Zekker I, Raudkivi M, Artemchuk O, Rikmann E, Priks H, Jaagura M, Tenno T. Mainstream-sidestream wastewater switching promotes anammox nitrogen removal rate in organic-rich, low-temperature streams.
ENVIRONMENTAL TECHNOLOGY 2021;
42:3073-3082. [PMID:
31973688 DOI:
10.1080/09593330.2020.1721566]
[Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
The main issues with mainstream anammox application are loss of bacterial activity by low temperatures and by a high organic content of wastewater. We demonstrate a novel switching method between sidestream and mainstream wastewater. The wastewater flow was switched between sidestream (reject water at >22°C) and mainstream (municipal wastewater at 16.5°C), so that the anammox biomass activity and biomass growth could benefit from sidestream conditions. Real sidestream wastewater (biogas plant effluent) (≈1000 mg NH+ 4-N L-1) and synthetic mainstream (municipal wastewater-like source) (≈100 mg NH+ 4-N) wastewater were used for 20 L biofilm reactor feeding. The highest total nitrogen removal rate (TNRR) of 527 g N m-3 d-1 (average TNRR 180 (±140) g N m-3 d-1) was achieved with sidestream wastewater at a low chemical oxygen demand (COD)/TN ratio of 1.1/1. For reactor feeding with mainstream, the highest TNRR achieved was 61 g N m-3 d-1. Average TNRR for mainstream of 20 (±15) g N m-3 d-1 was low due to a higher COD/N ratio of 3.2/1. The highest TNRR in a batch test was achieved at the COD concentration of 480 mg L-1, reflecting a TNRR of ≈5 mg N g-1 TSS h-1. With a high COD concentration of 2600 mg L-1 (TOC/TN = 8/1), TNRR decreased similarly in both feeds to 1.6 mg N g-1 TSS h-1. The anammox microorganism's genus Candidatus Brocadia enrichment in deammonification biofilm reactor was higher in the mainstream operation (7.6% of all bacteria) than in sidestream operation period (<0.7% of all bacteria).
Collapse