1
|
Miao Y, Chen G, Xi X, Ma C, Wang L, Burrows JF, Duan J, Zhou M, Chen T. Discovery and Rational Design of a Novel Bowman-Birk Related Protease Inhibitor. Biomolecules 2019; 9:biom9070280. [PMID: 31337113 PMCID: PMC6681222 DOI: 10.3390/biom9070280] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 01/10/2023] Open
Abstract
Anuran amphibian skin secretions are a rich source of peptides, many of which represent novel protease inhibitors and can potentially act as a source for protease inhibitor drug discovery. In this study, a novel bioactive Bowman-Birk type inhibitory hexadecapeptide of the Ranacyclin family from the defensive skin secretion of the Fukien gold-striped pond frog, Pelophlax plancyi fukienesis, was successfully isolated and identified, named PPF-BBI. The primary structure of the biosynthetic precursor was deduced from a cDNA sequence cloned from a skin-derived cDNA library, which contains a consensus motif representative of the Bowman-Birk type inhibitor. The peptide was chemically synthesized and displayed a potent inhibitory activity against trypsin (Ki of 0.17 µM), as well as an inhibitory activity against tryptase (Ki of 30.73 µM). A number of analogues of this peptide were produced by rational design. An analogue, which substituted the lysine (K) at the predicted P1 position with phenylalanine (F), exhibited a potent chymotrypsin inhibitory activity (Ki of 0.851 µM). Alternatively, a more potent protease inhibitory activity, as well as antimicrobial activity, was observed when P16 was replaced by lysine, forming K16-PPF-BBI. The addition of the cell-penetrating peptide Tat with a trypsin inhibitory loop resulted in a peptide with a selective inhibitory activity toward trypsin, as well as a strong antifungal activity. This peptide also inhibited the growth of two lung cancer cells, H460 and H157, demonstrating that the targeted modifications of this peptide could effectively and efficiently alter its bioactivity.
Collapse
Affiliation(s)
- Yuxi Miao
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland BT7 1NN, UK
| | - Guanzhu Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland BT7 1NN, UK
| | - Xinping Xi
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland BT7 1NN, UK
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland BT7 1NN, UK.
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland BT7 1NN, UK
| | - James F Burrows
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland BT7 1NN, UK
| | - Jinao Duan
- Jiangsu Key Laboratory for Traditional Chinese Medicine (TCM) Formulae Research, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland BT7 1NN, UK.
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland BT7 1NN, UK
| |
Collapse
|
2
|
Host Defense Peptides from Asian Frogs as Potential Clinical Therapies. Antibiotics (Basel) 2015; 4:136-59. [PMID: 27025618 PMCID: PMC4790330 DOI: 10.3390/antibiotics4020136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/28/2015] [Accepted: 03/04/2015] [Indexed: 01/12/2023] Open
Abstract
Host defense peptides (HDPs) are currently major focal points of medical research as infectious microbes are gaining resistance to existing drugs. They are effective against multi-drug resistant pathogens due to their unique primary target, biological membranes, and their peculiar mode of action. Even though HDPs from 60 Asian frog species belonging to 15 genera have been characterized, research into these peptides is at a very early stage. The purpose of this review is to showcase the status of peptide research in Asia. Here we provide a summary of HDPs from Asian frogs.
Collapse
|