1
|
Rammal S, Abou Abdallah F, Attieh C, El Mounajjed Z, Semaan W, Chebly A. Complex karyotypes in hematologic disorders: a 12-year single-center study from Lebanon. Front Oncol 2024; 14:1480793. [PMID: 39512772 PMCID: PMC11540823 DOI: 10.3389/fonc.2024.1480793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
Conventional cytogenetic analysis is an important tool for the diagnosis of many hematologic disorders (HD). A karyotype is designed as « complex » when several alterations are detected. However, there is no clear consensus on the exact definition of a complex karyotype (CK), and there is a lack of studies that exclusively analyze CK in the literature. Complex karyotypes were analyzed over a period of 12 years at the Jacques Loiselet Center for Medical Genetics and Genomics (CGGM) at Saint Joseph University in Beirut (USJ) in Lebanon. 255 CK were analyzed with their associated chromosomal abnormalities (CA) detected. Out of 255 patients, 59.22% were males with a mean age of 59 years. The most common anomaly associated with CK was hyperdiploidy with a prevalence of 22.41%, which is different from a previously published study. To our knowledge, this represents the largest series of CK, particularly within the Middle East region. This study underscores the critical role of conventional cytogenetics in detecting CK, ultimately contributing to improved management of HD. Further investigations focusing on CK are needed.
Collapse
Affiliation(s)
- Souraya Rammal
- Faculty of Medicine, Saint Joseph University of Beirut (USJ), Beirut, Lebanon
| | - Farid Abou Abdallah
- Faculty of Medicine, Saint Joseph University of Beirut (USJ), Beirut, Lebanon
| | - Charbel Attieh
- Center Jacques Loiselet for Medical Genetics and Genomics (CGGM), Faculty of Medicine, Saint Joseph University of Beirut (USJ), Beirut, Lebanon
| | - Zeinab El Mounajjed
- Center Jacques Loiselet for Medical Genetics and Genomics (CGGM), Faculty of Medicine, Saint Joseph University of Beirut (USJ), Beirut, Lebanon
| | - Warde Semaan
- Center Jacques Loiselet for Medical Genetics and Genomics (CGGM), Faculty of Medicine, Saint Joseph University of Beirut (USJ), Beirut, Lebanon
| | - Alain Chebly
- Faculty of Medicine, Saint Joseph University of Beirut (USJ), Beirut, Lebanon
- Center Jacques Loiselet for Medical Genetics and Genomics (CGGM), Faculty of Medicine, Saint Joseph University of Beirut (USJ), Beirut, Lebanon
| |
Collapse
|
2
|
Wei D, Liang X, Huang M, Wang C, Ye Z, Zhang T, Zhang J. Targeting histone deacetylase 1 (HDAC1) in the bone marrow stromal cells revers imatinib resistance by modulating IL-6 in Ph + acute lymphoblastic leukemia. Ann Hematol 2024; 103:3015-3027. [PMID: 38847852 DOI: 10.1007/s00277-024-05830-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/31/2024] [Indexed: 07/28/2024]
Abstract
Bone marrow stromal cells (BMSCs) can promote the growth of Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL). Histone deacetylases (HDACs) play essential roles in the proliferation and apoptosis resistance of Ph + ALL cells. In our previous study, inhibiting histone deacetylase 1 (HDAC1) decreases the proliferation of Ph + ALL cells. However, little is known regarding how HDAC1 in BMSCs of Ph + ALL patients affects the imatinib (IM) resistance. Therefore, the present work examined the roles of HDAC1 in BMSCs. Overexpression of HDAC1 was found in BMSCs of Ph + ALL patients with IM resistance. In addition, the Ph + ALL cell line SUP-B15 was co-cultured with BMSCs after lentivirus transfection for regulating HDAC1 expression. Knockdown of HDAC1 within BMSCs elevated the IM-mediated SUP-B15 cell apoptosis, while increasing HDAC1 expression had an opposite effect. IL-6 in BMSCs, which is an important factor for the microenvironment-associated chemoresistance, showed evident up-regulation in HDAC1-upregulated BMSCs and down-regulation in HDAC1-downregulated BMSCs. While recombinant IL-6 (rIL-6) can reversed the sensitivity of SUP-B15 cells to IM induced by downregulating HDAC1 expression in BMSCs. HDAC1 showed positive regulation on IL-6 transcription and secretion. Moreover, IL-6 secretion induced by HDAC1 in BMSCs might enhance IM resistance in Ph + ALL cells. With regard to the underlying molecular mechanism, NF-κB, an important signal responsible for IL-6 transcription in BMSCs, mediated the HDAC1-regulated IL-6 expression. Collectively, this study facilitated to develop HDAC1 inhibitors based not only the corresponding direct anti-Ph + ALL activity but also the regulation of bone marrow microenvironment.
Collapse
Affiliation(s)
- Danna Wei
- Department of Pediatric Hematology, Guiyang Maternal and Child Health Care Hospital, Guiyang Children's Hospital, Guiyang, 550002, China
| | - Xiaoling Liang
- Department of Pediatric Hematology, Guiyang Maternal and Child Health Care Hospital, Guiyang Children's Hospital, Guiyang, 550002, China
| | - Meiling Huang
- Department of Pediatric Hematology, Guiyang Maternal and Child Health Care Hospital, Guiyang Children's Hospital, Guiyang, 550002, China
| | - Caili Wang
- Department of Pediatric Hematology, Guiyang Maternal and Child Health Care Hospital, Guiyang Children's Hospital, Guiyang, 550002, China
| | - Zhangmin Ye
- Department of Pediatric Hematology, Guiyang Maternal and Child Health Care Hospital, Guiyang Children's Hospital, Guiyang, 550002, China
| | - Tianzhuo Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Jingrong Zhang
- Department of Pediatric Hematology, Guiyang Maternal and Child Health Care Hospital, Guiyang Children's Hospital, Guiyang, 550002, China.
| |
Collapse
|
3
|
Hekmatshoar Y, Ozkan T, Alp M, Gurkan-Alp AS, Sunguroglu A. Some 2-[4-(1H-benzimidazol-1-yl) phenyl]-1H-benzimidazole derivatives overcome imatinib resistance by induction of apoptosis and reduction of P-glycoprotein activity. Chem Biol Drug Des 2023; 102:1521-1533. [PMID: 37722976 DOI: 10.1111/cbdd.14343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 09/20/2023]
Abstract
Imatinib (IMA) is a tyrosine kinase inhibitor (TKI) introduced for the chronic myeloid leukemia (CML) therapy. Emergence of IMA resistance leads to the relapse and failure in CML therapy. Benzimidazole is a heterocyclic organic compound which is widely investigated for the development of anticancer drugs. In this study, we aimed to explore the anticancer effects of some 2-[4-(1H-benzimidazol-1-yl) phenyl]-1H-benzimidazole derivatives on K562S (IMA-sensitive) and K562R (IMA-resistant) cells. To analyze the cytotoxic and apoptotic effects of the compounds, K562S, K562R, and L929 cells were exposed to increasing concentrations of the derivatives. Cytotoxic effects of compounds on cell viability were analyzed with MTT assay. Apoptosis induction, caspase3/7 activity were investigated with flow cytometry and BAX, BIM, and BAD genes expression levels were analyzed with qRT-PCR. Rhodamine123 (Rho-123) staining assays were carried out to evaluate the effect of compounds on P-glycoprotein (P-gp) activity. The hit compounds were screened using molecular docking, and the binding preference of each compounds to BCR-ABL protein was evaluated. Our results indicated that compounds triggered cytotoxicity, caspase3/7 activation in K562S and K562R cells. Rho-123 staining showed that compounds inhibited P-gp activity in K562R cells. Overall, our results reveal some benzimidazole derivatives as potential anticancer agents to overcome IMA resistance in CML.
Collapse
Affiliation(s)
- Yalda Hekmatshoar
- Department of Medical Biology, Faculty of Medicine, Altinbas University, Istanbul, Turkey
- Department of Medical Biology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Tulin Ozkan
- Department of Medical Biology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Mehmet Alp
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - A Selen Gurkan-Alp
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Asuman Sunguroglu
- Department of Medical Biology, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
4
|
Cort-Donmez A, Olgen S, Guner E, Akgun-Cagliyan G, Hanikoglu F, Tunc-Ata M, Kilic-Toprak E. Investigating the Activity of Indole-2-on Derivative Src Kinase Inhibitors Against Chronic Myeloid Leukemia Cells. Anticancer Agents Med Chem 2023; 23:113-122. [PMID: 35570519 DOI: 10.2174/1871520622666220513114205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Src family tyrosine kinases play a potential role in Bcr-Abl-induced leukemogenesis. Src kinase inhibitors are reported as selective inhibitors of chronic myeloid leukemia. OBJECTIVE Since Src kinase inhibitors have an inhibitive effect on chronic myeloid leukemia, indole derivatives (C-1, C-2, C-3) previously found as potent inhibitors of Src kinase were tested against chronic myeloid leukemia in this study. METHODS Cell viability of K562 and R/K562 cells, antiproliferative and antioxidant effects, and inhibition profiles of Bcr-Abl kinase of indole derivatives were determined compared to dasatinib and imatinib. RESULTS The results showed that compounds affected cell proliferation and decreased the levels of Bcr/Abl. These results confirmed that the antileukemic activity of compounds was related to Bcr/Abl expression. Docking studies also presented that compounds are inhibitors of both Src and Abl kinases. Calculation of drug-like properties showed that compounds could be potential drug candidates. CONCLUSION Among indole-2-on derivatives, previously identified as Src kinase inhibitors, C-2 has been discovered to be a strong anticancer drug that is active against susceptible and resistant K562 cell lines and induces apoptosis.
Collapse
Affiliation(s)
- Aysegul Cort-Donmez
- Department of Medical Biochemistry, Faculty of Medicine, Pamukkale University 20160, Denizli, Turkey
| | - Sureyya Olgen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University 34010, İstanbul, Turkey
| | - Ersin Guner
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University 34010, İstanbul, Turkey
| | - Gulsum Akgun-Cagliyan
- Department of Hematology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Ferhat Hanikoglu
- Department of Medical Biochemistry, Alanya Alaaddin Keykubat University 07450, Alanya, Antalya, Turkey
| | - Melek Tunc-Ata
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Emine Kilic-Toprak
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
5
|
Akgun‑Cagliyan G, Cort‑Donmez A, Kilic‑Toprak E, Altintas F. Verbascoside potentiates the effect of tyrosine kinase inhibitors on the induction of apoptosis and oxidative stress via the Abl-mediated MAPK signalling pathway in chronic myeloid leukaemia. Exp Ther Med 2022; 24:514. [PMID: 35837042 PMCID: PMC9257957 DOI: 10.3892/etm.2022.11441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/18/2022] [Indexed: 11/05/2022] Open
Abstract
Verbascoside (Verb) may exhibit potential antitumour activities in leukaemia. The present study investigated the effect of Verb, in combination with imatinib (IM), dasatinib (Das), lipopolysaccharide (LPS) and TNF, on cell survival, Abl expression, apoptosis, oxidative stress and the MAPK pathway in chronic myeloid leukaemia (CML) cells. Cell viability was determined using the WST-8 assay in K562 and R-K562 cells treated with Verb and/or IM, Das, LPS and TNF. Apoptosis and DNA damage in CML cells was detected by caspase-3 and comet analysis. The protein levels of Abl (Phospho-Tyr412), and total/phosphorylated p38, JNK and ERK in CML cells were analysed using a Colorimetric Cell-Based Assay. Oxidative stress was examined using total antioxidant and oxidant status assays. Treatment with Verb and/or tyrosine kinase inhibitors (TKIs), LPS and TNF resulted in a significant decrease in the Tyr-412 phosphorylation of Abl in K562 and R-K562 cells. In addition, cotreatment with Verb and IM or Das additively induced apoptosis by activating caspase-3 levels in both cell lines. Activation of p38 and JNK can result in growth arrest and cell death, whereas ERK stimulation results in cell division and differentiation. The present study demonstrated that cotreatment with Verb and TKIs suppressed phosphorylated-ERK1/2, whereas the levels of phosphorylated-p-38 and phosphorylated-JNK were significantly elevated by Verb and/or IM, Das, LPS and TNF, thus suggesting that Abl and Src inhibition could be involved in the effects of Verb on MAPK signalling in R-K562 cells. Furthermore, Verb elevated reactive oxygen species levels additively with TKIs in both cell lines by increasing the oxidant capacity and decreasing the antioxidant capacity. In conclusion, anti-leukemic mechanisms of Verb may be mediated by Abl protein and regulation of its downstream p38-MAPK/JNK pathway, caspase-3 and oxidative stress in CML cells.
Collapse
Affiliation(s)
- Gulsum Akgun‑Cagliyan
- Department of Hematology, Faculty of Medicine, Pamukkale University, 20160 Denizli, Turkey
| | - Aysegul Cort‑Donmez
- Department of Biochemistry, Faculty of Medicine, Pamukkale University, 20160 Denizli, Turkey
| | - Emine Kilic‑Toprak
- Department of Physiology, Faculty of Medicine, Pamukkale University, 20160 Denizli, Turkey
| | - Fatih Altintas
- Department of Physiology, Faculty of Medicine, Pamukkale University, 20160 Denizli, Turkey
| |
Collapse
|
6
|
Solayappan M, Azlan A, Khor KZ, Yik MY, Khan M, Yusoff NM, Moses EJ. Utilization of CRISPR-Mediated Tools for Studying Functional Genomics in Hematological Malignancies: An Overview on the Current Perspectives, Challenges, and Clinical Implications. Front Genet 2022; 12:767298. [PMID: 35154242 PMCID: PMC8834884 DOI: 10.3389/fgene.2021.767298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/17/2021] [Indexed: 11/26/2022] Open
Abstract
Hematological malignancies (HM) are a group of neoplastic diseases that are usually heterogenous in nature due to the complex underlying genetic aberrations in which collaborating mutations enable cells to evade checkpoints that normally safeguard it against DNA damage and other disruptions of healthy cell growth. Research regarding chromosomal structural rearrangements and alterations, gene mutations, and functionality are currently being carried out to understand the genomics of these abnormalities. It is also becoming more evident that cross talk between the functional changes in transcription and proteins gives the characteristics of the disease although specific mutations may induce unique phenotypes. Functional genomics is vital in this aspect as it measures the complete genetic change in cancerous cells and seeks to integrate the dynamic changes in these networks to elucidate various cancer phenotypes. The advent of CRISPR technology has indeed provided a superfluity of benefits to mankind, as this versatile technology enables DNA editing in the genome. The CRISPR-Cas9 system is a precise genome editing tool, and it has revolutionized methodologies in the field of hematology. Currently, there are various CRISPR systems that are used to perform robust site-specific gene editing to study HM. Furthermore, experimental approaches that are based on CRISPR technology have created promising tools for developing effective hematological therapeutics. Therefore, this review will focus on diverse applications of CRISPR-based gene-editing tools in HM and its potential future trajectory. Collectively, this review will demonstrate the key roles of different CRISPR systems that are being used in HM, and the literature will be a representation of a critical step toward further understanding the biology of HM and the development of potential therapeutic approaches.
Collapse
Affiliation(s)
- Maheswaran Solayappan
- Regenerative Medicine Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Malaysia
| | - Adam Azlan
- Regenerative Medicine Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Kang Zi Khor
- Regenerative Medicine Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Mot Yee Yik
- Regenerative Medicine Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Matiullah Khan
- Department of Pathology, Faculty of Medicine, AIMST University, Bedong, Malaysia
| | - Narazah Mohd Yusoff
- Regenerative Medicine Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Emmanuel Jairaj Moses
- Regenerative Medicine Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
7
|
Zhao Y, Peng H. The Role of N 6-Methyladenosine (m 6A) Methylation Modifications in Hematological Malignancies. Cancers (Basel) 2022; 14:332. [PMID: 35053496 PMCID: PMC8774242 DOI: 10.3390/cancers14020332] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/25/2021] [Accepted: 01/05/2022] [Indexed: 12/30/2022] Open
Abstract
Epigenetics is identified as the study of heritable modifications in gene expression and regulation that do not involve DNA sequence alterations, such as DNA methylation, histone modifications, etc. Importantly, N6-methyladenosine (m6A) methylation modification is one of the most common epigenetic modifications of eukaryotic messenger RNA (mRNA), which plays a key role in various cellular processes. It can not only mediate various RNA metabolic processes such as RNA splicing, translation, and decay under the catalytic regulation of related enzymes but can also affect the normal development of bone marrow hematopoiesis by regulating the self-renewal, proliferation, and differentiation of pluripotent stem cells in the hematopoietic microenvironment of bone marrow. In recent years, numerous studies have demonstrated that m6A methylation modifications play an important role in the development and progression of hematologic malignancies (e.g., leukemia, lymphoma, myelodysplastic syndromes [MDS], multiple myeloma [MM], etc.). Targeting the inhibition of m6A-associated factors can contribute to increased susceptibility of patients with hematologic malignancies to therapeutic agents. Therefore, this review elaborates on the biological characteristics and normal hematopoietic regulatory functions of m6A methylation modifications and their role in the pathogenesis of hematologic malignancies.
Collapse
Affiliation(s)
- Yan Zhao
- Hunan Province Key Laboratory of Basic and Applied Hematology, Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha 410011, China;
- Institute of Hematology, Central South University, Changsha 410011, China
| | - Hongling Peng
- Hunan Province Key Laboratory of Basic and Applied Hematology, Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha 410011, China;
- Institute of Hematology, Central South University, Changsha 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha 410011, China
| |
Collapse
|
8
|
Nazila Samimi Tehrani, Masoumi M, Chekin F, Baei MS. Hybrid Interface Based on Carboxymethyl Cellulose/N-Doped Porous Reduced Graphene Oxide for On-Demand Electrochemical Release of Imatinib. RUSS J ELECTROCHEM+ 2021. [DOI: 10.1134/s1023193521080139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Głowacki S, Synowiec E, Szwed M, Toma M, Skorski T, Śliwiński T. Relationship between Oxidative Stress and Imatinib Resistance in Model Chronic Myeloid Leukemia Cells. Biomolecules 2021; 11:biom11040610. [PMID: 33924068 PMCID: PMC8074285 DOI: 10.3390/biom11040610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 01/19/2023] Open
Abstract
Chronic myeloid leukemia (CML) develops due to the presence of the BCR-ABL1 protein, a target of tyrosine kinase inhibitors (TKIs), such as imatinib (IM), used in a CML therapy. CML eradication is a challenge due to developing resistance to TKIs. BCR-ABL1 induces endogenous oxidative stress leading to genomic instability and development of TKI resistance. Model CML cells susceptible or resistant to IM, as well as wild-type, non-cancer cells without the BCR-ABL1 protein were treated with IM, hydrogen peroxide (H2O2) as a model trigger of external oxidative stress, or with IM+H2O2. Accumulation of reactive oxygen species (ROS), DNA damage, activity of selected antioxidant enzymes and glutathione (GSH), and mitochondrial potential (MMP) were assessed. We observed increase in ROS accumulation in BCR-ABL1 positive cells and distinct levels of ROS accumulation in IM-susceptible cells when compared to IM-resistant ones, as well as increased DNA damage caused by IM action in sensitive cells. Depletion of GSH levels and a decreased activity of glutathione peroxidase (GPx) in the presence of IM was higher in the cells susceptible to IM. IM-resistant cells showed an increase of catalase activity and a depletion of MMP. BCR-ABL1 kinase alters ROS metabolism, and IM resistance is accompanied by the changes in activity of GPx, catalase, and alterations in MMP.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/toxicity
- Catalase/metabolism
- Cell Line, Tumor
- DNA Damage
- Drug Resistance, Neoplasm
- Fusion Proteins, bcr-abl/genetics
- Glutathione/metabolism
- Glutathione Peroxidase/metabolism
- Imatinib Mesylate/toxicity
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Membrane Potential, Mitochondrial
- Mice
- Oxidative Stress
Collapse
Affiliation(s)
- Sylwester Głowacki
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Street, 90-236 Lodz, Poland; (S.G.); (E.S.); (M.T.)
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Street, 90-236 Lodz, Poland; (S.G.); (E.S.); (M.T.)
| | - Marzena Szwed
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Street, 90-236 Lodz, Poland;
| | - Monika Toma
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Street, 90-236 Lodz, Poland; (S.G.); (E.S.); (M.T.)
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA;
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Street, 90-236 Lodz, Poland; (S.G.); (E.S.); (M.T.)
- Correspondence:
| |
Collapse
|
10
|
Okay M, Haznedaroglu IC. Protein Kinases in Hematological Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:383-393. [PMID: 33539024 DOI: 10.1007/978-3-030-49844-3_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell signaling is an important part of the complex system of molecular communication that governs basic cellular activities and coordinates cell cycle machinery. Pathological alterations in the cellular information processing may be responsible for the diseases such as cancer. Numerous diseases may be treated effectively via the pharmacological management of cellular signaling. Protein kinases (PK) have significantly important roles in the cell signal transduction process. Protein kinases phosphorylate serine, threonine, tyrosine and histidine amino acids in a wide variety of molecular networks. Two main PK groups are distinguished; serine/threonine kinase and tyrosine kinases. MAPK (mitogen-activated protein kinases), ERK, EGFR (epidermal growth factor receptor), src, abl, FAK (focal adesion kinase), and JAK (janus family kinase) are considered as the main PK molecular networks. Protein kinases are closely related to the pathobiology of hematologic neoplastic disorders. For instance; JAKV617F point mutation-causing polycythemia vera and essential thrombocytosis occur at the position 617 in the JH2 domain of the JAK2 gene. The protein kinase inhibitor drugs targeting specific kinase molecules have already been developed and widely used in the field of Clinical Hematology. The existence of a local renin-angiotensin system (RAS) specific to the hematopoietic bone marrow (BM) microenvironment had been proposed two decades ago. Local BM RAS is important in hematopoietic stem cell biology and microenvironment. There are interactions among the local BM RAS and PK. For example, ACE2-ang(1-7)-Mas axis inhibits p38 MAPK/NF-КB signaling pathway. The Local BM RAS may have a role in the effect on PK in this biological spectrum. The aim of this review is to outline the functions of PKs in the pathobiology of hematologic neoplastic disorders.
Collapse
Affiliation(s)
- Mufide Okay
- Hacettepe University, Medical School, Department of Hematology, Ankara, Turkey
| | | |
Collapse
|
11
|
Hamid AB, Petreaca RC. Secondary Resistant Mutations to Small Molecule Inhibitors in Cancer Cells. Cancers (Basel) 2020; 12:cancers12040927. [PMID: 32283832 PMCID: PMC7226513 DOI: 10.3390/cancers12040927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
Secondary resistant mutations in cancer cells arise in response to certain small molecule inhibitors. These mutations inevitably cause recurrence and often progression to a more aggressive form. Resistant mutations may manifest in various forms. For example, some mutations decrease or abrogate the affinity of the drug for the protein. Others restore the function of the enzyme even in the presence of the inhibitor. In some cases, resistance is acquired through activation of a parallel pathway which bypasses the function of the drug targeted pathway. The Catalogue of Somatic Mutations in Cancer (COSMIC) produced a compendium of resistant mutations to small molecule inhibitors reported in the literature. Here, we build on these data and provide a comprehensive review of resistant mutations in cancers. We also discuss mechanistic parallels of resistance.
Collapse
|
12
|
Determination of comprehensive in silico determinants as a strategy for identification of novel PI3Kα inhibitors. Struct Chem 2019. [DOI: 10.1007/s11224-019-01303-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Braumann S, Baldus S, Pfister R. Molecular mechanisms underlying cardiotoxicity of novel cancer therapeutics. J Thorac Dis 2019; 10:S4335-S4343. [PMID: 30701101 DOI: 10.21037/jtd.2018.10.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Novel cancer therapeutics contribute to a steadily declining cancer mortality. However, several of these new therapies target pathways also involved in the cardiovascular system thus causing cardiotoxic side effects such as chemotherapy-induced heart failure (CIHF). This might limit the applicability of these effective treatments in a relevant number of patients. Furthermore, given the improving cancer survival rates, chemotherapy-induced cardiotoxic complications receive increasing attention given their potential impact on long-term morbidity and mortality. The understanding of molecular mechanisms that underlie CIHF is crucial for future improvement of pharmacodynamics of these therapeutics but also for developing specific interventions to prevent CIHF. Here, we discuss molecular mechanisms underlying CIHF of novel cancer therapeutics including a short synopsis on clinical management of patients suffering from CIHF.
Collapse
Affiliation(s)
- Simon Braumann
- Department of Cardiology, Heart Center, University of Cologne, Cologne Cardiovascular Research Center, Cologne, Germany
| | - Stephan Baldus
- Department of Cardiology, Heart Center, University of Cologne, Cologne Cardiovascular Research Center, Cologne, Germany
| | - Roman Pfister
- Department of Cardiology, Heart Center, University of Cologne, Cologne Cardiovascular Research Center, Cologne, Germany
| |
Collapse
|
14
|
Posselt G, Wiesauer M, Chichirau BE, Engler D, Krisch LM, Gadermaier G, Briza P, Schneider S, Boccellato F, Meyer TF, Hauser-Kronberger C, Neureiter D, Müller A, Wessler S. Helicobacter pylori-controlled c-Abl localization promotes cell migration and limits apoptosis. Cell Commun Signal 2019; 17:10. [PMID: 30704478 PMCID: PMC6357398 DOI: 10.1186/s12964-019-0323-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Deregulated c-Abl activity has been intensively studied in a variety of solid tumors and leukemia. The class-I carcinogen Helicobacter pylori (Hp) activates the non-receptor tyrosine kinase c-Abl to phosphorylate the oncoprotein cytotoxin-associated gene A (CagA). The role of c-Abl in CagA-dependent pathways is well established; however, the knowledge of CagA-independent c-Abl processes is scarce. METHODS c-Abl phosphorylation and localization were analyzed by immunostaining and immunofluorescence. Interaction partners were identified by tandem-affinity purification. Cell elongation and migration were analyzed in transwell-filter experiments. Apoptosis and cell survival were examined by FACS analyses and MTT assays. In mice experiments and human biopsies, the involvement of c-Abl in Hp pathogenesis was investigated. RESULTS Here, we investigated the activity and subcellular localization of c-Abl in vitro and in vivo and unraveled the contribution of c-Abl in CagA-dependent and -independent pathways to gastric Hp pathogenesis. We report a novel mechanism and identified strong c-Abl threonine 735 phosphorylation (pAblT735) mediated by the type-IV secretion system (T4SS) effector D-glycero-β-D-manno-heptose-1,7-bisphosphate (βHBP) and protein kinase C (PKC) as a new c-Abl kinase. pAblT735 interacted with 14-3-3 proteins, which caused cytoplasmic retention of c-Abl, where it potentiated Hp-mediated cell elongation and migration. Further, the nuclear exclusion of pAblT735 attenuated caspase-8 and caspase-9-dependent apoptosis. Importantly, in human patients suffering from Hp-mediated gastritis c-Abl expression and pAblT735 phosphorylation were drastically enhanced as compared to type C gastritis patients or healthy individuals. Pharmacological inhibition using the selective c-Abl kinase inhibitor Gleevec confirmed that c-Abl plays an important role in Hp pathogenesis in a murine in vivo model. CONCLUSIONS In this study, we identified a novel regulatory mechanism in Hp-infected gastric epithelial cells by which Hp determines the subcellular localization of activated c-Abl to control Hp-mediated EMT-like processes while decreasing cell death.
Collapse
Affiliation(s)
- Gernot Posselt
- Department of Biosciences, Division of Microbiology, University of Salzburg, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020 Salzburg, Austria
| | - Maria Wiesauer
- Department of Biosciences, Division of Microbiology, University of Salzburg, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020 Salzburg, Austria
| | - Bianca E. Chichirau
- Department of Biosciences, Division of Microbiology, University of Salzburg, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020 Salzburg, Austria
| | - Daniela Engler
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Linda M. Krisch
- Department of Biosciences, Division of Microbiology, University of Salzburg, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020 Salzburg, Austria
| | - Gabriele Gadermaier
- Department of Biosciences, Division of Allergy and Immunology, University of Salzburg, Paris-Lodron University of Salzburg, Hellbrunner Str. 34, A-5020 Salzburg, Austria
| | - Peter Briza
- Department of Biosciences, Division of Allergy and Immunology, University of Salzburg, Paris-Lodron University of Salzburg, Hellbrunner Str. 34, A-5020 Salzburg, Austria
| | - Sabine Schneider
- Paul-Ehrlich-Institute, Paul-Ehrlich-Str. 51-59, D-63225 Langen, Germany
| | - Francesco Boccellato
- Max Planck Institute for Infection Biology, Charitéplatz 1, D-10117 Berlin, Germany
| | - Thomas F. Meyer
- Max Planck Institute for Infection Biology, Charitéplatz 1, D-10117 Berlin, Germany
| | - Cornelia Hauser-Kronberger
- Department of Pathology, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, A-5020 Salzburg, Austria
| | - Daniel Neureiter
- Department of Pathology, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, A-5020 Salzburg, Austria
- Cancer Cluster Salzburg, University of Salzburg, A-5020 Salzburg, Austria
| | - Anne Müller
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Silja Wessler
- Department of Biosciences, Division of Microbiology, University of Salzburg, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020 Salzburg, Austria
- Cancer Cluster Salzburg, University of Salzburg, A-5020 Salzburg, Austria
| |
Collapse
|
15
|
Ankathil R, Azlan H, Dzarr AA, Baba AA. Pharmacogenetics and the treatment of chronic myeloid leukemia: how relevant clinically? An update. Pharmacogenomics 2018; 19:475-393. [PMID: 29569526 DOI: 10.2217/pgs-2017-0193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite the excellent efficacy and improved clinical responses obtained with imatinib mesylate (IM), development of resistance in a significant proportion of chronic myeloid leukemia (CML) patients on IM therapy have emerged as a challenging problem in clinical practice. Resistance to imatinib can be due to heterogeneous array of factors involving BCR/ABL-dependent and BCR/ABL-independent pathways. Although BCR/ABL mutation is the major contributory factor for IM resistance, reduced bio-availability of IM in leukemic cells is also an important pharmacokinetic factor that contributes to development of resistance to IM in CML patients. The contribution of polymorphisms of the pharmacogenes in relation to IM disposition and treatment outcomes have been studied by various research groups in numerous population cohorts. However, the conclusions arising from these studies have been highly inconsistent. This review encompasses an updated insight into the impact of pharmacogenetic variability on treatment response of IM in CML patients.
Collapse
Affiliation(s)
- Ravindran Ankathil
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Husin Azlan
- Haemato-Oncology Unit & Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Abu Abdullah Dzarr
- Haemato-Oncology Unit & Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Abdul Aziz Baba
- Department of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Akram AM, Iqbal Z, Akhtar T, Khalid AM, Sabar MF, Qazi MH, Aziz Z, Sajid N, Aleem A, Rasool M, Asif M, Aloraibi S, Aljamaan K, Iqbal M. Presence of novel compound BCR-ABL mutations in late chronic and advanced phase imatinib sensitive CML patients indicates their possible role in CML progression. Cancer Biol Ther 2017; 18:214-221. [PMID: 28278078 PMCID: PMC5450736 DOI: 10.1080/15384047.2017.1294289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/19/2017] [Accepted: 02/08/2017] [Indexed: 02/08/2023] Open
Abstract
BCR-ABL kinase domain (KD) mutations are well known for causing resistance against tyrosine kinase inhibitors (TKIs) and disease progression in chronic myeloid leukemia (CML). In recent years, compound BCR-ABL mutations have emerged as a new threat to CML patients by causing higher degrees of resistance involving multiple TKIs, including ponatinib. However, there are limited reports about association of compound BCR-ABL mutations with disease progression in imatinib (IM) sensitive CML patients. Therefore, we investigated presence of ABL-KD mutations in chronic phase (n = 41), late chronic phase (n = 33) and accelerated phase (n = 16) imatinib responders. Direct sequencing analysis was used for this purpose. Eleven patients (12.22%) in late-CP CML were detected having total 24 types of point mutations, out of which 8 (72.72%) harbored compound mutated sites. SH2 contact site mutations were dominant in our study cohort, with E355G (3.33%) being the most prevalent. Five patients (45%) all having compound mutated sites, progressed to advanced phases of disease during follow up studies. Two novel silent mutations G208G and E292E/E were detected in combination with other mutants, indicating limited tolerance for BCR-ABL1 kinase domain for missense mutations. However, no patient in early CP of disease manifested mutated ABL-KD. Occurrence of mutations was found associated with elevated platelet count (p = 0.037) and patients of male sex (p = 0.049). The median overall survival and event free survival of CML patients (n = 90) was 6.98 and 5.8 y respectively. The compound missense mutations in BCR-ABL kinase domain responsible to elicit disease progression, drug resistance or disease relapse in CML, can be present in yet Imatinib sensitive patients. Disease progression observed here, emphasizes the need of ABL-KD mutation screening in late chronic phase CML patients for improved clinical management of disease.
Collapse
MESH Headings
- Adolescent
- Adult
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Child
- DNA Mutational Analysis
- Disease Progression
- Disease-Free Survival
- Drug Resistance, Neoplasm/genetics
- Female
- Follow-Up Studies
- Fusion Proteins, bcr-abl/genetics
- Humans
- Imatinib Mesylate/therapeutic use
- Kaplan-Meier Estimate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/mortality
- Male
- Middle Aged
- Mutation, Missense
- Neoplasm Recurrence, Local/blood
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/mortality
- Platelet Count
- Point Mutation
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Young Adult
Collapse
Affiliation(s)
- Afia Muhammad Akram
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
- Hematology Oncology and Pharmacogenetic Engineering Sciences (HOPES) Group, Health Sciences Research Laboratories, Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Zafar Iqbal
- Hematology Oncology and Pharmacogenetic Engineering Sciences (HOPES) Group, Health Sciences Research Laboratories, Department of Zoology, University of the Punjab, Lahore, Pakistan
- Cancer and Medical Genetics, CAMS-A, King Saud Bin Abdulaziz University for Health Sciences & King Abdullah International Medical Research Centre (KAIMRC), King Abdulaziz Medical City, National Guard Health Affairs, Al Ahsa, Saudi Arabia
| | - Tanveer Akhtar
- Hematology Oncology and Pharmacogenetic Engineering Sciences (HOPES) Group, Health Sciences Research Laboratories, Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Ahmed Mukhtar Khalid
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Farooq Sabar
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Mahmood Hussain Qazi
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Zeba Aziz
- Department of Oncology, Hameed Latif Hospital, Lahore, Pakistan
| | - Nadia Sajid
- Department of Hematology and Oncology, Institute of Nuclear Medicine and Oncology, Lahore, Pakistan
| | - Aamer Aleem
- College of Medicine and King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Mahmood Rasool
- Centre of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Asif
- Department of Biotechnology, Office of Research Innovation and Commercialization, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Saleh Aloraibi
- College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, National Guard- Health Affairs, Riyadh, Saudi Arabia
| | - Khaled Aljamaan
- Division of Pediatric Hematology/Oncology, Department of Oncology/King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Mudassar Iqbal
- Hematology Oncology and Pharmacogenetic Engineering Sciences (HOPES) Group, Health Sciences Research Laboratories, Department of Zoology, University of the Punjab, Lahore, Pakistan
- Asian Medical Institute, Kant City, & National Surgical Centre, Bishkek, Kyrgyzstan
| |
Collapse
|
17
|
Characterization of Patients with Chronic Myeloid Leukemia Unresponsive to Tyrosine Kinase Inhibitors Who Underwent Allogeneic Hematopoietic Stem Cell Transplantation. Int J Hematol Oncol Stem Cell Res 2017; 11:30-36. [PMID: 28286612 PMCID: PMC5338279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background: Tyrosine kinase inhibitors (TKIs) were the first drugs to use an intracellular signaling molecule as a therapeutic target. Unresponsiveness to TKIs limits therapeutic options, making allogeneic hematopoietic stem cell transplantation (HSCT) the only option leading to molecular remission. The aim of this study is to characterize CML patients unresponsive to first- and/or second-generation TKI therapy who underwent HSCT and to describe the main factors associated with treatment failure. Subjects and Methods: Twenty one CML patients who underwent allogeneic HSCT and had previously used first- and/or second-generation TKIs from January 2005 to May 2014. Results: Of the 21 patients, 52.4% were male, with a median age of 49 years (23-65 years) and 85.7% had chronic phase CML at the time of diagnosis; 28.6% showed inadequate treatment adherence to TKI therapy. Thirteen patients were resistant and eight were intolerant to TKIs; additionally, nine did not have T315I mutation. Ten transplantations involved related donors, and more than a half of patients (11) died, three of which due to graft failure. Most patients who survived transplantation were in the chronic phase of disease at the time of HSCT. Conclusion: The population was composed mainly of young age patients at diagnosis, male, white, and coming from areas in the state of Rio Grande do Sul other than Porto Alegre and metropolitan region. Low adherence to TKI therapy may be related to unresponsiveness to treatment, especially in patients with acquired resistance, or this low adherence, together with the presence of molecular changes, may have led to the need for HSCT.
Collapse
|
18
|
Shen H, McHale CM, Haider SI, Jung C, Zhang S, Smith MT, Zhang L. Identification of Genes That Modulate Susceptibility to Formaldehyde and Imatinib by Functional Genomic Screening in Human Haploid KBM7 Cells. Toxicol Sci 2016; 151:10-22. [PMID: 27008852 DOI: 10.1093/toxsci/kfw032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Though current functional genomic screening systems are useful for investigating human susceptibility to chemical toxicity, they have limitations. Well-established, high-throughput yeast mutant screens identify only evolutionarily conserved processes. RNA interference can be applied in human cells but is limited by incomplete gene knockout and off-target effects. Human haploid cell screening is advantageous as it requires knockdown of only a single copy of each gene. A human haploid cell mutant library (KBM7-Mu), derived from a chronic myeloid leukemia (CML) patient, was recently developed and has been used to identify genes that modulate sensitivity to infectious agents and pharmaceutical drugs. Here, we sought to improve the KBM7-Mu screening process to enable efficient screening of environmental chemicals. We developed a semi-solid medium based screening approach that cultures individual mutant colonies from chemically resistant cells, faster (by 2-3 weeks) and with less labor than the original liquid medium-based approach. As proof of principle, we identified genetic mutants that confer resistance to the carcinogen formaldehyde (FA, 12 genes, 18 hits) and the CML chemotherapeutic agent imatinib (6 genes, 13 hits). Validation experiments conducted on KBM7 mutants lacking each of the 18 genes confirmed resistance of 6 FA mutants (CTC1, FCRLA, GOT1, LPR5, M1AP, and MAP2K5) and 1 imatinib-resistant mutant (LYRM9). Despite the improvements to the method, it remains technically challenging to limit false positive findings. Nonetheless, our findings demonstrate the broad applicability of this optimized haploid approach to screen toxic chemicals to identify novel susceptibility genes and gain insight into potential mechanisms of toxicity.
Collapse
Affiliation(s)
- Hua Shen
- Superfund Research Program, School of Public Health, University of California, Berkeley, California 94720
| | - Cliona M McHale
- Superfund Research Program, School of Public Health, University of California, Berkeley, California 94720
| | - Syed I Haider
- Superfund Research Program, School of Public Health, University of California, Berkeley, California 94720
| | - Cham Jung
- Superfund Research Program, School of Public Health, University of California, Berkeley, California 94720
| | - Susie Zhang
- Superfund Research Program, School of Public Health, University of California, Berkeley, California 94720
| | - Martyn T Smith
- Superfund Research Program, School of Public Health, University of California, Berkeley, California 94720
| | - Luoping Zhang
- Superfund Research Program, School of Public Health, University of California, Berkeley, California 94720
| |
Collapse
|
19
|
Jiang S, Fan J, Wang Q, Ju D, Feng M, Li J, Guan ZB, An D, Wang X, Ye L. Diosgenin induces ROS-dependent autophagy and cytotoxicity via mTOR signaling pathway in chronic myeloid leukemia cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:243-52. [PMID: 26969378 DOI: 10.1016/j.phymed.2016.01.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/18/2016] [Accepted: 01/26/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND Diosgenin, a steroidal saponin isolated from legumes and yams, has been confirmed to possess potent anticancer effect on multifarious tumors including chronic myeloid leukemia (CML). PURPOSE We aimed to further determine the anti-cancer activity of diosgenin and its mechanisms in CML cells. METHODS The cell vitality was detected by MTT assay. Autophagic flux and reactive oxygen species (ROS) production were analyzed by laser scanning confocal microscope. Apoptosis was observed by flow cytometry. All proteins expression was examined by western blotting. RESULTS Autophagy induction was demonstrated by examination of autophagic flux including autophagosomes accumulation, autophagosome-lysosome fusion and degradation of autophagosomes. Moreover, blocking autophagy with inhibitor chloroquine (CQ) and 3-methyladenine (3-MA), enhanced diosgenin-induced apoptosis, indicating the protective effect of autophagy in diosgenin-treated CML cells. Further study suggested that diosgenin-induced autophagy and cytotoxicity were accompanied by reactive oxygen species (ROS) generation and mammalian target of rapamycin (mTOR) signaling pathway inhibition. N-acetyl-L-cysteine (NAC) administration, a scavenger agent of ROS, could down-regulate diosgenin-induced autophagy via reversion of mTOR pathway inhibition. CONCLUSION These results indicate that diosgenin obviously generates ROS and this oxidative pressure not only produces cytotoxic effect on CML cells but also induces autophagy. What's more, autophagy functions as a cytoprotective mechanism to overcome cytotoxicity of diosgenin in tumor cells and inhibition of autophagy can enhance the anti-CML activity of diosgenin.
Collapse
Affiliation(s)
- Shanshan Jiang
- Department of Biosynthesis & Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiajun Fan
- Department of Biosynthesis & Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Qian Wang
- Department of Biosynthesis & Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Dianwen Ju
- Department of Biosynthesis & Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Meiqing Feng
- Department of Biosynthesis & Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiyang Li
- Department of Biosynthesis & Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Zhong-Bin Guan
- Shanghai Institute For Food And Drug Control, Shanghai, China
| | - Duopeng An
- Department of Biosynthesis & Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Xin Wang
- Department of Biosynthesis & Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Li Ye
- Department of Biosynthesis & Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
20
|
1,3-Butadiene, CML and the t(9:22) translocation: A reality check. Chem Biol Interact 2015; 241:32-9. [DOI: 10.1016/j.cbi.2015.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/28/2015] [Accepted: 05/12/2015] [Indexed: 11/23/2022]
|
21
|
Chen DH, Zhang XS. Targeted therapy: resistance and re-sensitization. CHINESE JOURNAL OF CANCER 2015; 34:496-501. [PMID: 26370727 PMCID: PMC4593385 DOI: 10.1186/s40880-015-0047-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 08/10/2015] [Indexed: 12/17/2022]
Abstract
The last two decades have witnessed a paradigm shift from cytotoxic drugs to targeted therapy in medical oncology and pharmaceutical innovation. Inspired by breakthroughs in molecular and cellular biology, a number of novel synthesized chemical compounds and recombinant antibodies have been developed to selectively target oncogenic signaling pathways in a broad array of tumor types. Although targeted therapeutic agents show impressive clinical efficacy and minimized adverse effects compared with traditional treatments, the challenging drug-resistant issue has also emerged to limit their benefits to cancer patients. In this regard, we aim to improve targeted therapy by presenting a systematic framework regarding the drug resistance mechanisms and alternative approaches to re-sensitize cancer cells/tissues therapeutically.
Collapse
Affiliation(s)
- Dao-Hong Chen
- Biomedical Research Institute, Yiling Pharmaceutical Company, Beijing, 102600, P. R. China.
| | - Xiao-Shi Zhang
- Biotherapy Center, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, P. R. China.
| |
Collapse
|
22
|
Ma D, Fang Q, Wang P, Gao R, Wu W, Lu T, Cao L, Hu X, Wang J. Induction of heme oxygenase-1 by Na+-H+ exchanger 1 protein plays a crucial role in imatinib-resistant chronic myeloid leukemia cells. J Biol Chem 2015; 290:12558-71. [PMID: 25802333 DOI: 10.1074/jbc.m114.626960] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Indexed: 12/18/2022] Open
Abstract
Resistance toward imatinib (IM) and other BCR/ABL tyrosine kinase inhibitors remains troublesome in the treatment of advanced stage chronic myeloid leukemia (CML). The aim of this study was to estimate the reversal effects of down-regulation of Na(+)/H(+) exchanger 1 (NHE1) on the chemoresistance of BCR-ABL-positive leukemia patients' cells and cell lines. After treatment with the specific NHE1 inhibitor cariporide to decrease intracellular pH (pHi), the heme oxygenase-1 (HO-1) levels of the K562R cell line and cells from IM-insensitive CML patients decreased. HO-1, as a Bcr/Abl-dependent survival molecule in CML cells, is important for the resistance to tyrosine kinase inhibitors in patients with newly diagnosed CML or IM-resistant CML. Silencing PKC-β and Nrf-2 or treatment with inhibitors of p38 pathways obviously blocked NHE1-induced HO-1 expression. Furthermore, treatment with HO-1 or p38 inhibitor plus IM increased the apoptosis of the K562R cell line and IM-insensitive CML patients' cells. Inhibiting HO-1 enhanced the activation of caspase-3 and poly(ADP-ribose) polymerase-1. Hence, the results support the anti-apoptotic role of HO-1 induced by NHE1 in the K562R cell line and IM-insensitive CML patients and provide a mechanism by which inducing HO-1 expression via the PKC-β/p38-MAPK pathway may promote tumor resistance to oxidative stress.
Collapse
Affiliation(s)
- Dan Ma
- From the Department of Hematology, Affiliated Hospital of Guiyang Medical University, Guiyang 550004, China, Department of Pharmacy, Affiliated BaiYun Hospital of Guiyang Medical University, Guiyang 550014, China
| | - Qin Fang
- Department of Pharmacy, Affiliated BaiYun Hospital of Guiyang Medical University, Guiyang 550014, China, Department of Pharmacy, Affiliated Hospital of Guiyang Medical University, Guiyang 550004, China, and
| | - Ping Wang
- From the Department of Hematology, Affiliated Hospital of Guiyang Medical University, Guiyang 550004, China, Guizhou Province Hematopoietic Stem Cell Transplantation Center and Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Guiyang 550004, China
| | - Rui Gao
- From the Department of Hematology, Affiliated Hospital of Guiyang Medical University, Guiyang 550004, China, Guizhou Province Hematopoietic Stem Cell Transplantation Center and Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Guiyang 550004, China
| | - Weibing Wu
- From the Department of Hematology, Affiliated Hospital of Guiyang Medical University, Guiyang 550004, China, Guizhou Province Hematopoietic Stem Cell Transplantation Center and Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Guiyang 550004, China
| | - Tangsheng Lu
- School of Pharmacy, Guiyang Medical University, Guiyang 550004, China
| | - Lu Cao
- School of Pharmacy, Guiyang Medical University, Guiyang 550004, China
| | - Xiuying Hu
- From the Department of Hematology, Affiliated Hospital of Guiyang Medical University, Guiyang 550004, China, Guizhou Province Hematopoietic Stem Cell Transplantation Center and Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Guiyang 550004, China
| | - Jishi Wang
- From the Department of Hematology, Affiliated Hospital of Guiyang Medical University, Guiyang 550004, China, Guizhou Province Hematopoietic Stem Cell Transplantation Center and Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Guiyang 550004, China,
| |
Collapse
|
23
|
The clinically approved drugs dasatinib and bosutinib induce anti-inflammatory macrophages by inhibiting the salt-inducible kinases. Biochem J 2015; 465:271-9. [PMID: 25351958 PMCID: PMC4286194 DOI: 10.1042/bj20141165] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Macrophages switch to an anti-inflammatory, ‘regulatory’-like phenotype characterized by the production of high levels of interleukin (IL)-10 and low levels of pro-inflammatory cytokines to promote the resolution of inflammation. A potential therapeutic strategy for the treatment of chronic inflammatory diseases would be to administer drugs that could induce the formation of ‘regulatory’-like macrophages at sites of inflammation. In the present study, we demonstrate that the clinically approved cancer drugs bosutinib and dasatinib induce several hallmark features of ‘regulatory’-like macrophages. Treatment of macrophages with bosutinib or dasatinib elevates the production of IL-10 while suppressing the production of IL-6, IL-12p40 and tumour necrosis factor α (TNFα) in response to Toll-like receptor (TLR) stimulation. Moreover, macrophages treated with bosutinib or dasatinib express higher levels of markers of ‘regulatory’-like macrophages including LIGHT, SPHK1 and arginase 1. Bosutinib and dasatinib were originally developed as inhibitors of the protein tyrosine kinases Bcr-Abl and Src but we show that, surprisingly, the effects of bosutinib and dasatinib on macrophage polarization are the result of the inhibition of the salt-inducible kinases. Consistent with the present finding, bosutinib and dasatinib induce the dephosphorylation of CREB-regulated transcription co-activator 3 (CRTC3) and its nuclear translocation where it induces a cAMP-response-element-binding protein (CREB)-dependent gene transcription programme including that of IL-10. Importantly, these effects of bosutinib and dasatinib on IL-10 gene expression are lost in macrophages expressing a drug-resistant mutant of salt-inducible kinase 2 (SIK2). In conclusion, our study identifies the salt-inducible kinases as major targets of bosutinib and dasatinib that mediate the effects of these drugs on the innate immune system and provides novel mechanistic insights into the anti-inflammatory properties of these drugs. We have discovered that bosutinib and dasatinib, which are protein tyrosine kinase inhibitors used in the clinic to treat human cancer, induce anti-inflammatory but block pro-inflammatory cytokine production by inhibiting the serine/threonine kinases known as the salt-inducible kinases.
Collapse
|