1
|
Song X, Zhao Q, Dang M, Hou X, Liu S, Ma Z, Ren Y. Quenching and enhancement mechanisms of a novel Cd-based coordination polymer as a multiresponsive fluorescent sensor for nitrobenzene and aniline. Anal Chim Acta 2024; 1316:342865. [PMID: 38969412 DOI: 10.1016/j.aca.2024.342865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Nitroaromatic compounds are inherently hazardous and explosive, so convenient and rapid detection strategies are needed for the sake of human health and the environment. There is an urgent demand for chemical sensing materials that offer high sensitivity, operational simplicity, and recognizability to effectively monitor nitroaromatic residues in industrial wastewater. Despite its importance, the mechanisms underlying fluorescence quenching or enhancement in fluorescent sensing materials have not been extensively researched. The design and synthesis of multiresponsive fluorescent sensing materials have been a great challenge until now. RESULTS In this study, a one-dimensional Cd-based fluorescent porous coordination polymer (Cd-CIP-1) was synthesized using 5-(4-cyanobenzyl)isophthalic acid (5-H2CIP) and 4,4'-bis(1-imidazolyl)biphenyl (4,4'-bimp) and used for the selective detection of nitrobenzene in aqueous solution by fluorescence quenching, with a limit of detection of 1.38 × 10-8 mol L-1. The presence of aniline in the Cd-CIP-1 solution leads to the enhancement of fluorescence property. Density functional theory and time-dependent density functional theory calculations were carried out to elucidate the mechanisms of the fluorescence changes. This study revealed that the specific pore size of Cd-CIP-1 facilitates analyte screening and enhances host-guest electron coupling. Furthermore, π-π interactions and hydrogen bond between Cd-CIP-1 and the analytes result in intermolecular orbital overlap and thereby boosting electron transfer efficiency. The different electron flow directions in NB@Cd-CIP-1 and ANI@Cd-CIP-1 lead to fluorescence quenching and enhancement. SIGNIFICANCE AND NOVELTY The multiresponsive coordination polymer (Cd-CIP-1) can selectively detect nitrobenzene and recognize aniline in aqueous solutions. The mechanism of fluorescence quenching and enhancement has been thoroughly elucidated through a combination of density functional theory and experimental approaches. This study presents a promising strategy for the practical implementation of a multiresponsive fluorescent chemical sensor.
Collapse
Affiliation(s)
- Xiaoming Song
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Qingxia Zhao
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Mingxuan Dang
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Xiufang Hou
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China.
| | - Shuai Liu
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Zhihu Ma
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Yixia Ren
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China.
| |
Collapse
|
2
|
Pandey G, Singh N, Rajput N, Saini MK, Kothari SL, Prasad J, Lamba NP, Chauhan MS. Comparative study of NiO/CuO/Ag doped graphene based materials for reduction of nitroaromatic compounds and degradation of dye with statistical study. Sci Rep 2024; 14:2077. [PMID: 38267439 PMCID: PMC10808113 DOI: 10.1038/s41598-024-51342-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
In the present work, the Nickel oxide (rGO-NiO), Silver (rGO-Ag), Copper oxide (rGO-CuO) doped Graphene Oxide are reported for catalytic reactions. A comparative study for catalytic activities of these materials are performed with nitroaromatic compound 4-nitroaniline and the results are statistically studied by using univariate analysis of variance and Post Hoc Test through Statistical Package for Social Sciences and it is observed that CuO doped Graphene material is showing better catalytic activity in minimum time. So, further research has been focused on the catalytic acitivity of rGO-CuO only and it is found that it is efficient in reducing other nitro compounds also such as Picric acid and Nitrobenzene. Dye degradation of Methylene blue is also performed using CuO decorated Graphene material and significant changes were observed using UV spectroscopy. The characterization of rGO-CuO is done with Fourier-transform Infrared Spectroscopy, Powder X-ray Diffraction, Thermogravimetric Analysis, Scanning Electron Microscope and Transmission Electron Microscopy.
Collapse
Affiliation(s)
| | - Nidhi Singh
- Department of Information System, North Eastern University, Boston, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Lin H, Wu H, Li H, Song A, Yin W. The essential role of GSTP1 I105V polymorphism in the prediction of CDNB metabolism and toxicity: In silico and in vitro insights. Toxicol In Vitro 2023; 90:105601. [PMID: 37031912 DOI: 10.1016/j.tiv.2023.105601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/11/2023]
Abstract
Humans are continuously exposed to toxic chemicals such as nitro-chlorobenzene (CDNB) through occupation, water, and even the air we breathe. Due to the severe toxicity caused by the high electrophilicity of CDNB, occupational and environmental exposure to CDNB can produce toxic effects that ultimately lead to cell damage. CDNB can be eliminated from organisms by binding to GSH, the catalytic product of glutathione S-transferase P1 (GSTP1). Therefore, GSTP1 plays an important role in the detoxification of CDNB. However, subtle variations in GSTP1 can result in single nucleotide polymorphisms (SNPs). Indeed, the correlation between the clinical outcome of the disease and certain genotypes of GSTP1 has been extensively studied, however, their impact on the metabolic detoxification of toxicants such as CDNB remains to be elucidated. Among the various SNPs of GSTP1, I105V has a significant effect on the catalytic activity of GSTP1. In this paper, a GSTP1 I105V polymorphism model was successfully established, and its effect on CDNB metabolism and toxicity was studied by computer analysis including molecular docking and molecular dynamics simulation. The result demonstrated that the binding capacity of CDNB decreases with the I105V mutation of GSTP1(p < 0.001), indicating the changes in its detoxification efficacy in CDNB-induced cell damage. Organisms expressing GSTP1 V105 are more susceptible to cell damage caused by CDNB than individuals expressing GSTP1 I105 (p < 0.001). In sum, the data in this study provide prospective insights into the mechanism and capacity of CDNB detoxification in the GSTP1 allele, extending the CDNB-mediated toxicological profile. In addition, the heterogeneity of the GSTP1 allele should be included in toxicological studies of individuals exposed to CDNB.
Collapse
Affiliation(s)
- Hao Lin
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Han Wu
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Hengda Li
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Aoqi Song
- Department of Pharmacy, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Wu Yin
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
4
|
Zhu C, Huang H, Chen Y. Recent advances in biological removal of nitroaromatics from wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119570. [PMID: 35667518 DOI: 10.1016/j.envpol.2022.119570] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Various nitroaromatic compounds (NACs) released into the environment cause potential threats to humans and animals. Biological treatment is valued for cost-effectiveness, environmental friendliness, and availability when treating wastewater containing NACs. Considering the significance and wide use of NACs, this review focuses on recent advances in biological treatment systems for NACs removal from wastewater. Meanwhile, factors affecting biodegradation and methods to enhance removal efficiency of NACs are discussed. The selection of biological treatment system needs to consider NACs loading and cost, and its performance is affected by configuration and operation strategy. Generally, sequential anaerobic-aerobic biological treatment systems perform better in mineralizing NACs and removing co-pollutants. Future research on mechanism exploration of NACs biotransformation and performance optimization will facilitate the large-scale application of biological treatment systems.
Collapse
Affiliation(s)
- Cuicui Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
5
|
New insights into iron/nickel-carbon ternary micro-electrolysis toward 4-nitrochlorobenzene removal: Enhancing reduction and unveiling removal mechanisms. J Colloid Interface Sci 2022; 612:308-322. [PMID: 34998191 DOI: 10.1016/j.jcis.2021.12.116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/07/2021] [Accepted: 12/18/2021] [Indexed: 12/11/2022]
Abstract
The ternary micro-electrolysis material iron/nickel-carbon (Fe/Ni-AC) with enhanced reducibility was constructed by introducing the trace transition metal Ni based on the iron/carbon (Fe/AC) system and used for the removal of 4-nitrochlorobenzene (4-NCB) in solution. The composition and structures of the Fe/Ni-AC were analyzed by various characterizations to estimate its feasibility as reductants for pollutants. The removal efficiency of 4-NCB by Fe/Ni-AC was considerably greater than that of Fe/AC and iron/nickel (Fe/Ni) binary systems. This was mainly due to the enhanced reducibility of 4-NCB by the synergism between anode and double-cathode in the ternary micro-electrolysis system (MES). In the Fe/Ni-AC ternary MES, zero-iron (Fe0) served as anode involved in the formation of galvanic couples with activated carbon (AC) and zero-nickel (Ni0), respectively, where AC and Ni0 functioned as double-cathode, thereby promoting the electron transfer and the corrosion of Fe0. The cathodic and catalytic effects of Ni0 that existed simultaneously could not only facilitate the corrosion of Fe0 but also catalyze H2 to form active hydrogen (H*), which was responsible for 4-NCB transformation. Besides, AC acted as a supporter which could offer the reaction interface for in-situ reduction, and at the same time provide interconnection space for electrons and H2 to transfer from Fe0 to the surface of Ni0. The results suggest that a double-cathode of Ni0 and AC could drive much more electrons, Fe2+ and H*, thus serving as effective reductants for 4-NCB reduction.
Collapse
|
6
|
Neng J, Liao C, Wang Y, Wang Y, Yang K. Rapid and Sensitive Detection of Pentachloronitrobenzene by Surface-Enhanced Raman Spectroscopy Combined with Molecularly Imprinted Polymers. BIOSENSORS 2022; 12:bios12020052. [PMID: 35200313 PMCID: PMC8869095 DOI: 10.3390/bios12020052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/08/2022] [Accepted: 01/17/2022] [Indexed: 12/04/2022]
Abstract
Molecularly imprinted polymers (MIPs) specifically targeting pentachloronitrobenzene (PCNB) and containing silver nanoparticles have been prepared by free radical polymerization reaction using methyl methacrylate (MMA) as a functional monomer, PCNB as a template molecule, 1,4-butanedioldimethacrylate as a cross linker, lauroyl peroxide (LPO) as an initiator, and the silver nanoparticles with the best surface-enhanced Raman scattering (SERS) effect as SERS enhancement materials. Our results indicated that MIPs specifically recognize PCNB from complex matrices. The intensity of the PCNB characteristic peak was proportional to the concentration, with a linear range of 0.005 to 0.15 μg/mL and a limit of detection of 5.0 ng/mL. The recovery rates and relative standard deviation for the detection of PCNB spiked in the rice samples were from 94.4% to 103.3% and from 4.6% to 7.4%, respectively. The experimental results are consistent with those by the GC-MS method, indicating that the rapid detection of PCNB in food matrices by SERS-MIPs is reliable. In view of the insolubility of PCNB in water, oil-soluble silver nanoparticles were synthesized which can be expanded to detect oil-soluble toxic substances. For the first time, the proposed method provides a point-of-care and cost-effective tool for rapidly detecting PCNB in food matrices with high sensitivity and selectivity by employing SERS-MIPs method.
Collapse
Affiliation(s)
| | | | | | | | - Kai Yang
- Correspondence: ; Tel.: +86-572-8813-778
| |
Collapse
|
7
|
“Doing More with Less”: Ni(II)@ORMOSIL, a Novel Sol-Gel Pre-Catalyst for the Reduction of Nitrobenzene. Catalysts 2021. [DOI: 10.3390/catal11111391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Reduction of nitrobenzene with NaBH4 using zero-valent iron nanoparticles (ZVI-NPs) and NiCl2∙6H2O incorporated in organically modified hybrid silica matrices as ZVI@ORMOSIL and Ni(II)@ORMOSIL catalysts is proposed as a remediation strategy. Ni(II)@ORMOSIL is prepared by ion-exchanging H+ of the ORMOSIL matrix with NiII. Ni(II)@ORMOSIL is a pre-catalyst that undergoes reduction by NaBH4 by an in-situ reaction and promotes nitrobenzene reduction by the unconsumed NaBH4, leading to sparing use of the catalyst. Ni(II)@ORMOSIL undergoes color change from green to black in this process, returning to a green hue after washing and drying. Nitrobenzene reductions were examined in aqueous acetonitrile solvent mixtures, and the reduction cascade produced the reaction end-products with catalytic implications. Plausible mechanisms of ZVI@ORMOSIL and Ni(II)@ORMOSIL catalyzed reductions of nitrobenzene are discussed. This work is the first to report M(II)@ORMOSIL pre-catalysts for in-situ reduction of nitrobenzene, and expands the scope of the ORMOSIL series of catalysts for the reduction of polluting compounds. This approach enables the development of catalysts that use very low concentrations of transition metal cations.
Collapse
|
8
|
Kuai Y, Gao X, Yang H, Luo H, Xu Y, Liu C, Yu H, Wang Y, Zhang C, Ma X, Lu C. Pentachloronitrobenzene alters progesterone production and primordial follicle recruitment in cultured granulosa cells and rat ovary†. Biol Reprod 2021; 102:511-520. [PMID: 31616914 DOI: 10.1093/biolre/ioz195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/18/2019] [Accepted: 10/07/2019] [Indexed: 01/09/2023] Open
Abstract
Pentachloronitrobenzene (PCNB) is an organochlorine fungicide widely used for crop production and has become an environmental concern. Little is known about the effect of PCNB on ovarian steroidogenesis and follicular development. We found that PCNB stimulated Star expression and progesterone production in cultured rat granulosa cells in a dose-dependent manner. PCNB activated mitogen-activated protein kinase (MAPK3/1) extracellulat regulated kinase (ERK1/2), thus inhibition of either protein kinase A (PKA) or MAPK3/1 signaling pathway significantly attenuated progesterone biosynthesis caused by PCNB, suggesting that PCNB induced progesterone production by activating the cyclic adenosine monophosphate (cAMP/PKA) and MAPK3/1 signaling pathways. Further investigation demonstrated that PCNB induced Star expression and altered MAPK3/1 signaling in ovary tissues of immature SD rats treated with PCNB at the dose of 100, 200, or 300 mg/kg by daily gavage for 7 days, while serum progesterone level was dose-dependently decreased. We demonstrated that PCNB exposure accelerated the recruitment of primordial follicles into the growing follicle pool in ovary tissues, accompanied by increased levels of anti-Mullerian hormone (AMH) in both ovary tissues and serum. Taken together, our data demonstrate for the first time that PCNB stimulated Star expression, altered MAPK3/1 signaling and progesterone production in vivo and in vitro, and accelerated follicular development with a concomitant increase in AMH in ovary tissues and serum. Our findings provide novel insight into the toxicity of PCNB to animal ovary function.
Collapse
Affiliation(s)
- Yanrong Kuai
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China.,Department of Genetics, National Research Institute for Family Planning, Beijing, China
| | - Xiaobo Gao
- Department of Genetics, National Research Institute for Family Planning, Beijing, China
| | - Huixia Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Haiyan Luo
- Department of Genetics, National Research Institute for Family Planning, Beijing, China
| | - Yang Xu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Chenchen Liu
- Department of Genetics, National Research Institute for Family Planning, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Haiying Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yihan Wang
- Department of Genetics, National Research Institute for Family Planning, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Chen Zhang
- Department of Genetics, National Research Institute for Family Planning, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Xu Ma
- Department of Genetics, National Research Institute for Family Planning, Beijing, China
| | - Cailing Lu
- Department of Genetics, National Research Institute for Family Planning, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Niu X, Lin J, Bo X, Bai J, Guo L. Preparation of a novel Ni-MOF and porous graphene aerogel composite and application for simultaneous electrochemical determination of nitrochlorobenzene isomers with partial least squares. Mikrochim Acta 2020; 187:404. [DOI: 10.1007/s00604-020-04371-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/02/2020] [Indexed: 01/28/2023]
|
10
|
Kori JA, Mahar RB, Vistro MR, Tariq H, Khan IA, Goel R. Metagenomic analysis of drinking water samples collected from treatment plants of Hyderabad City and Mehran University Employees Cooperative Housing Society. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:29052-29064. [PMID: 31392612 DOI: 10.1007/s11356-019-05859-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/27/2019] [Indexed: 06/10/2023]
Abstract
The quality assessment of water, supplied to the end user, is an essential part to assess the physical, chemical, and biological status of water, which impacts on human health. For the quality assessment of drinking water treatment plants and distribution systems of Hyderabad City and Mehran University of Engineering and Technology, Jamshoro, Pakistan, 13 surface drinking water samples were collected from three treatment plants, two of Hyderabad City, including WASA treatment plant and its distribution system (n = 5), Hala Nakka treatment plant and its distribution system (n = 6), and Mehran University Employees Cooperative Housing Society (MUECHS) treatment plant and its distribution system (n = 2). Physicochemical parameters of all drinking water samples were in the range compared to EPA and WHO guidelines, except in L-12 sample. Notably, no free-chlorine was detected in all samples. In metagenomics analysis, targeting V3-V4 hypervariable region of 16S rRNA gene, in QIIME2 environment, high bacterial prevalence was observed in all samples. On average, 348 OTUs were observed per sample. Among all samples, treated water sample from the Hala Nakka Treatment Plant (HNTR) was the most diverse sample in bacterial composition (Shannon 7.51 and Simpsons reciprocal indices 0.98). Overall, Proteobacteria, Bacteroidetes, Cyanobacteria, Verrucomicrobia, and Actinobacteria were the five most abundant phyla (relative abundances of 43.6, 37.9, 8.5, 2.5, and 2.4 percent, respectively). Notably, Cyanobacteria are well-known toxin producers which effect the human, and animal health. At genus level, Flavobacterium (4.86%) and Aquirestis (3.77%) were the most abundant genera. Functional predictions, based on 16S rRNA gene by PICRUSt, predicted 6909 KEGG orthologies, relating to 245 KEGG pathways. Among the predicted pathways of KEGG orthologies, pathways to human infections were also found. In conclusion, this study gave a deep insight into bacterial contamination in drinking water samples of Hyderabad City and MUECHS treatment plants and water quality status in Hyderabad and Mehran University of Engineering and Technology.
Collapse
Affiliation(s)
- Junaid Ahmed Kori
- U.S.-Pakistan Center for Advanced Studies in Water, Mehran University of Engineering and Technology, Jamshoro, 76062, Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Rasool Bux Mahar
- U.S.-Pakistan Center for Advanced Studies in Water, Mehran University of Engineering and Technology, Jamshoro, 76062, Pakistan.
| | - Muhammad Raffae Vistro
- U.S.-Pakistan Center for Advanced Studies in Water, Mehran University of Engineering and Technology, Jamshoro, 76062, Pakistan
| | - Huma Tariq
- U.S.-Pakistan Center for Advanced Studies in Water, Mehran University of Engineering and Technology, Jamshoro, 76062, Pakistan
| | - Ishtiaq Ahmad Khan
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, 84112-0561, USA
| |
Collapse
|
11
|
Teng Y, Wang X, Zhu Y, Chen W, Christie P, Li Z, Luo Y. Biodegradation of pentachloronitrobenzene by Cupriavidus sp. YNS-85 and its potential for remediation of contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:9538-9547. [PMID: 28238184 DOI: 10.1007/s11356-017-8640-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/13/2017] [Indexed: 06/06/2023]
Abstract
Pentachloronitrobenzene (PCNB) is a toxic chlorinated nitroaromatic compound. However, only a few bacteria have been reported to be able to utilize PCNB. In the present study, one pentachloronitrobenzene (PCNB)-degrading bacterium, Cupriavidus sp. YNS-85, was isolated from a contaminated Panax notoginseng plantation. The strain co-metabolized 200 mg L-1 PCNB in aqueous solution with a removal rate of 73.8% after 5 days. The bacterium also degraded PCNB effectively under acid conditions (pH 4-6) and showed resistance to toxic trace elements (arsenic, copper, and cadmium). Its ability to utilize proposed PCNB intermediates as sole carbon sources was also confirmed. The soil microcosm experiment further demonstrated that bacterial bioaugmentation enhanced the removal of PCNB (37.8%) from soil and the accumulation of pentachloroaniline (89.3%) after 30 days. Soil enzyme activity and microbial community functional diversity were positively influenced after bioremediation. These findings indicate that Cupriavidus sp. YNS-85 may be a suitable inoculant for in situ bioremediation of PCNB-polluted sites, especially those with acid soils co-contaminated with heavy metal(loid)s.
Collapse
Affiliation(s)
- Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Xiaomi Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye Zhu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhengao Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
12
|
Francisco BBA, Gee E, Butson J, Mayer PM. Halide anions are formed from reactions between atomic metal anions and halogenated aromatic molecules. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:586-590. [PMID: 28239962 DOI: 10.1002/jms.3793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 06/06/2023]
Abstract
Atomic metal anions (AMAs) Fe- , Cs- , Cu- and Ag- were generated in the gas phase by collisionally decomposing the corresponding metal-oxalate anion. Mass selected AMAs were allowed to react with halogenated and nitrated molecules (C6H5Cl, C6H4Cl2, C6H3Cl3, C6H5I, C6H5Br and C6H5NO2) in the collision hexapole of a triple-quadrupole mass spectrometer. Observed reactions include the predominant formation of X- (X = Cl, Br and I), as well as FeCl- , FeCl2- and FeCl3- when Fe- reacted with the mono, di and tri-chlorobenzenes; reactions between 1,4-dichlorobenzene and Cs- produced Cl- , CsCl- and CsCl2- ; reactions involving iodobenzene also produced, CsI- , CsI2- and AgI- . The results suggest that the reaction to form X- (X = Cl, Br, I and NO2) may be a promising route to improving the detection efficiency by mass spectrometry for such analytes. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Barbara B A Francisco
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Emily Gee
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Jeffery Butson
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Paul M Mayer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, K1N 6N5, Canada
| |
Collapse
|
13
|
Wang Y, Wang C, Li A, Gao J. Biodegradation of pentachloronitrobenzene by Arthrobacter nicotianae
DH19. Lett Appl Microbiol 2015; 61:403-10. [DOI: 10.1111/lam.12476] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/29/2015] [Accepted: 07/29/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Y. Wang
- College of Agronomy; Jilin Agricultural University; Changchun China
| | - C. Wang
- Institute of Special Wild Economic Animal and Plant Science; Chinese Academy of Agricultural Sciences (CAAS); Changchun China
| | - A. Li
- Jilin Entry-Exit Inspection and Quarantine Bureau; Changchun China
| | - J. Gao
- College of Agronomy; Jilin Agricultural University; Changchun China
| |
Collapse
|