1
|
Dong R, Wang X, Li Y, Zhang H, Li X, Song J, Chang F, Feng W, Pang H, Wang J. Soil bacterial diversity and community structure of Suaeda glauca vegetation in the Hetao Irrigation District, Inner Mongolia, China. Front Microbiol 2024; 15:1358783. [PMID: 38939186 PMCID: PMC11210291 DOI: 10.3389/fmicb.2024.1358783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/14/2024] [Indexed: 06/29/2024] Open
Abstract
Exploring the bacterial community in the S. glauca rhizosphere was of great value for understanding how this species adapted to the saline-alkali environment and for the rational development and use of saline-alkali soils. In this study, high-throughput sequencing technology was used to investigate the diversity characteristics and distribution patterns of soil bacterial communities in the rhizosphere of S.glauca-dominated communities in the Hetao Irrigation Distract, Inner Mongolia, China. The relationships among bacterial characteristics, soil physicochemical properties and vegetation in four sampling sites were analyzed. The soil bacterial communities in the rhizosphere of S. glauca-dominated communities were mainly composed of 16 phyla (i.e., Proteobacteria, Actinobacteria, Bacteroidetes, Gemmatimonadetes, Chloroflexi, Acidobacteria, Firmicutes, Planctomycetes, Deinococcus-Thermus, Verrucomicrobia, Saccharibacteria, Cyanobacteria, Nitrospirae, JL-ETNP-Z39, Parcubacteria and Chlorobi), and these populations accounted for more than 99% of the total bacterial community. At the genus level, the main bacterial communities comprised Halomonas, Nitriliruptor, Euzebya and Pelagibius, which accounted for 15.70% of the total bacterial community. An alpha diversity analysis indicated that the richness and diversity of rhizosphere soil bacteria differed significantly among the sampling sites, and the bacterial richness and diversity indices of severe saline-alkali land were higher than those of light and moderate saline-alkali land. The principal component analysis (PCA) and linear discriminant analysis effect size (LEfSe) showed significant differences in the species composition of the rhizosphere soil bacterial community among different sampling sites. A correlation analysis showed that the number of bacterial species exhibited the highest correlation with the soil water content (SWC). The richness and evenness indices were significantly correlated with the SWC and SO4 2-, K+ and Mg2+ concentrations. The electrical conductivity (EC), soluble ions (Na+, CO3 2- + HCO3 -, K+, Ca2+, Mg2+, and SO4 2+), SWC and vegetation coverage (VC) were the main drivers affecting the changes in its community structure. The bacterial community in the rhizosphere of S. glauca enhanced the adaptability of S. glauca to saline-alkali environment by participating in the cycling process of nutrient elements, the decomposition of organic matter and the production of plant growth regulating substances. These results provided a theoretical reference for further study on the relationship among rhizosphere soil microorganisms and salt tolerance in halophytes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jing Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences), Beijing, China
| |
Collapse
|
2
|
Composition and Potential Functions of Rhizobacterial Communities in a Pioneer Plant from Andean Altiplano. DIVERSITY 2021. [DOI: 10.3390/d14010014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Plant microbiota that associate with pioneer plants are essential to their growth and adaptation to harsh conditions found in the Central Volcanic Zone of the Andes. In this sense, the rhizosphere of pioneer species represents a unique opportunity to examine how bacterial communities are recruited and support the growth of plants under abiotic stress conditions, such low nutrient availability, high solar irradiation, water scarcity, soil salinity, etc. In this study, we explored the community composition and potential functions of rhizobacteria obtained from specimens of Parastrephia quadrangularis (Meyen) Cabrera, commonly called Tola, grown on the slopes of the Guallatiri, Isluga, and Lascar volcanoes in the Atacama Desert of Chile by using 16S rRNA amplicon sequencing. Sequence analysis showed that the Actinobacteria, Proteobacteria, Acidobacteria, and Bacteroidetes were the most abundant phyla of the rhizobacterial communities examined. A similar diversity, richness, and abundance of OTUs were also observed in rhizosphere samples obtained from different plants. However, most of OTUs were not shared, suggesting that each plant recruits a specific rhizobacterial communities independently of volcanoes slope. Analyses of predicted functional activity indicated that the functions were mostly attributed to chemoheterotrophy and aerobic chemoheterotrophy, followed by nitrogen cycling (nitrate reduction and denitrification), and animal parasites or symbionts. In addition, co-occurrence analysis revealed that complex rhizobacterial interactions occur in P. quadrangularis rhizosphere and that members of the Patulibacteraceae comprise a keystone taxon. This study extends our understanding on the composition and functions of the rhizobiome, which is pivotal for the adaptability and colonization of pioneer plant to harsh conditions of the Atacama Desert, widely recognized as the driest place on planet Earth.
Collapse
|
3
|
Dynamic Interception Effect of Internal and External Nitrogen and Phosphorus Migration of Ecological Ditches. WATER 2020. [DOI: 10.3390/w12092553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The “ecological ditch” (eco-ditch) is an effective measure used to alleviate agricultural non-point-source pollution. However, information is lacking about the continuous transport characteristics of internal and external nitrogen and phosphorus in the interstitial water of the bottom mud of these ditches and overlying water under dynamic continuous inflow conditions. Understanding of the effect of matrix dams and microbial communities inside eco-ditches on the continuous transport characteristics of the N and P therein needs to be improved. To determine the interception effects of eco-ditches on the transfer of endogenous and exogenous N and P, an eco-ditch combining plants and a matrix dam was built to explore the transport distribution characteristics of N and P in the intermittent water and overlying water in the bottom of the eco-ditch and in the bottom of the soil ditch. We compared and analyzed the composition characteristics of the microbiological communities along the ecological and soil ditches. The research results showed that: (1) The concentration gradient between the interstitial water and the overlying water in the soil ditch is the main reason for the transport and diffusion of pollutants. However, in eco-ditches, the absorption function of plant roots and the differences between the structures of the microbial communities destroy the correlation of this concentration gradient diffusion, especially the effect on ammonium N; (2) a large number of mycelia adhere to the surface of the matrix dam in an eco-ditch, and are conducive to the adsorption and purification of pollutants in the water; (3) Proteobacteria, Chloroflexi, Actinomycetes, and Acidobacteria were the main bacterial groups in the ditches. The aquatic plants in the eco-ditch changed the microenvironment of the sediment, and both the microbial diversity and abundance along the eco-ditch were higher than in the soil ditch.
Collapse
|
4
|
Oberhofer M, Hess J, Leutgeb M, Gössnitzer F, Rattei T, Wawrosch C, Zotchev SB. Exploring Actinobacteria Associated With Rhizosphere and Endosphere of the Native Alpine Medicinal Plant Leontopodium nivale Subspecies alpinum. Front Microbiol 2019; 10:2531. [PMID: 31781058 PMCID: PMC6857621 DOI: 10.3389/fmicb.2019.02531] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/21/2019] [Indexed: 11/24/2022] Open
Abstract
The rhizosphere of plants is enriched in nutrients facilitating growth of microorganisms, some of which are recruited as endophytes. Endophytes, especially Actinobacteria, are known to produce a plethora of bioactive compounds. We hypothesized that Leontopodium nivale subsp. alpinum (Edelweiss), a rare alpine medicinal plant, may serve as yet untapped source for uncommon Actinobacteria associated with this plant. Rhizosphere soil of native Alpine plants was used, after physical and chemical pre-treatments, for isolating Actinobacteria. Isolates were selected based on morphology and identified by 16S rRNA gene-based barcoding. Resulting 77 Actinobacteria isolates represented the genera Actinokineospora, Kitasatospora, Asanoa, Microbacterium, Micromonospora, Micrococcus, Mycobacterium, Nocardia, and Streptomyces. In parallel, Edelweiss plants from the same location were surface-sterilized, separated into leaves, roots, rhizomes, and inflorescence and pooled within tissues before genomic DNA extraction. Metagenomic 16S rRNA gene amplicons confirmed large numbers of actinobacterial operational taxonomic units (OTUs) descending in diversity from roots to rhizomes, leaves and inflorescences. These metagenomic data, when queried with isolate sequences, revealed an overlap between the two datasets, suggesting recruitment of soil bacteria by the plant. Moreover, this study uncovered a profound diversity of uncultured Actinobacteria from Rubrobacteridae, Thermoleophilales, Acidimicrobiales and unclassified Actinobacteria specifically in belowground tissues, which may be exploited by a targeted isolation approach in the future.
Collapse
Affiliation(s)
- Martina Oberhofer
- Pharmaceutical Biotechnology, Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Jaqueline Hess
- Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Marlene Leutgeb
- Pharmaceutical Biotechnology, Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Florian Gössnitzer
- Pharmaceutical Biotechnology, Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Thomas Rattei
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Christoph Wawrosch
- Pharmaceutical Biotechnology, Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Sergey B. Zotchev
- Pharmaceutical Biotechnology, Department of Pharmacognosy, University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Praeg N, Pauli H, Illmer P. Microbial Diversity in Bulk and Rhizosphere Soil of Ranunculus glacialis Along a High-Alpine Altitudinal Gradient. Front Microbiol 2019; 10:1429. [PMID: 31338073 PMCID: PMC6629913 DOI: 10.3389/fmicb.2019.01429] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022] Open
Abstract
Serving as “natural laboratories”, altitudinal gradients can be used to study changes in the distribution of microorganisms in response to changing environmental conditions that typically occur over short geographical distances. Besides, rhizosphere zones of plants are known to be hot-spots for microbial diversity and to contain different microbial communities when compared with surrounding bulk soil. To discriminate the effects of altitude and plants, we investigated the microbial communities in the rhizosphere of Ranunculus glacialis and bulk soil along a high-alpine altitudinal gradient (2,600–3,400 m a.s.l.). The research area of this study was Mount (Mt.) “Schrankogel” in the Central Alps of Tyrol (Austria). Our results point to significantly different microbial diversities and community compositions in the different altitudinal belts. In the case of prokaryotes, environmental parameters could explain 41% of the total variation of soil communities, with pH and temperature being the strongest influencing factors. Comparing the effects derived from fraction (bulk vs. rhizosphere soil) and environmental factors, the effects of the roots of R. glacialis accounted for about one third of the explained variation. Fungal communities on the other hand were nearly exclusively influenced by environmental parameters accounting for 37.4% of the total variation. Both, for altitudinal zones as well as for bulk and rhizosphere fractions a couple of very specific biomarker taxa could be identified. Generally, the patterns of abundance of several taxa did not follow a steady increased or decreased trend along the altitudinal gradient but in many cases a maximal or minimal occurrence was established at mid-altitudes (3,000–3,100 m). This mid-altitudinal zone is a transition zone (the so-called alpine-nival ecotone) between the (lower) alpine grassland/tundra zone and the (upper) sparsely vegetated nival zone and was shown to correspond with the summer snow line. Climate change and the associated increase in temperature will shift this transition zone and thus, might also shift the described microbial patterns and biomarkers.
Collapse
Affiliation(s)
- Nadine Praeg
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Harald Pauli
- Department of Integrative Biology and Biodiversity Research, Institute for Interdisciplinary Mountain Research and University of Natural Resources and Life Sciences Vienna, Austrian Academy of Sciences, Vienna, Austria
| | - Paul Illmer
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Optimized chromogenic dyes-based identification and quantitative evaluation of bacterial l-asparaginase with low/no glutaminase activity bioprospected from pristine niches in Indian trans-Himalaya. 3 Biotech 2019; 9:275. [PMID: 31245239 DOI: 10.1007/s13205-019-1810-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/13/2019] [Indexed: 02/03/2023] Open
Abstract
Here, we report on the isolation of bacterial isolates from Himalayan niches, which produced extracellular l-asparaginase with low/no glutaminase activity. From the 235 isolates, 85 asparaginase positive bacterial isolates were identified by qualitative screening using optimized chromogenic dyes assay. Optimized concentration of different dyes revealed maximum color visualization in phenol red (0.003%). The diversity analysis of asparaginase positive isolates revealed that Proteobacteria (83%) are the most dominant, followed by Actinobacteria (12%), Firmicutes (3%), and Bacteriodetes (2%). Eleven isolates, which represented seven Pseudomonas species, one species each of the genus Arthrobacter, Janthinobacterium, Lelliottia, and Rahnella, were selected for further studies based on highest zone ratio and novel aspects for l-asparaginase production. Of these, five isolates, namely, Pseudomonas sp. PCH133, Pseudomonas sp. PCH146, Pseudomonas sp. PCH182, Rahnella sp. PCH162, and Arthrobacter sp. PCH138, produced l-asparaginase without glutaminase activity after 55 h of growth with the former isolate showing the highest l-asparaginase activity (1.67 U/ml). Interestingly, this is the first report of l-asparaginase production by members of the genera Janthinobacterium, Rahnella, and Lelliottia.
Collapse
|
7
|
Donhauser J, Frey B. Alpine soil microbial ecology in a changing world. FEMS Microbiol Ecol 2018; 94:5017441. [PMID: 30032189 DOI: 10.1093/femsec/fiy099] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/25/2018] [Indexed: 01/22/2023] Open
Abstract
Climate change has a disproportionally large impact on alpine soil ecosystems, leading to pronounced changes in soil microbial diversity and function associated with effects on biogeochemical processes at the local and supraregional scales. However, due to restricted accessibility, high-altitude soils remain largely understudied and a considerable heterogeneity hampers the comparability of different alpine studies. Here, we highlight differences and similarities between alpine and arctic ecosystems, and we discuss the impact of climatic variables and associated vegetation and soil properties on microbial ecology. We consider how microbial alpha-diversity, community structures and function change along altitudinal gradients and with other topographic features such as slope aspect. In addition, we focus on alpine permafrost soils, harboring a surprisingly large unknown microbial diversity and on microbial succession along glacier forefield chronosequences constituting the most thoroughly studied alpine habitat. Finally, highlighting experimental approaches, we present climate change studies showing shifts in microbial community structures and function in response to warming and altered moisture, interestingly with some contradiction. Collectively, despite harsh environmental conditions, many specially adapted microorganisms are able to thrive in alpine environments. Their community structures strongly correlate with climatic, vegetation and soil properties and thus closely mirror the complexity and small-scale heterogeneity of alpine soils.
Collapse
Affiliation(s)
| | - Beat Frey
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| |
Collapse
|
8
|
Singh AK, Dubey SK. Current trends in Bt crops and their fate on associated microbial community dynamics: a review. PROTOPLASMA 2016; 253:663-681. [PMID: 26560114 DOI: 10.1007/s00709-015-0903-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/19/2015] [Accepted: 10/21/2015] [Indexed: 06/05/2023]
Abstract
Cry protein expressing insect-resistant trait is mostly deployed to control major devastating pests and minimize reliance on the conventional pesticides. However, the ethical and environmental issues are the major constraints in their acceptance, and consequently, the cultivation of genetically modified (GM) crops has invited intense debate. Since root exudates of Bacillus thuringiensis (Bt) crops harbor the insecticidal protein, there is a growing concern about the release and accumulation of soil-adsorbed Cry proteins and their impact on non-target microorganisms and soil microbial processes. This review pertains to reports from the laboratory studies and field trials to assess the Bt toxin proteins in soil microbes and the processes determining the soil quality in conjunction with the existing hypothesis and molecular approaches to elucidate the risk posed by the GM crops. Ecological perturbations hinder the risk aspect of soil microbiota in response to GM crops. Therefore, extensive research based on in vivo and interpretation of results using high-throughput techniques such as NGS on risk assessment are imperative to evaluate the impact of Bt crops to resolve the controversy related to their commercialization. But more studies are needed on the risk associated with stacked traits. Such studies would strengthen our knowledge about the plant-microbe interactions.
Collapse
Affiliation(s)
| | - Suresh Kumar Dubey
- Department of Botany, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
9
|
Li JG, Shen MC, Hou JF, Li L, Wu JX, Dong YH. Effect of different levels of nitrogen on rhizosphere bacterial community structure in intensive monoculture of greenhouse lettuce. Sci Rep 2016; 6:25305. [PMID: 27121918 PMCID: PMC4848521 DOI: 10.1038/srep25305] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 04/14/2016] [Indexed: 01/31/2023] Open
Abstract
Pyrosequencing-based analyses revealed significant effects among low (N50), medium (N80), and high (N100) fertilization on community composition involving a long-term monoculture of lettuce in a greenhouse in both summer and winter. The non-fertilized control (CK) treatment was characterized by a higher relative abundance of Actinobacteria, Acidobacteria, and Chloroflexi; however, the average abundance of Firmicutes typically increased in summer, and the relative abundance of Bacteroidetes increased in winter in the N-fertilized treatments. Principle component analysis showed that the distribution of the microbial community was separated by a N gradient with N80 and N100 in the same group in the summer samples, while CK and N50 were in the same group in the winter samples, with the other N-level treatments existing independently. Redundancy analysis revealed that available N, NO3(-)-N, and NH4(+)-N, were the main environmental factors affecting the distribution of the bacterial community. Correlation analysis showed that nitrogen affected the shifts of microbial communities by strongly driving the shifts of Firmicutes, Bacteroidetes, and Proteobacteria in summer samples, and Bacteroidetes, Actinobacteria, and Acidobacteria in winter samples. The study demonstrates a novel example of rhizosphere bacterial diversity and the main factors influencing rizosphere microbial community in continuous vegetable cropping within an intensive greenhouse ecosystem.
Collapse
Affiliation(s)
- Jian-Gang Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu Province, P.R. China
| | - Min-Chong Shen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu Province, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin-Feng Hou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu Province, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ling Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu Province, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun-Xia Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu Province, P.R. China
| | - Yuan-Hua Dong
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu Province, P.R. China
| |
Collapse
|
10
|
|