infarction (ACI) and its clinical application has gradually been widely recognized in China. However, the effects of ZL for patients with ACI have never been systematically evaluated. PURPOSE A systematic review and meta-analysis was performed to evaluate the efficacy of ZL in ACI. STUDY DESIGN A systematic review and meta-analysis of randomized clinical trials (RCTs). MATERIALS AND METHODS A systematic review and meta-analysis were performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. The comprehensive literature search was accomplished in 6 electronic databases to find relevant randomized controlled trials from their inception until October 31, 2020. The Cochrane Handbook for Systematic Reviews of Interventions was used for methodological quality and independent evaluation. Review Manager 5.3 was used to analyze all the data obtained. The Clinical Effective Rate (CER) was the primary outcome, and the National Institutes of Health Stroke Score (NIHSS), Barthel Index (BI), and Modified Rankin Scale (MRS) were the secondary outcomes. RESULTS Seven clinical studies recruiting 571 eligible patients were included in this meta-analysis. The results of meta-analysis suggested that compared with conventional treatment alone, ZL combined with conventional treatment significantly improved CER (RR = 1.20, 95% CI: 1.12-1.29, p < 0.00001), decrease National Institutes of Health Stroke Scale Score (NIHSS) (MD = -2.60, 95% CI: -3.41-1.79, p < 0.00001), Barthel Index (BI) (MD = -9.75, 95% CI: 7.15-12.36, p < 0.00001) and Modified Rankin Scale (MRS) (MD = -0.57, 95% CI: -0.84-0.30, p < 0.00001). There were no reported adverse events in the studies. Most results were robust and the quality of evidence was from moderate to low. CONCLUSION ZL combined with conventional treatment can improve the short-term outcomes of ACI patients, indicating ZL is a promising treatment choice for ACI and may be used as adjunctive treatment to the conventional treatment of ACI. However, due to the limitations of included clinical trials, high-quality clinical trials with longer follow-ups are still needed to further assess the effectiveness and safety of ZL for ACI patients.
Collapse
Affiliation(s)
- Mengnan Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China; National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Yuting Pu
- Department of Neurology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Juan Gu
- Department of Neurology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Qida He
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Yan Liu
- National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Yiwei Zeng
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingchi Li
- Department of Spine Surgery, Affiliated Hospital of Integrated Traditional Chinese, and Western Medicine for Nanjing University of Chinese Medicine, Nanjing, China
| | - Xingru Long
- Medical Imaging Department, Southwest Medical University, Luzhou, Sichuan, China
| | - Sijin Yang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China; National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, China.
| | - Qibiao Wu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China.
| | - Hua Zhou
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China.
| |
Collapse
|
11
|
Auger C, Vinaik R, Appanna VD, Jeschke MG. Beyond mitochondria: Alternative energy-producing pathways from all strata of life. Metabolism 2021; 118:154733. [PMID: 33631145 PMCID: PMC8052308 DOI: 10.1016/j.metabol.2021.154733] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022]
Abstract
It is well-established that mitochondria are the powerhouses of the cell, producing adenosine triphosphate (ATP), the universal energy currency. However, the most significant strengths of the electron transport chain (ETC), its intricacy and efficiency, are also its greatest downfalls. A reliance on metal complexes (FeS clusters, hemes), lipid moities such as cardiolipin, and cofactors including alpha-lipoic acid and quinones render oxidative phosphorylation vulnerable to environmental toxins, intracellular reactive oxygen species (ROS) and fluctuations in diet. To that effect, it is of interest to note that temporal disruptions in ETC activity in most organisms are rarely fatal, and often a redundant number of failsafes are in place to permit continued ATP production when needed. Here, we highlight the metabolic reconfigurations discovered in organisms ranging from parasitic Entamoeba to bacteria such as pseudomonads and then complex eukaryotic systems that allow these species to adapt to and occasionally thrive in harsh environments. The overarching aim of this review is to demonstrate the plasticity of metabolic networks and recognize that in times of duress, life finds a way.
Collapse
Affiliation(s)
- Christopher Auger
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | - Roohi Vinaik
- University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | | | - Marc G Jeschke
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada; University of Toronto, Toronto, Ontario M5S 1A1, Canada.
| |
Collapse
|
12
|
Jin F, Zhou Z, Guo Q, Liang Z, Yang R, Jiang J, He Y, Zhao Q, Zhao Q. High-quality genome assembly of Metaphire vulgaris. PeerJ 2020; 8:e10313. [PMID: 33240640 PMCID: PMC7666815 DOI: 10.7717/peerj.10313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/15/2020] [Indexed: 12/22/2022] Open
Abstract
Earthworms enrich the soil and protect the health of their ecological environment. Previous studies on these invertebrates determined their protein content, hormone secretions, medicinal value, and ecological habits, but their whole genomic sequence remains incomplete. We performed whole genome sequencing of Metaphire vulgaris (Chen, 1930), which belongs to the genus Metaphire of the family Megascolecidae. The genome assembly was 729 Mb, with a N50 contig size of 4.2 Mb. In total, 559 contigs were anchored to 41 chromosomes according to the results of Hi-C (High-throughput Chromosome Conformation Capture) technology, which was confirmed by karyological analysis. A comparison of the genomic sequences and genes indicated that there was a whole-genome duplication in M. vulgaris followed by several chromosome fusion events. Hox genes and lumbrokinase genes were identified as partial clusters surrounding the genome. Our high-quality genome assembly of M. vulgaris will provide valuable information for gene function and evolutionary studies in earthworms.
Collapse
Affiliation(s)
- Feng Jin
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Zhaoli Zhou
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qi Guo
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Zhenwen Liang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Ruoyu Yang
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jibao Jiang
- Department of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanlin He
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qi Zhao
- Department of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Zhao
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
13
|
Huang PC, Shibu MA, Kuo CH, Han CK, Chen YS, Lo FY, Li H, Viswanadha VP, Lai CH, Li X, Huang CY. Pheretima aspergillum extract attenuates high-KCl-induced mitochondrial injury and pro-fibrotic events in cardiomyoblast cells. ENVIRONMENTAL TOXICOLOGY 2019; 34:921-927. [PMID: 31066208 DOI: 10.1002/tox.22763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Hyperkalemia is often associated with cardiac dysfunction. In this study an earthworm extract (dilong) was prepared from dried Pheretima aspergillum powder and its effect against high-KCl challenge was determined in H9c2 cardiomyoblast cells. H9c2 cells pre-treated with dilong (31.25, 62.5, 125, and 250 mg/mL) for 24 hours, where challenged with different doses of KCl treatment for 3 hours to determine the protective mechanisms of dilong against cardiac fibrosis. High-KCl administration induced mitochondrial injury and elevated the levels of pro-apoptotic proteins. The mediators of fibrosis such as ERK, uPA, SP1, and CTGF were also found to be upregulated in high-KCl condition. However, dilong treatment enhanced IGF1R/PI3k/Akt activation which is associated with cell survival. In addition, dilong also reversed high-KCl induced cardiac fibrosis related events in H9c2 cells and displayed a strong cardio-protective effect. Therefore, dilong is a potential agent to overcome cardiac events associated with high-KCl toxicity.
Collapse
Affiliation(s)
- Pei-Chen Huang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Marthandam Asokan Shibu
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Chien-Kuo Han
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Yueh-Sheng Chen
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Feng-Yueh Lo
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Heng Li
- Department of Anesthesiology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | | | - Chao-Hung Lai
- Division of Cardiology, Department of Internal Medicine, Taichung Armed Force General Hospital, Taichung, Taiwan
| | - Xudong Li
- Division of Cardiac Surgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Chih-Yang Huang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- College of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
14
|
X-Ray Crystallography in Structure-Function Characterization of Therapeutic Enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:81-103. [DOI: 10.1007/978-981-13-7709-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Wang YH, Li SA, Huang CH, Su HH, Chen YH, Chang JT, Huang SS. Sirt1 Activation by Post-ischemic Treatment With Lumbrokinase Protects Against Myocardial Ischemia-Reperfusion Injury. Front Pharmacol 2018; 9:636. [PMID: 29962953 PMCID: PMC6013847 DOI: 10.3389/fphar.2018.00636] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/29/2018] [Indexed: 01/01/2023] Open
Abstract
Lumbrokinase is used as an oral supplement to support and maintain healthy cardiovascular function, and to treat cardiovascular diseases in clinical for more than 10 years. Up until now, the mechanism of the cardioprotective effects of post-ischemic treatment with lumbrokinase has remained unclear. We therefore investigated the signaling pathways involved in the amelioration of myocardial ischemia-reperfusion (I-R) injury in rats treated with lumbrokinase 20 min after myocardial ischemia. Compared to vehicle-treated rats, post-ischemic treatment with lumbrokinase was associated with significant reductions in myocardial I-R-induced arrhythmias and myocardial damage, and an improvement in cardiac function. Moreover, lumbrokinase significantly upregulated levels of silent information regulator 1 (Sirt1). In addition, lumbrokinase significantly increased manganese-dependent superoxide dismutase expression, decreased Cleaved-Caspase-3 expression, and induced deacetylation of FoxO1. On the other hand, lumbrokinase also significantly downregulated levels of succinate dehydrogenase, cytochrome c oxidase, nuclear factor kappa B (NF-κB) and elevated levels of microtubule-associated protein light chain 3. Notably, the cardioprotective effects of lumbrokinase were abolished by administration of the specific Sirt1 inhibitor EX527. These findings demonstrate that post-ischemic treatment with lumbrokinase attenuates myocardial I-R injury through the activation of Sirt1 signaling, and thus enhances autophagic flux and reduces I-R-induced oxidative damage, inflammation and apoptosis.
Collapse
Affiliation(s)
- Yi-Hsin Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-An Li
- Superintendent Office, Yuanli Lee's General Hospital, Lee's Medical Corporation, Miaoli, Taiwan
| | - Chao-Hsin Huang
- Department of Internal Medicine, Dajia Lee's General Hospital, Lee's Medical Corporation, Taichung, Taiwan
| | - Hsing-Hui Su
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science and Research Center for Chinese Medicine and Acupuncture, China Medical University, Taichung, Taiwan.,Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan
| | - Jinghua T Chang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shiang-Suo Huang
- Department of Pharmacology and Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
16
|
Huang C, Li W, Zhang Q, Chen L, Chen W, Zhang H, Ni Y. Anti-inflammatory activities of Guang-Pheretima extract in lipopolysaccharide-stimulated RAW 264.7 murine macrophages. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:46. [PMID: 29391009 PMCID: PMC5795835 DOI: 10.1186/s12906-018-2086-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/14/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Guang-Pheretima, which is originated from Pheretima aspergillum, has been documented in academic Chinese herbal studies for nearly 2000 years for its prominent treating effects of various inflammatory diseases such as asthma, cough and fever. However, the anti-inflammatory activity and mechanism of Guang-Pheretima has been rarely reported. Hence, we investigated the inhibitory effect and the underlying mechanism of Guang-Pheretima aqueous extracts on inflammatory response in RAW 264.7 cells. METHOD RAW 264.7 macrophages were pretreated with various concentrations of Guang-Pheretima decoction (GPD) or protein-free Guang-Pheretima decoction (PF-GPD) and subsequently stimulated with lipopolysaccharide (LPS) to trigger the inflammatory response. Productions of nitric oxide (NO) were determined by Griess reaction, and prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6 were measured by enzyme-linked immunosorbent assays (ELISA). The protein expressions and messenger ribonucleic acid (mRNA) amounts of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 were analyzed by Western Blot and Real-Time polymerase chain reaction (PCR), respectively. Finally, the translocation of nuclear factor (NF)-κB was observed by Western Blot. RESULTS GPD of the experimental concentrations showed no anti-inflammatory activity. In contrast, PF-GPD at concentrations of 40-320 μg/mL significantly inhibited NF-κB activation and reduced the production of inflammatory mediators, such as NO, PGE2, TNF-α, as well as the related key synthases including iNOS and COX-2. Moreover, PF-GPD markedly suppressed the release of inflammatory cytokines, such as IL-1β and IL-6. CONCLUSION These results demonstrate the excellent anti-inflammatory properties of PF-GPD, and suggest that Guang-Pheretima may be used to treat and prevent certain inflammatory diseases.
Collapse
Affiliation(s)
- Chuanqi Huang
- Department of Pharmacy, Wuhan No.1 Hospital (Wuhan Integrated TCM & Western Medicine Hospital), 215 Zhongshan Avenue, Wuhan, 430022, China
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232 Wai Huan Road East, Guangzhou, 510006, China
| | - Wei Li
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232 Wai Huan Road East, Guangzhou, 510006, China.
| | - Qiufeng Zhang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232 Wai Huan Road East, Guangzhou, 510006, China
| | - Lihong Chen
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232 Wai Huan Road East, Guangzhou, 510006, China
| | - Weiming Chen
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232 Wai Huan Road East, Guangzhou, 510006, China
| | - Hongchao Zhang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232 Wai Huan Road East, Guangzhou, 510006, China
| | - Yuxin Ni
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232 Wai Huan Road East, Guangzhou, 510006, China
| |
Collapse
|
17
|
Transient Expression of Lumbrokinase (PI239) in Tobacco (Nicotiana tabacum) Using a Geminivirus-Based Single Replicon System Dissolves Fibrin and Blood Clots. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:6093017. [PMID: 28932252 PMCID: PMC5592424 DOI: 10.1155/2017/6093017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/18/2017] [Accepted: 07/17/2017] [Indexed: 02/04/2023]
Abstract
Lumbrokinases, a group of fibrinolytic enzymes extracted from earthworm, have been widely used to prevent and treat various cardiovascular diseases. They specifically target fibrin to effectively degrade thrombi without major side effects. Plant expression systems are becoming potential alternative expression platforms for producing pharmaceutical proteins. In this work, a lumbrokinase (PI239) was produced from a plant system. Both wild-type (WT) and plant codon-optimized (OP) PI239 gene sequences were synthesized and cloned into a geminivirus-based single-vector DNA replicon system. Both vectors were independently expressed in tobacco (Nicotiana tabacum) leaves transiently by agroinfiltration. Overexpressed PI239 resulted in sudden tissue necrosis 3 days after infiltration. Remaining proteins were purified through His-tag affinity chromatography and analyzed with SDS-PAGE and Western blot methods. Purified PI239 successfully degraded artificial fibrin with relative activity of 13,400 U/mg when compared with commercial lumbrokinase product. In vitro tests demonstrated that plant-derived PI239 dissolved human blood clots and that the plant expression system is capable of producing functional PI239.
Collapse
|
18
|
Hypotensive and Angiotensin-Converting Enzyme Inhibitory Activities of Eisenia fetida Extract in Spontaneously Hypertensive Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:349721. [PMID: 26798397 PMCID: PMC4700176 DOI: 10.1155/2015/349721] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/30/2015] [Indexed: 12/13/2022]
Abstract
Objectives. This study aimed to investigate the antihypertensive effects of an Eisenia fetida extract (EFE) and its possible mechanisms in spontaneously hypertensive rats (SHR rats). Methods. Sixteen-week-old SHR rats and Wistar-Kyoto rats (WKY rats) were used in this study. Rats were, respectively, given EFE (EFE group), captopril (captopril group), or phosphate-buffered saline (PBS) (normal control group and SHR group) for 4 weeks. ACE inhibitory activity of EFE in vitro was determined. The systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured using a Rat Tail-Cuff Blood Pressure System. Levels of angiotensin II (Ang II), aldosterone (Ald), and 6-keto-prostaglandin F1 alpha (6-keto-PGF1α ) in plasma were determined by radioimmunoassay, and serum nitric oxide (NO) concentration was measured by Griess reagent systems. Results. EFE had marked ACE inhibitory activity in vitro (IC50 = 2.5 mg/mL). After the 4-week drug management, SHR rats in EFE group and in captopril group had lower SBP and DBP, lower levels of Ang II and Ald, and higher levels of 6-keto-PGF1α and NO than the SHR rats in SHR group. Conclusion. These results indicate that EFE has hypotensive effects in SHR rats and its effects might be associated with its ACE inhibitory activity.
Collapse
|
19
|
Plants as Factories for Human Pharmaceuticals: Applications and Challenges. Int J Mol Sci 2015; 16:28549-65. [PMID: 26633378 PMCID: PMC4691069 DOI: 10.3390/ijms161226122] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/18/2015] [Accepted: 11/23/2015] [Indexed: 01/08/2023] Open
Abstract
Plant molecular farming (PMF), defined as the practice of using plants to produce human therapeutic proteins, has received worldwide interest. PMF has grown and advanced considerably over the past two decades. A number of therapeutic proteins have been produced in plants, some of which have been through pre-clinical or clinical trials and are close to commercialization. Plants have the potential to mass-produce pharmaceutical products with less cost than traditional methods. Tobacco-derived antibodies have been tested and used to combat the Ebola outbreak in Africa. Genetically engineered immunoadhesin (DPP4-Fc) produced in green plants has been shown to be able to bind to MERS-CoV (Middle East Respiratory Syndrome), preventing the virus from infecting lung cells. Biosafety concerns (such as pollen contamination and immunogenicity of plant-specific glycans) and costly downstream extraction and purification requirements, however, have hampered PMF production from moving from the laboratory to industrial application. In this review, the challenges and opportunities of PMF are discussed. Topics addressed include; transformation and expression systems, plant bioreactors, safety concerns, and various opportunities to produce topical applications and health supplements.
Collapse
|
20
|
Guan C, Ji J, Jin C, Wang G, Li X, Guan W. Expression of cholera toxin B subunit-lumbrokinase in edible sunflower seeds-the use of transmucosal carrier to enhance its fusion protein's effect on protection of rats and mice against thrombosis. Biotechnol Prog 2014; 30:1029-39. [PMID: 25080206 DOI: 10.1002/btpr.1963] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/10/2014] [Indexed: 01/26/2023]
Abstract
Lumbrokinase (LK) is a group of serine proteases with strong fibrinolytic and thrombolytic activities and is useful for treating diseases caused by thrombus. Cholera toxin B subunit (CTB) has been widely used to facilitate antigen delivery by serving as an effective mucosal carrier molecule for the induction of oral tolerance. We investigate here the application of CTB as a transmucosal carrier in enhancing its fusion protein-LKs effect to protect rats against thrombosis. Thus, in this study, CTB-LK fusion gene separated by a furin cleavage site was expressed in seeds of Helianthus annuus L. The activity of recombinant protein in seeds of transgenic sunflower was confirmed by Western blot analysis, fibrin plate assays and GM1 -ganglioside ELISA. The thrombosis model of rats and mice revealed that the oral administration of peeled seeds of sunflower expressing CTB-LK had a more significant anti-thrombotic effect on animals compared with that administration of peeled seeds of sunflower expressing LK. It is possible to conclude that CTB can successfully enhance its fusion protein to be absorbed in rats or mice thrombosis model. The use of CTB as a transmucosal carrier in the delivery of transgenic plant-derived oral therapeutic proteins was supported. In addition, for the purpose of that recombinant CTB-LK was designed for oral administration, thus the expression of CTB-LK in edible sunflower seeds eliminated the need for downstream processing of proteins.
Collapse
Affiliation(s)
- Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | | | | | | | | | | |
Collapse
|
21
|
Wong KL, Wong RNS, Zhang L, Liu WK, Ng TB, Shaw PC, Kwok PCL, Lai YM, Zhang ZJ, Zhang Y, Tong Y, Cheung HP, Lu J, Sze SCW. Bioactive proteins and peptides isolated from Chinese medicines with pharmaceutical potential. Chin Med 2014; 9:19. [PMID: 25067942 PMCID: PMC4110622 DOI: 10.1186/1749-8546-9-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 07/04/2014] [Indexed: 02/07/2023] Open
Abstract
Some protein pharmaceuticals from Chinese medicine have been developed to treat cardiovascular diseases, genetic diseases, and cancer. Bioactive proteins with various pharmacological properties have been successfully isolated from animals such as Hirudo medicinalis (medicinal leech), Eisenia fetida (earthworm), and Mesobuthus martensii (Chinese scorpion), and from herbal medicines derived from species such as Cordyceps militaris, Ganoderma, Momordica cochinchinensis, Viscum album, Poria cocos, Senna obtusifolia, Panax notoginseng, Smilax glabra, Ginkgo biloba, Dioscorea batatas, and Trichosanthes kirilowii. This article reviews the isolation methods, molecular characteristics, bioactivities, pharmacological properties, and potential uses of bioactive proteins originating from these Chinese medicines.
Collapse
Affiliation(s)
- Kam Lok Wong
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China
| | - Ricky Ngok Shun Wong
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Liang Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China
| | - Wing Keung Liu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region, China
| | - Pang Chui Shaw
- School of Life Sciences and Centre for Protein Science and Crystallography, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region, China
| | - Philip Chi Lip Kwok
- Department of Pharmacology & Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yau Ming Lai
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region, China
| | - Zhang Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yanbo Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yao Tong
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China
| | - Ho-Pan Cheung
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jia Lu
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China
| | - Stephen Cho Wing Sze
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China
| |
Collapse
|