1
|
Kızılyıldırım S, Sucu B, Muhammed MT, Akkoç S, Esatbeyoglu T, Ozogul F. Experimental and theoretical studies on antituberculosis activity of different benzimidazole derivatives. Heliyon 2025; 11:e42674. [PMID: 40051852 PMCID: PMC11883371 DOI: 10.1016/j.heliyon.2025.e42674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 03/09/2025] Open
Abstract
Tuberculosis (TB) continues to be one of the deadliest infectious diseases with a rapid increase in multidrug-resistant cases. The discovery of new agents against tuberculosis is urgently needed. Thus, the research article focuses on the antituberculosis activity of a series of benzimidazolium compounds. The antituberculosis activities of compounds including benzimidazole core (7a-h) against Mycobacterium tuberculosis H37Rv strain were tested in vitro using the BACTEC MGIT 960 system. The concentrations of benzimidazole compounds were adjusted to range from 0.25 to 4 μg/ml. The antituberculosis interactions of the compounds were investigated by molecular docking and molecular dynamics simulation. The results revealed that only benzimidazolium salt 7h showed antituberculosis activity at MIC value of 2 μg/ml although the other compounds showed no antituberculosis activity. The docking data revealed that 7h could bind to InhA thus indicating its inhibition potential on the enzyme. Molecular dynamics simulation exhibited that 7h formed a stable complex with the enzyme and was able to remain inside the binding region of the enzyme. Besides, the pharmacokinetic and drug-likeness properties of the compounds were assessed through computational approaches. The compounds exhibited drug-like properties. Consequently, 7h could be a good candidate for the development of new TB drugs.
Collapse
Affiliation(s)
- Suna Kızılyıldırım
- Cukurova University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Adana, Türkiye
| | - Berfin Sucu
- Cukurova University, Institute of Science and Technology, Department of Biotechnology, Adana, Türkiye
| | - Muhammed Tilahun Muhammed
- Süleyman Demirel University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 32260, Isparta, Türkiye
| | - Senem Akkoç
- Süleyman Demirel University, Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, 32260, Isparta, Türkiye
- Bahçeşehir University, Faculty of Engineering and Natural Sciences, Istanbul, 34353, Türkiye
| | - Tuba Esatbeyoglu
- Gottfried Wilhelm Leibniz University Hannover, Institute of Food and One Health, Department of Molecular Food Chemistry and Food Development, Am Kleinen Felde 30, 30167, Hannover, Germany
| | - Fatih Ozogul
- Cukurova University, Faculty of Fisheries, Department of Seafood Processing Technology, Adana, Türkiye
- Cukurova University, Biotechnology Research and Application Center, Adana, Türkiye
| |
Collapse
|
2
|
Bao L, Chen X, Li Y, Zhu G, Wang J, Chen M, Bian X, Gu Q, Zhang Y, Lin F. Nano-sized heterogeneous photocatalyst Fe 3O 4@V/TiO 2-catalyzed synthesis and antimycobacterial evaluation of 2-substituted benzimidazoles. Mol Divers 2025:10.1007/s11030-024-11085-3. [PMID: 39836354 DOI: 10.1007/s11030-024-11085-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025]
Abstract
The 2-substituted benzimidazole has emerged as a promising heterocyclic compound in the field of drug design. In pursuit of more sustainable photocatalysts for 2-substituted benzimidazole synthesis, the method for coating Fe3O4 with V-doped TiO2 was presented. On the base of characterizing composition, morphology, and properties, the prepared nano-sized Fe3O4@V/TiO2 composites were used as a heterogeneous photocatalyst to catalyze the synthesis of 2-substituted benzimidazoles under light. The photocatalyst Fe3O4@V/TiO2 composites showed the enhanced photocatalytic activity compared to no V-doped Fe3O4@TiO2, being able to yield various 2-substituted benzimidazoles in moderate to good yield with recyclability and stability. A possible photocatalysis mechanism was investigated. It was evident that holes, singlet oxygen, and ·O2̄ radical played important roles in the synthesis of 2-substituted benzimidazole. Moreover, some of the obtained products were demonstrated excellent antibacterial activity.
Collapse
Affiliation(s)
- Lijian Bao
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
| | - Xiaodong Chen
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
| | - Yanli Li
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
| | - Guangyuan Zhu
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
| | - Jingjun Wang
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
| | - Mingyue Chen
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
| | - Xingyu Bian
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
| | - Qiang Gu
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
| | - Yumin Zhang
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China.
| | - Feng Lin
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, People's Republic of China
| |
Collapse
|
3
|
Katiyar P, Kalpana, Srivastava A, Singh CM. Investigation of Benzimidazole Derivatives in Molecular Targets for Breast Cancer Treatment: A Comprehensive Review. Crit Rev Oncog 2025; 30:43-58. [PMID: 39819434 DOI: 10.1615/critrevoncog.2024056541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
This article provides a basic summary of computational research on benzimidazole and its molecular targets in breast cancer (BC) drug discovery. The drug development process is streamlined, expenses are decreased, and the possibility of finding successful therapies for this difficult illness is increased with the use of computational tools. The utilization of benzimidazole derivatives in medication research and discovery is discussed, along with the results of benzimidazole derivative-related clinical trials conducted against blood cancer during the previous five years. Additionally, it includes analysis of changes in structure and how they affect pharmacology. The structure-based method and other computational tools used in drug development are also covered, as well as the importance of structural information such as stereochemistry, physiological action, and the use of spectroscopic methods like NMR and X-ray crystallography in understanding the interactions between bioactive compounds and receptors. The article highlights the potential of benzimidazoles as bioactive heterocyclic molecules with various biological activities, including antimicrobial and anti-cancer properties.
Collapse
Affiliation(s)
- Pratima Katiyar
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, India
| | - Kalpana
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, India
| | - Aditi Srivastava
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, India
| | - Chandra Mohan Singh
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, India
| |
Collapse
|
4
|
Parthiban D, Kuppusamy MR, Vanitha C, Gomathi A, Suraksha D. Mangrove tree aerial root extract mediated green synthesis of Ag/Fe 3O 4/rGO nanocomposite and its application as a catalyst for one pot synthesis of 7-phenyl-6H,7H-benzo[4,5]imidazo[2,1-b]chromeno[4,3-d][1,3]thiazin-6-one derivatives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59490-59506. [PMID: 39358656 DOI: 10.1007/s11356-024-35126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
In this study, we report the green preparation of magnetically separable Ag/Fe3O4/rGO nanocomposites using mangrove tree aerial root extract as a stabilising agent. The morphology, size, chemical composition, magnetic property and other characteristic parameters of synthesised Ag/Fe3O4/rGO nanocomposite were determined by analytical techniques like Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The results proved that mangrove tree aerial root extract has the ability to reduce Ag+ ions, graphene oxide (GO) to Ag nanoparticle and reduced graphene oxide (rGO), respectively. The prepared Ag/Fe3O4/rGO nanocomposite was used successfully as a prompt catalyst for synthesis of 7-phenyl-6H,7H-benzo[4,5]imidazo[2,1-b]chromeno[4,3-d][1,3]thiazin-6-one derivatives by one-pot multi-component reaction of 4-hydroxycoumarin (10 mmol), 2-mercaptobenzimidazole (10 mmol) and different arylaldehyde (10 mmol) in the presence of ethanol (10 ml) as an eco-benign solvent at reflux condition. By utilising this protocol, we have constructed 7-phenyl-6H,7H-benzo[4,5]imidazo[2,1-b]chromeno[4,3-d][1,3]thiazin-6-one derivatives in good to excellent yield of 80-90%. This synthesis involves the formation of C-C, C-N and C-S bonds. The synthesised organic heterocyclic compounds were examined for the green matrix properties such as atom economy (AE), E-factor and product mass intensity (PMI). This green protocol is of big interest due to employing simple, non-toxic heterogeneous, separable, reusable Ag/Fe3O4/rGO as an eco-safe heterogeneous catalyst and environmentally benign ethanol as a green solvent without the use of any harmful mineral acid and toxic transition metal catalyst.
Collapse
Affiliation(s)
- Devendiran Parthiban
- PG & Research Department of Chemistry, Rajeshwari Vedachalam Government Arts College, Chengalpattu, 603001, Tamilnadu, India
| | - Muniyan Ramasamy Kuppusamy
- PG & Research Department of Chemistry, Rajeshwari Vedachalam Government Arts College, Chengalpattu, 603001, Tamilnadu, India
| | - Chinnaswamy Vanitha
- PG & Research Department of Chemistry, Rajeshwari Vedachalam Government Arts College, Chengalpattu, 603001, Tamilnadu, India
| | - Ayyanan Gomathi
- PG & Research Department of Chemistry, Rajeshwari Vedachalam Government Arts College, Chengalpattu, 603001, Tamilnadu, India
| | - Dhanasekaran Suraksha
- PG & Research Department of Chemistry, Rajeshwari Vedachalam Government Arts College, Chengalpattu, 603001, Tamilnadu, India.
| |
Collapse
|
5
|
Thapa S, Biradar MS, Nargund SL, Ahmad I, Agrawal M, Patel H, Lamsal A. Synthesis, Molecular Docking, Molecular Dynamic Simulation Studies, and Antitubercular Activity Evaluation of Substituted Benzimidazole Derivatives. Adv Pharmacol Pharm Sci 2024; 2024:9986613. [PMID: 38577412 PMCID: PMC10994708 DOI: 10.1155/2024/9986613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024] Open
Abstract
Tuberculosis, also known as TB, is a widespread bacterial infection that remains a significant global health issue. This study focuses on conducting a thorough investigation into the synthesis, evaluation of anti-Tb activity, molecular docking, and molecular dynamic simulation of substituted benzimidazole derivatives. A series of twelve substituted benzimidazole derivatives (1-12) were successfully synthesized, employing a scaffold consisting of electron-withdrawing and electron-donating groups. The newly synthesized compounds were defined by their FTIR, 1H NMR, and mass spectra. The microplate Alamar blue assay (MABA) was used to evaluate the antimycobacterial activity of the synthesized compound against Mycobacterium tuberculosis (Mtb). Compounds 7 (MIC = 0.8 g/mL) and 8 (MIC = 0.8 g/mL) demonstrated exceptional potential to inhibit M. tuberculosis compared to the standard drug (isoniazid). In addition, the synthesized compounds were docked with the Mtb KasA protein (PDB ID: 6P9K), and the results of molecular docking and molecular dynamic simulation confirmed the experimental results, as compounds 7 and 8 exhibited the highest binding energy of -7.36 and -7.17 kcal/mol, respectively. The simulation results such as the RMSD value, RMSF value, radius of gyration, and hydrogen bond analysis illustrated the optimum potential of compounds 7 and 8 to inhibit the M. tuberculosis strain. Hydrogen bond analysis suggested that compound 7 has greater stability and affinity towards the KasA protein compared to compound 8. Moreover, both compounds (7 and 8) were safe for acute inhalation and cutaneous sensitization. These two compounds have the potential to be potent M. tuberculosis inhibitors.
Collapse
Affiliation(s)
- Shankar Thapa
- Department of Pharmacy, Universal College of Medical Sciences, Bhairahawa 32900, Nepal
- Department of Pharmaceutical Chemistry, Nargund College of Pharmacy, Bengaluru 560085, Karnataka, India
- Department of Pharmacy, Madan Bhandari Academy of Health Sciences, Hetauda, Nepal
| | - Mahalakshmi Suresha Biradar
- Department of Pharmaceutical Chemistry, Nargund College of Pharmacy, Bengaluru 560085, Karnataka, India
- Department of Pharmaceutical Chemistry, Al-Ameen College of Pharmacy, Bengaluru 560027, Karnataka, India
| | - Shachindra L. Nargund
- Department of Pharmaceutical Chemistry, Nargund College of Pharmacy, Bengaluru 560085, Karnataka, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule 424002, Maharashtra, India
| | - Mohit Agrawal
- School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram, Haryana, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India
| | - Ashish Lamsal
- Department of Pharmacy, Universal College of Medical Sciences, Bhairahawa 32900, Nepal
| |
Collapse
|
6
|
Pham EC, Le Thi TV, Ly Hong HH, Vo Thi BN, Vong LB, Vu TT, Vo DD, Tran Nguyen NV, Bao Le KN, Truong TN. N,2,6-Trisubstituted 1 H-benzimidazole derivatives as a new scaffold of antimicrobial and anticancer agents: design, synthesis, in vitro evaluation, and in silico studies. RSC Adv 2022; 13:399-420. [PMID: 36605630 PMCID: PMC9782508 DOI: 10.1039/d2ra06667j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
Compounds containing benzimidazole moiety occupy privileged chemical space for discovering new bioactive substances. In continuation of our recent work, 69 benzimidazole derivatives were designed and synthesized with good to excellent yields of 46-99% using efficient synthesis protocol i.e. sodium metabisulfite catalyzed condensation of aromatic aldehydes with o-phenylenediamines to form 2-arylbenzimidazole derivatives followed by N-alkylation by conventional heating or microwave irradiation for diversification. Potent antibacterial compounds against MSSA and MRSA were discovered such as benzimidazole compounds 3k (2-(4-nitrophenyl), N-benzyl), 3l (2-(4-chlorophenyl), N-(4-chlorobenzyl)), 4c (2-(4-chlorophenyl), 6-methyl, N-benzyl), 4g (2-(4-nitrophenyl), 6-methyl, N-benzyl), and 4j (2-(4-nitrophenyl), 6-methyl, N-(4-chlorobenzyl)) with MIC of 4-16 μg mL-1. In addition, compound 4c showed good antimicrobial activities (MIC = 16 μg mL-1) against the bacteria strains Escherichia coli and Streptococcus faecalis. Moreover, compounds 3k, 3l, 4c, 4g, and 4j have been found to kill HepG2, MDA-MB-231, MCF7, RMS, and C26 cancer cells with low μM IC50 (2.39-10.95). These compounds showed comparable drug-like properties as ciprofloxacin, fluconazole, and paclitaxel in computational ADMET profiling. Finally, docking studies were used to assess potential protein targets responsible for their biological activities. Especially, we found that DHFR is a promising target both in silico and in vitro with compound 4c having IC50 of 2.35 μM.
Collapse
Affiliation(s)
- Em Canh Pham
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hong Bang International University 700000 Ho Chi Minh City Vietnam
| | - Tuong Vi Le Thi
- Department of Pharmacology - Clinical Pharmacy, Faculty of Pharmacy, City Children's Hospital 700000 Ho Chi Minh City Vietnam
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City 700000 Ho Chi Minh City Vietnam
| | - Huong Ha Ly Hong
- Department of Pharmacognosy & Botany, Faculty of Pharmacy, Hong Bang International University 700000 Ho Chi Minh City Vietnam
| | - Bich Ngoc Vo Thi
- Department of Pharmacognosy & Botany, Faculty of Pharmacy, Hong Bang International University 700000 Ho Chi Minh City Vietnam
| | - Long B Vong
- School of Biomedical Engineering, International University 700000 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM) Ho Chi Minh 700000 Vietnam
| | - Thao Thanh Vu
- Department of Microbiology - Parasitology, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City 700000 Ho Chi Minh City Vietnam
| | - Duy Duc Vo
- Uppsala University, Sweden, Tra Vinh University Vietnam
| | - Ngoc Vi Tran Nguyen
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City 700000 Ho Chi Minh City Vietnam
| | - Khanh Nguyen Bao Le
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City 700000 Ho Chi Minh City Vietnam
| | - Tuyen Ngoc Truong
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City 700000 Ho Chi Minh City Vietnam
| |
Collapse
|
7
|
Pham EC, Thi Le TV, Truong TN. Design, synthesis, bio-evaluation, and in silico studies of some N-substituted 6-(chloro/nitro)-1 H-benzimidazole derivatives as antimicrobial and anticancer agents. RSC Adv 2022; 12:21621-21646. [PMID: 35975065 PMCID: PMC9347358 DOI: 10.1039/d2ra03491c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/20/2022] [Indexed: 01/13/2023] Open
Abstract
A new series of 6-substituted 1H-benzimidazole derivatives were synthesized by reacting various substituted aromatic aldehydes with 4-nitro-o-phenylenediamine and 4-chloro-o-phenylenediamine through condensation using sodium metabisulfite as the oxidative reagent. The N-substituted 6-(chloro/nitro)-1H-benzimidazole derivatives were prepared from the 6-substituted 1H-benzimidazole derivatives and substituted halides using potassium carbonate by conventional methods as well as by exposure to microwave irradiation. Seventy-six 1H-benzimidazole derivatives have been synthesized in moderate to excellent yields with the microwave-assisted method (40 to 99%). Compounds 1d, 2d, 3s, 4b, and 4k showed potent antibacterial activity against Escherichia coli, Streptococcus faecalis, MSSA (methicillin-susceptible strains of Staphylococcus aureus), and MRSA (methicillin-resistant strains of Staphylococcus aureus) with MIC (the minimum inhibitory concentration) ranging between 2 and 16 μg mL-1 as compared to ciprofloxacin (MIC = 8-16 μg mL-1), in particular compound 4k exhibits potent fungal activity against Candida albicans and Aspergillus niger with MIC ranging between 8 and 16 μg mL-1 compared with the standard drug fluconazole (MIC = 4-128 μg mL-1). In addition, compounds 1d, 2d, 3s, 4b, and 4k also showed the strongest anticancer activity among the synthesized compounds against five tested cell lines with IC50 (half-maximal inhibitory concentration) ranging between 1.84 and 10.28 μg mL-1, comparable to paclitaxel (IC50 = 1.38-6.13 μM). Furthermore, the five most active compounds showed a good ADMET (absorption, distribution, metabolism, excretion, and toxicity) profile in comparison to ciprofloxacin, fluconazole, and paclitaxel as reference drugs. Molecular docking predicted that dihydrofolate reductase protein from Staphylococcus aureus is the most suitable target for both antimicrobial and anticancer activities, and vascular endothelial growth factor receptor 2 and histone deacetylase 6 are the most suitable targets for anticancer activity of these potent compounds.
Collapse
Affiliation(s)
- Em Canh Pham
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hong Bang International University 700000 Ho Chi Minh City Vietnam
| | - Tuong Vi Thi Le
- Department of Pharmacology - Clinical Pharmacy, Faculty of Pharmacy, City Children's Hospital 700000 Ho Chi Minh City Vietnam
| | - Tuyen Ngoc Truong
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City 700000 Ho Chi Minh City Vietnam
| |
Collapse
|
8
|
Fu J, Yue Y, Liu K, Wang S, Zhang Y, Su Q, Gu Q, Lin F, Zhang Y. PTSA-catalyzed selective synthesis and antibacterial evaluation of 1,2-disubstituted benzimidazoles. Mol Divers 2022; 27:873-887. [PMID: 35718840 DOI: 10.1007/s11030-022-10460-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022]
Abstract
Herein, we developed a convenient and efficient method via protonation of p-toluenesulfonic acid promoted cyclocondensation of o-phenylenediamine and aldehydes for selectively synthesizing 1,2-disubstituted benzimidazoles. This method displayed broad substrate adaptability and afforded the desired products in moderate to excellent yield in short reaction time. The effect of different substituents on the yield was investigated by extending optimum reaction conditions, which was further confirmed by theoretical calculations. It suggested that the surface electrostatic potential of oxygen atom and nitrogen atom on the substrates played important role in the synthesis of 1,2-disubstituted benzimidazoles. Besides, the crystal structure of compound 2t in the orthorhombic space group P2(1)/c was presented. Also, the anti-mycolicibacterium smegmatis (MC2155) activity was evaluated using rifampicin as a positive control. The products (2a, 2b, 2c, 2i, 2j, 2k, 2m) showed good antibacterial activities which were comparable to rifampicin.
Collapse
Affiliation(s)
- Jiaxu Fu
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Yuandong Yue
- School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
| | - Kejun Liu
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Shuang Wang
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Yiliang Zhang
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Qing Su
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Qiang Gu
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | - Feng Lin
- School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
| | - Yumin Zhang
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
9
|
Yadav S, Lim SM, Ramasamy K, Vasudevan M, Shah SAA, Mathur A, Narasimhan B. Synthesis and evaluation of antimicrobial, antitubercular and anticancer activities of 2-(1-benzoyl-1H-benzo[d]imidazol-2-ylthio)-N-substituted acetamides. Chem Cent J 2018; 12:66. [PMID: 29804151 PMCID: PMC5971037 DOI: 10.1186/s13065-018-0432-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 05/05/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The study describes the synthesis, characterization, in vitro antimicrobial and anticancer evaluation of a series of 2-(1-benzoyl-1H-benzo[d]imidazol-2-ylthio)-N-substituted acetamide derivatives. The synthesized derivatives were also assessed for in vitro antitubercular activity against Mycobacterium tuberculosis H37Rv. The compounds found active in in vitro study were assessed for their in vivo antitubercular activity in mice models and for their inhibitory action on vital mycobacterial enzymes viz, isocitrate lyase, pantothenate synthetase and chorismate mutase. RESULTS Compounds 8, 9 and 11 emerged out as excellent antimicrobial agents in antimicrobial assays when compared to standard antibacterial and antifungal drugs. The results of anticancer activity displayed that majority of the derivatives were less cytotoxic than standard drugs (tamoxifen and 5-fluorouracil) towards MCF7 and HCT116 cell lines. However, compound 2 (IC50 = 0.0047 µM/ml) and compound 10 (IC50 = 0.0058 µM/ml) showed highest cytotoxicity against MCF7 and HCT116 cell lines, respectively. The results of in vivo antitubercular activity revealed that a dose of 1.34 mg/kg was found to be safe for the synthesized compounds. The toxic dose of the compounds was 5.67 mg/kg while lethal dose varied from 1.81 to 3.17 mg/kg body weight of the mice. Compound 18 inhibited all the three mycobacterial enzymes to the highest level in comparison to the other synthesized derivatives but showed lesser inhibition as compared to streptomycin sulphate. CONCLUSIONS A further research on most active synthesized compounds as lead molecules may result in discovery of novel anticancer and antitubercular agents.
Collapse
Affiliation(s)
- Snehlata Yadav
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Siong Meng Lim
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.,Collaborative Drug Discovery Research (CDDR) Group, Pharmaceutical Life Sciences, Community of Research, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Kalavathy Ramasamy
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.,Collaborative Drug Discovery Research (CDDR) Group, Pharmaceutical Life Sciences, Community of Research, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Mani Vasudevan
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.,Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA, Puncak Alam Campus, 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | | | | |
Collapse
|
10
|
Synthesis and In Vitro Antimycobacterial Activity of Novel N-Arylpiperazines Containing an Ethane-1,2-diyl Connecting Chain. Molecules 2017; 22:molecules22122100. [PMID: 29189762 PMCID: PMC6149664 DOI: 10.3390/molecules22122100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 11/17/2022] Open
Abstract
Novel 1-(2-{3-/4-[(alkoxycarbonyl)amino]phenyl}-2-hydroxyethyl)-4-(2-fluorophenyl)-piperazin-1-ium chlorides (alkoxy = methoxy to butoxy; 8a-h) have been designed and synthesized through multistep reactions as a part of on-going research programme focused on finding new antimycobacterials. Lipophilic properties of these compounds were estimated by RP-HPLC using methanol/water mobile phases with a various volume fraction of the organic modifier. The log kw values, which were extrapolated from intercepts of a linear relationship between the logarithm of a retention factor k (log k) and volume fraction of a mobile phase modifier (ϕM), varied from 2.113 (compound 8e) to 2.930 (compound 8h) and indicated relatively high lipophilicity of these salts. Electronic properties of the molecules 8a-h were investigated by evaluation of their UV/Vis spectra. In a next phase of the research, the compounds 8a-h were in vitro screened against M. tuberculosis CNCTC My 331/88 (identical with H37Rv and ATCC 2794), M. kansasii CNCTC My 235/80 (identical with ATCC 12478), a M. kansasii 6 509/96 clinical isolate, M. avium CNCTC My 330/80 (identical with ATCC 25291) and M. avium intracellulare ATCC 13950, respectively, as well as against M. kansasii CIT11/06, M. avium subsp. paratuberculosis CIT03 and M. avium hominissuis CIT10/08 clinical isolates using isoniazid, ethambutol, ofloxacin, ciprofloxacin or pyrazinamide as reference drugs. The tested compounds 8a-h were found to be the most promising against M. tuberculosis; a MIC = 8 μM was observed for the most effective 1-(2-{4-[(butoxycarbonyl)amino]phen-ylphenyl}-2-hydroxyethyl)-4-(2-fluorophenyl)piperazin-1-ium chloride (8h). In addition, all of them showed low (insignificant) in vitro toxicity against a human monocytic leukemia THP-1 cell line, as observed LD50 values > 30 μM indicated. The structure-antimycobacterial activity relationships of the analyzed 8a-h series are also discussed.
Collapse
|
11
|
Kumar V, Patel S, Jain R. New structural classes of antituberculosis agents. Med Res Rev 2017; 38:684-740. [DOI: 10.1002/med.21454] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/03/2017] [Accepted: 05/02/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Vajinder Kumar
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research; S.A.S. Nagar Punjab India
- Present address: Department of Chemistry; Akal University; Talwandi Sabo Punjab 151 302 India
| | - Sanjay Patel
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research; S.A.S. Nagar Punjab India
| | - Rahul Jain
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research; S.A.S. Nagar Punjab India
| |
Collapse
|