1
|
Baltutis V, O'Leary PD, Martin LL. Self-Assembly of Linear, Natural Antimicrobial Peptides: An Evolutionary Perspective. Chempluschem 2022; 87:e202200240. [PMID: 36198638 DOI: 10.1002/cplu.202200240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/29/2022] [Indexed: 01/31/2023]
Abstract
Antimicrobial peptides are an ancient and innate system of host defence against a wide range of microbial assailants. Mechanistically, unstructured peptides undergo a secondary structure transition into amphipathic α-helices, upon contact with membrane surfaces. This leads to peptide binding and removal of the membrane components in a detergent-like manner or via self-organisation into trans-membrane pores (either barrel-stave or toroidal pore) thereby destroying the microbe. Self-assembly of antimicrobial peptides into oligomers and ultimately amyloid has been mostly examined in parallel, however recent findings link diseases, such as Alzheimer's disease as an aberrant activity of a protective neuropeptide with antimicrobial activity. These self-assembled oligomers can also interact with membranes. Here, we review those antimicrobial peptides reported to self-assemble into amyloid, where supported by structural evidence. We consider their membrane activities as antimicrobial peptides and present evidence of consistent self-assembly patterns across major evolutionary groups. Trends are apparent across these groups, supporting the mounting data that self-assembly of antimicrobial peptides into amyloid should be considered as synergistic to the antimicrobial peptide response.
Collapse
Affiliation(s)
- Verity Baltutis
- School of Chemistry, Monash University, 3800, Clayton, Vic, Australia
| | - Paul D O'Leary
- School of Chemistry, Monash University, 3800, Clayton, Vic, Australia
| | - Lisandra L Martin
- School of Chemistry, Monash University, 3800, Clayton, Vic, Australia
| |
Collapse
|
2
|
McCormack M, Dillon E, O’Connor I, MacCarthy E. Investigation of the Initial Host Response of Naïve Atlantic Salmon ( Salmo salar) Inoculated with Paramoeba perurans. Microorganisms 2021; 9:microorganisms9040746. [PMID: 33918228 PMCID: PMC8066739 DOI: 10.3390/microorganisms9040746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 01/15/2023] Open
Abstract
Amoebic Gill Disease (AGD), caused by the ectoparasite Paramoeba perurans is characterised by hyperplasia of the gill epithelium and lamellar fusion. In this study, the initial host response of naïve Atlantic salmon (Salmo salar) inoculated with P. perurans was investigated. Using gel-free proteomic techniques and mass spectrometry gill and serum samples were analysed at 7 timepoints (2, 3, 4, 7, 9, 11 and 14 days) post-inoculation with P. perurans. Differential expression of immune related proteins was assessed by comparison of protein expression from each time point against naïve controls. Few host immune molecules associated with innate immunity showed increased expression in response to gill colonisation by amoebae. Furthermore, many proteins with roles in immune signalling, phagocytosis and T-cell proliferation were found to be inhibited upon disease progression. Initially, various immune factors demonstrated the anticipated increase in expression in response to infection in the serum while some immune inhibition became apparent at the later stages of disease progression. Taken together, the pro-immune trend observed in serum, the lack of a robust early immune response in the gill and the diversity of those proteins in the gill whose altered expression negatively impact the immune response, support the concept of a pathogen-derived suppression of the host response.
Collapse
Affiliation(s)
- Michelle McCormack
- Marine and Freshwater Research Centre, Galway Mayo Institute of Technology, Dublin Road, H91 TRNW Galway, Ireland; (I.O.); (E.M.)
- Correspondence:
| | - Eugene Dillon
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Ian O’Connor
- Marine and Freshwater Research Centre, Galway Mayo Institute of Technology, Dublin Road, H91 TRNW Galway, Ireland; (I.O.); (E.M.)
| | - Eugene MacCarthy
- Marine and Freshwater Research Centre, Galway Mayo Institute of Technology, Dublin Road, H91 TRNW Galway, Ireland; (I.O.); (E.M.)
| |
Collapse
|
3
|
A histone H2A-derived antimicrobial peptide, Hipposin from mangrove whip ray, Himantura walga: Molecular and functional characterisation. 3 Biotech 2020; 10:467. [PMID: 33088663 DOI: 10.1007/s13205-020-02455-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/26/2020] [Indexed: 02/08/2023] Open
Abstract
Antimicrobial peptides (AMPs) are biologically dynamic molecules produced by all type of organisms as a fundamental component of their innate immune system. The present study deals with the identification of a histone H2A-derived antimicrobial peptide, Hipposin from mangrove whip ray, Himantura walga. A 243 base pair fragment encoding 81 amino acid residues amplified from complementary DNA was identified as Hipposin and termed as Hw-Hip. Homologous analysis showed that Hw-Hip belongs to the Histone H2A superfamily and shares sequence identity with other histone-derived AMPs from fishes. Phylogenetic analysis of Hw-Hip displayed clustering with the fish H2A histones. Secondary structure analysis showed the presence of three α-helices and four random coils with a prominent proline hinge. The physicochemical properties of Hw-Hip are in agreement with the properties of antimicrobial peptides. A 39-mer active peptide sequence was released by proteolytic cleavage in silico. Functional characterisation of active peptide in silico revealed antibacterial, anticancer and antibiofilm activities making Hw-Hip a promising candidate for further exploration.
Collapse
|
4
|
Sol A, Skvirsky Y, Blotnick E, Bachrach G, Muhlrad A. Actin and DNA Protect Histones from Degradation by Bacterial Proteases but Inhibit Their Antimicrobial Activity. Front Microbiol 2016; 7:1248. [PMID: 27555840 PMCID: PMC4977296 DOI: 10.3389/fmicb.2016.01248] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/27/2016] [Indexed: 12/30/2022] Open
Abstract
Histones are small polycationic proteins located in the cell nucleus. Together, DNA and histones are integral constituents of the nucleosomes. Upon apoptosis, necrosis, and infection – induced cell death, histones are released from the cell. The extracellular histones have strong antimicrobial activity but are also cytotoxic and thought as mediators of cell death in sepsis. The antimicrobial activity of the cationic extracellular histones is inhibited by the polyanionic DNA and F-actin, which also become extracellular upon cell death. DNA and F-actin protect histones from degradation by the proteases of Pseudomonas aeruginosa and Porphyromonas gingivalis. However, though the integrity of the histones is protected, the activity of histones as antibacterial agents is lost. The inhibition of the histone’s antibacterial activity and their protection from proteolysis by DNA and F-actin indicate a tight electrostatic interaction between the positively charged histones and negatively charged DNA and F-actin, which may have physiological significance in maintaining the equilibrium between the beneficial antimicrobial activity of extracellular histones and their cytotoxic effects.
Collapse
Affiliation(s)
- Asaf Sol
- Institute of Dental Sciences, Hebrew University-Hadassah School of Dental Medicine Jerusalem, Israel
| | - Yaniv Skvirsky
- Institute of Dental Sciences, Hebrew University-Hadassah School of Dental Medicine Jerusalem, Israel
| | - Edna Blotnick
- Department of Medical Neurobiology, Institute for Medical Research-Israel-Canada, Hebrew University of Jerusalem Jerusalem, Israel
| | - Gilad Bachrach
- Institute of Dental Sciences, Hebrew University-Hadassah School of Dental Medicine Jerusalem, Israel
| | - Andras Muhlrad
- Institute of Dental Sciences, Hebrew University-Hadassah School of Dental Medicine Jerusalem, Israel
| |
Collapse
|
5
|
Chen B, Fan DQ, Zhu KX, Shan ZG, Chen FY, Hou L, Cai L, Wang KJ. Mechanism study on a new antimicrobial peptide Sphistin derived from the N-terminus of crab histone H2A identified in haemolymphs of Scylla paramamosain. FISH & SHELLFISH IMMUNOLOGY 2015; 47:833-846. [PMID: 26475366 DOI: 10.1016/j.fsi.2015.10.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 10/06/2015] [Accepted: 10/09/2015] [Indexed: 06/05/2023]
Abstract
Histone H2A is known to participate in host immune defense through generating special antimicrobial peptides (AMPs), for which it has been an interesting research focus to characterize this kind of peptides in vertebrates and invertebrates. Although thousands of AMPs have been reported in variety of life species, only several AMPs are known in crabs and in particular no H2A-derived AMP has yet been reported. In the present study, a 38-amino acid peptide with antimicrobial activity was determined based on the sequence analysis of a histone H2A identified from the mud crab Scylla paramamosain. The histone H2A derived peptide was an AMP-like molecule and designated as Sphistin. Sphistin showed typical features of AMPs such as amphiphilic α-helical second structrue and positive charge net. The synthetic Sphistin exerted high antimicrobial activity against Gram-positive, Gram-negative bacteria and yeast, among which Aeromonas hydrophila, Pseudomonas fluorescens and Pseudomonas stutzeri are important aquatic pathogens. Leakage of the cell content and disruption of the cell surface were observed in bacterial cells treated with Sphistin using scanning electron microscopy. It was proved that the increasing cytoplasmic membrane permeability of Escherichia coli was caused by Sphistin. Further observation under confocal microscopy showed that Sphistin could combine onto the membrane of Staphylococcus aureus, E. coli MC1061 and Pichia pastoris but not translocate into the cytoplasm. Moreover, the affinity of Sphistin with either LPS or LTA was also testified that there was an interaction between Sphistin and cell membrane. Thus, the antimicrobial mechanism of this peptide likely exerted via adsorption and subsequently permeabilization of the bacterial cell membranes other than penetrating cell membrane. In addition, synthetic Sphistin exhibited no cytotoxicity to primary cultured crab haemolymphs and mammalian cells even at a high concentration of 100 μg/mL for 24 h. This is the first report of a histone-derived Sphistin identified from S. paramamosain with a specific antimicrobial activity and mechanism, which could be a new candidate for future application in aquaculture and veterinary medicine.
Collapse
Affiliation(s)
- Bei Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Dan-Qing Fan
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Ke-Xin Zhu
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Zhong-Guo Shan
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Fang-Yi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Lin Hou
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Ling Cai
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, Fujian 361102, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, Fujian 361102, PR China; Fujian Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian 361102, PR China.
| |
Collapse
|
6
|
Howe CG, Gamble MV. Enzymatic cleavage of histone H3: a new consideration when measuring histone modifications in human samples. Clin Epigenetics 2015; 7:7. [PMID: 25628766 PMCID: PMC4307743 DOI: 10.1186/s13148-014-0041-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/22/2014] [Indexed: 11/25/2022] Open
Abstract
Histone modifications are increasingly being used as biomarkers of cancer prognosis and survival. However, we identified a cleavage product of histone H3 in human peripheral blood mononuclear cells, which interferes with measures of certain H3 modifications. Therefore, the potential for enzymatic cleavage of histones should be considered when measuring histone modifications in human samples. Furthermore, the enzymatic cleavage of human H3 is itself a fascinating area of research and two important questions remain to be answered: 1) Does cleavage of human H3 occur in vivo, as it does in other organisms? and 2) Does it serve a biologically important function?
Collapse
Affiliation(s)
- Caitlin G Howe
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 650 W. 168th Street, Room 1618, New York, NY 10032 USA
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W. 168th Street, Room 1107E, New York, NY 10032 USA
| |
Collapse
|
7
|
Lü A, Hu X, Wang Y, Shen X, Li X, Zhu A, Tian J, Ming Q, Feng Z. iTRAQ analysis of gill proteins from the zebrafish (Danio rerio) infected with Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2014; 36:229-239. [PMID: 24269520 DOI: 10.1016/j.fsi.2013.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 06/02/2023]
Abstract
The gills are large mucosal surfaces and very important portals for pathogen entry in fish. The aim of this study was to determine the gill immune response at the protein levels, the differential proteomes of the zebrafish gill response to Aeromonas hydrophila infection were identified with isobaric tags for relative and absolute quantitation (iTRAQ) labeling followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 1338 proteins were identified and classified into the categories primarily related to cellular process (15.36%), metabolic process (11.95%) and biological regulation (8.29%). Of these, 82 differentially expressed proteins were reliably quantified by iTRAQ analysis, 57 proteins were upregulated and 25 proteins were downregulated upon bacterial infection. Gene ontology (GO) enrichment analysis showed that approximately 33 (8.8%) of the differential proteins in gills were involved in the stress and immune responses. Several upregulated proteins were observed such as complement component 5, serpin peptidase inhibitor clade A member 7, annexin A3a, histone H4, glyceraldehyde 3-phosphate dehydrogenase, creatine kinase, and peroxiredoxin. These protein expression changes were further validated at the transcript level using microarray analysis. Moreover, complement and coagulation cascades, pathogenic Escherichia coli infection and phagosome were the significant pathways identified by KEGG enrichment analysis. This is first report on proteome of fish gills against A. hydrophila infection, which contribute to understanding the defense mechanisms of the gills in fish.
Collapse
Affiliation(s)
- Aijun Lü
- School of Life Sciences, Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, China.
| | - Xiucai Hu
- School of Life Sciences, Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, China
| | - Yi Wang
- School of Life Sciences, Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, China
| | - Xiaojing Shen
- School of Life Sciences, Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, China
| | - Xue Li
- School of Life Sciences, Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, China
| | - Aihua Zhu
- School of Life Sciences, Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, China
| | - Jun Tian
- School of Life Sciences, Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, China
| | - Qinglei Ming
- School of Life Sciences, Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, China
| | - Zhaojun Feng
- School of Life Sciences, Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|