1
|
Pohlman C, Pardee A, Friedman M, Rutherford D, Vannatta CN, Kernozek TW. Effects of Body Weight Support in Running on Achilles Tendon Loading. Int J Sports Med 2023; 44:913-918. [PMID: 37336504 DOI: 10.1055/a-2113-1026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Achilles tendon (AT) tendinopathy is common in runners. Repetitive AT loading may play a role in etiology. Interventions such as body weight support (BWS) may reduce loading on the AT in running. Examine how ground reaction force, AT loading, foot strike, and cadence variables change in running with BWS. Twenty-four healthy female runners free from injury were examined. Participants ran on an instrumented treadmill with and without BWS using a harness-based system at a standardized speed. The system has 4 elastic cords affixed to a harness that is attached to a frame-like structure. Kinematic data and kinetic data were used in a musculoskeletal model (18 segments and 16 degrees of freedom) to determine AT loading variables, foot strike angle, and cadence. Paired t-tests were used to compare each variable between conditions. Ground reaction force was 9.0% lower with BWS (p<.05). Peak AT stress, force, and impulse were 9.4, 11.7%, and 14.8% lower when using BWS in running compared to no support (p<.05). Foot strike angle was similar (p<.05) despite cadence being reduced (p<.05). BWS may reduce AT loading and impulse variables during running. This may be important in rehabilitation efforts.
Collapse
Affiliation(s)
- Callie Pohlman
- Health Professions, Physical Therapy Program, University of Wisconsin-La Crosse, La Crosse, United States
- Sports Physical Therapy, Gundersen Health System, La Crosse, United States
| | - Andrew Pardee
- Health Professions, Physical Therapy Program, University of Wisconsin-La Crosse, La Crosse, United States
- Sports Physical Therapy, Gundersen Health System, La Crosse, United States
| | - Mikey Friedman
- Health Professions, Physical Therapy Program, University of Wisconsin-La Crosse, La Crosse, United States
- Sports Physical Therapy, Gundersen Health System, La Crosse, United States
| | - Drew Rutherford
- Health Professions, Physical Therapy Program, University of Wisconsin-La Crosse, La Crosse, United States
- Sports Physical Therapy, Gundersen Health System, La Crosse, United States
| | - Charles Nathan Vannatta
- La Crosse Institute for Movement Science, University of Wisconsin-La Crosse, La Crosse, United States
| | - Thomas W Kernozek
- Health Professions, La Crosse Institute for Movement Science (LIMS), La Crosse, United States
| |
Collapse
|
2
|
Katmah R, Shehhi AA, Jelinek HF, Hulleck AA, Khalaf K. A Systematic Review of Gait Analysis in the Context of Multimodal Sensing Fusion and AI. IEEE Trans Neural Syst Rehabil Eng 2023; 31:4189-4202. [PMID: 37847624 DOI: 10.1109/tnsre.2023.3325215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
BACKGROUND Neurological diseases are a leading cause of disability and mortality. Gait, or human walking, is a significant predictor of quality of life, morbidity, and mortality. Gait patterns and other kinematic, kinetic, and balance gait features are accurate and powerful diagnostic and prognostic tools. OBJECTIVE This review article focuses on the applicability of gait analysis using fusion techniques and artificial intelligence (AI) models. The aim is to examine the significance of mixing several types of wearable and non-wearable sensor data and the impact of this combination on the performance of AI models. METHOD In this systematic review, 66 studies using more than two modalities to record and analyze gait were identified. 40 studies incorporated multiple gait analysis modalities without the use of artificial intelligence to extract gait features such as kinematic, kinetic, margin of stability, temporal, and spatial gait parameters, as well as cerebral activity. Similarly, 26 studies analyzed gait data using multimodal fusion sensors and AI algorithms. RESULTS The research summarized here demonstrates that the quality of gait analysis and the effectiveness of AI models can both benefit from the integration of data from many sensors. Meanwhile, the utilization of EMG signals in fusion data is especially advantageous. CONCLUSION The findings of this review suggest that a smart, portable, wearable-based gait and balance assessment system can be developed using multimodal sensing of the most cutting-edge, clinically relevant tools and technology available. The information presented in this article may serve as a vital springboard for such development.
Collapse
|
3
|
Alrashidi AA, Nightingale TE, Bhangu GS, Bissonnette-Blais V, Krassioukov AV. Post-processing Peak Oxygen Uptake Data Obtained During Cardiopulmonary Exercise Testing in Individuals With Spinal Cord Injury: A Scoping Review and Analysis of Different Post-processing Strategies. Arch Phys Med Rehabil 2023; 104:965-981. [PMID: 36584803 DOI: 10.1016/j.apmr.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/28/2022]
Abstract
OBJECTIVES To review the evidence regarding the most common practices adopted with cardiopulmonary exercise testing (CPET) in individuals with spinal cord injury (SCI), with the following specific aims to (1) determine the most common averaging strategies of peak oxygen uptake (V̇o2peak), (2) review the endpoint criteria adopted to determine a valid V̇o2peak, and (3) investigate the effect of averaging strategies on V̇o2peak values in a convenience sample of individuals with SCI (between the fourth cervical and sixth thoracic spinal segments). DATA SOURCES Searches for this scoping review were conducted in MEDLINE (PubMed), EMBASE, and Web Science. STUDY SELECTION Studies were included if (1) were original research on humans published in English, (2) recruited adults with traumatic and non-traumatic SCI, and (3) V̇o2peak reported and measured directly during CPET to volitional exhaustion. Full-text review identified studies published before April 2021 for inclusion. DATA EXTRACTION Extracted data included authors name, journal name, publication year, participant characteristics, and comprehensive information relevant to CPET. DATA SYNTHESIS We extracted data from a total of 197 studies involving 4860 participants. We found that more than 50% of studies adopted a 30-s averaging strategy. A wide range of endpoint criteria were used to confirm the attainment of maximal effort. In the convenience sample of individuals with SCI (n=30), the mean V̇o2peak decreased as epoch (ie, time) lengths increased. Reported V̇o2peak values differed significantly (P<.001) between averaging strategies, with epoch length explaining 56% of the variability. CONCLUSIONS The adoption of accepted and standardized methods for processing and analyzing CPET data are needed to ensure high-quality, reproducible research, and inform population-specific normative values for individuals with SCI.
Collapse
Affiliation(s)
- Abdullah A Alrashidi
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, Canada; Department of Physical Therapy, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Tom E Nightingale
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, Canada; School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, UK; Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, UK
| | - Gurjeet S Bhangu
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, Canada
| | - Virgile Bissonnette-Blais
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, Canada
| | - Andrei V Krassioukov
- International Collaboration On Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, Canada; Division of Physical Medicine and Rehabilitation, UBC, Vancouver, Canada; G.F. Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, Canada.
| |
Collapse
|
4
|
MacLean MK, Ferris DP. Effects of simulated reduced gravity and walking speed on ankle, knee, and hip quasi-stiffness in overground walking. PLoS One 2022; 17:e0271927. [PMID: 35944021 PMCID: PMC9362947 DOI: 10.1371/journal.pone.0271927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/10/2022] [Indexed: 12/04/2022] Open
Abstract
Quasi-stiffness characterizes the dynamics of a joint in specific sections of stance-phase and is used in the design of wearable devices to assist walking. We sought to investigate the effect of simulated reduced gravity and walking speed on quasi-stiffness of the hip, knee, and ankle in overground walking. 12 participants walked at 0.4, 0.8, 1.2, and 1.6 m/s in 1, 0.76, 0.54, and 0.31 gravity. We defined 11 delimiting points in stance phase (4 each for the ankle and hip, 3 for the knee) and calculated the quasi-stiffness for 4 phases for both the hip and ankle, and 2 phases for the knee. The R2 value quantified the suitability of the quasi-stiffness models. We found gravity level had a significant effect on 6 phases of quasi-stiffness, while speed significantly affected the quasi-stiffness in 5 phases. We concluded that the intrinsic muscle-tendon unit stiffness was the biggest determinant of quasi-stiffness. Speed had a significant effect on the R2 of all phases of quasi-stiffness. Slow walking (0.4 m/s) was the least accurately modelled walking speed. Our findings showed adaptions in gait strategy when relative power and strength of the joints were increased in low gravity, which has implications for prosthesis and exoskeleton design.
Collapse
Affiliation(s)
- Mhairi K. MacLean
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
- * E-mail:
| | - Daniel P. Ferris
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
5
|
Balbinot G, Joner Wiest M, Li G, Pakosh M, Cesar Furlan J, Kalsi-Ryan S, Zariffa J. The use of surface EMG in neurorehabilitation following traumatic spinal cord injury: A scoping review. Clin Neurophysiol 2022; 138:61-73. [PMID: 35364465 DOI: 10.1016/j.clinph.2022.02.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/06/2022] [Accepted: 02/27/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Surface electromyography (sEMG) is a common electrophysiological assessment used in clinical trials in individuals with spinal cord injury (SCI). This scoping review summarizes the most common sEMG techniques used to address clinically relevant neurorehabilitation questions. We focused on the role of sEMG assessments in the clinical practice and research studies on neurorehabilitation after SCI, and how sEMG reflects the changes observed with rehabilitation. Additionally, this review emphasizes the limitations and pitfalls of the sEMG assessments in the field of neurorehabilitation after SCI. METHODS A comprehensive search of Medline (Ovid), Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, Embase, Emcare, Cumulative Index to Nursing & Allied Health Literature, and PubMed was conducted to find peer-reviewed journal articles that included individuals post-SCI that participated in neurorehabilitation interventions using sEMG assessments. This is a scoping review using a systematic search (hybrid review). RESULTS Of 4522 references captured in the primary database searches, 100 references were selected and included in the scoping review. The main focus of the studies was on neurorehabilitation using sEMG biofeedback, brain stimulation, locomotor training, neuromuscular electrical stimulation (NMES), paired-pulse stimulation, pharmacology, posture and balance training, spinal cord stimulation, upper limb training, vibration, and photobiomodulation. CONCLUSIONS Most studies employed sEMG amplitude to understand the effects of neurorehabilitation on muscle activation during volitional efforts or reduction of spontaneous muscle activity (e.g., spasms, spasticity, and hypertonia). Further studies are needed to understand the long-term reliability of sEMG amplitude, to circumvent normalization issues, and to provide a deeper physiological background to the different sEMG analyses. SIGNIFICANCE This scoping review reveals the potential of sEMG in exploring promising neurorehabilitation strategies following SCI and discusses the barriers limiting its widespread use in the clinic.
Collapse
Affiliation(s)
- Gustavo Balbinot
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada.
| | - Matheus Joner Wiest
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada
| | - Guijin Li
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Maureen Pakosh
- Library & Information Services, Toronto Rehabilitation Institute, University Health Network, Canada
| | - Julio Cesar Furlan
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada; Rehabilitation Sciences Institute, University of Toronto, Canada; Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Canada; Division of Physical Medicine and Rehabilitation, Toronto Rehabilitation Institute, University Health Network, Canada; Institute of Medical Sciences, University of Toronto, Canada
| | - Sukhvinder Kalsi-Ryan
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada; Rehabilitation Sciences Institute, University of Toronto, Canada; Department of Physical Therapy, University of Toronto, Canada
| | - José Zariffa
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada; Institute of Biomedical Engineering, University of Toronto, Canada; Rehabilitation Sciences Institute, University of Toronto, Canada; Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Canada
| |
Collapse
|
6
|
Evans NH, Suri C, Field-Fote EC. Walking and Balance Outcomes Are Improved Following Brief Intensive Locomotor Skill Training but Are Not Augmented by Transcranial Direct Current Stimulation in Persons With Chronic Spinal Cord Injury. Front Hum Neurosci 2022; 16:849297. [PMID: 35634208 PMCID: PMC9130633 DOI: 10.3389/fnhum.2022.849297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
Motor training to improve walking and balance function is a common aspect of rehabilitation following motor-incomplete spinal cord injury (MISCI). Evidence suggests that moderate- to high-intensity exercise facilitates neuroplastic mechanisms that support motor skill acquisition and learning. Furthermore, enhancing corticospinal drive via transcranial direct current stimulation (tDCS) may augment the effects of motor training. In this pilot study, we investigated whether a brief moderate-intensity locomotor-related motor skill training (MST) circuit, with and without tDCS, improved walking and balance outcomes in persons with MISCI. In addition, we examined potential differences between within-day (online) and between-day (offline) effects of MST. Twenty-six adults with chronic MISCI, who had some walking ability, were enrolled in a 5-day double-blind, randomized study with a 3-day intervention period. Participants were assigned to an intensive locomotor MST circuit and concurrent application of either sham tDCS (MST+tDCSsham) or active tDCS (MST+tDCS). The primary outcome was overground walking speed measured during the 10-meter walk test. Secondary outcomes included spatiotemporal gait characteristics (cadence and stride length), peak trailing limb angle (TLA), intralimb coordination (ACC), the Berg Balance Scale (BBS), and the Falls Efficacy Scale-International (FES-I) questionnaire. Analyses revealed a significant effect of the MST circuit, with improvements in walking speed, cadence, bilateral stride length, stronger limb TLA, weaker limb ACC, BBS, and FES-I observed in both the MST+tDCSsham and MST+tDCS groups. No differences in outcomes were observed between groups. Between-day change accounted for a greater percentage of the overall change in walking outcomes. In persons with MISCI, brief intensive MST involving a circuit of ballistic, cyclic locomotor-related skill activities improved walking outcomes, and selected strength and balance outcomes; however, concurrent application of tDCS did not further enhance the effects of MST.
Collapse
Affiliation(s)
- Nicholas H. Evans
- Shepherd Center, Crawford Research Institute, Atlanta, GA, United States
- Department of Applied Physiology, Georgia Institute of Technology, Atlanta, GA, United States
| | - Cazmon Suri
- Shepherd Center, Crawford Research Institute, Atlanta, GA, United States
| | - Edelle C. Field-Fote
- Shepherd Center, Crawford Research Institute, Atlanta, GA, United States
- Department of Applied Physiology, Georgia Institute of Technology, Atlanta, GA, United States
- Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, United States
- *Correspondence: Edelle C. Field-Fote,
| |
Collapse
|
7
|
Ertman B, Dade R, Vannatta CN, Kernozek TW. Offloading Effects on Impact Forces and Patellofemoral Joint Loading During Running in Females. Gait Posture 2022; 93:212-217. [PMID: 35183838 DOI: 10.1016/j.gaitpost.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Structure-specific loading is being increasingly recognized as playing a role in running related injuries. The use of interventions targeted at reducing patellofemoral joint loads have shown effectiveness in reducing symptoms of patellofemoral pain. Use of bodyweight support (BWS) has the potential to reduce loading on the patellofemoral joint during running to augment rehabilitation efforts. RESEARCH QUESTION How is patellofemoral joint loading different when using a harness-based BWS system during running? METHODS Twenty-five healthy females free from lower extremity injury were included. Participants completed four running trials on an instrumented treadmill with varying amounts of BWS using a commercially available harness system. Kinematic data from a 3D motion capture system and kinetic data from the treadmill were combined in a computer model to estimate measures of patellofemoral joint loading, knee kinematics, ground reaction force, and stride frequency. RESULTS Peak patellofemoral joint stress and time-integral were reduced when running under BWS conditions compared to control conditions. Incremental decreases in patellofemoral loading were not observed with incremental increases in BWS. Peak knee flexion angle was reduced in all BWS conditions compared to control but was not different between BWS conditions. Knee flexion excursion was reduced in only the high BWS condition. Peak ground reaction force and stride frequency incrementally decreased with increased amounts of BWS. SIGNIFICANCE Harness-based BWS systems may provide a simple means to reduce patellofemoral joint loading to assist in rehabilitation efforts, such as addressing patellofemoral pain.
Collapse
Affiliation(s)
- Bryce Ertman
- Department of Health Professions, Physical Therapy Program, University of Wisconsin, 1300 Badger Street, La Crosse, WI, United States; La Crosse Institute for Movement Science (LIMS), University of Wisconsin, 1300 Badger Street, La Crosse, WI, United States
| | - Renee Dade
- Department of Health Professions, Physical Therapy Program, University of Wisconsin, 1300 Badger Street, La Crosse, WI, United States; La Crosse Institute for Movement Science (LIMS), University of Wisconsin, 1300 Badger Street, La Crosse, WI, United States
| | - C N Vannatta
- La Crosse Institute for Movement Science (LIMS), University of Wisconsin, 1300 Badger Street, La Crosse, WI, United States; Gundersen Health System, Sports Medicine Department, 311 Gundersen Drive, Onalaska, WI, United States
| | - Thomas W Kernozek
- Department of Health Professions, Physical Therapy Program, University of Wisconsin, 1300 Badger Street, La Crosse, WI, United States; La Crosse Institute for Movement Science (LIMS), University of Wisconsin, 1300 Badger Street, La Crosse, WI, United States.
| |
Collapse
|
8
|
Alrashidi AA, Nightingale TE, Currie KD, Hubli M, MacDonald MJ, Hicks AL, Oh P, Craven BC, Krassioukov AV. Exercise Improves Cardiorespiratory Fitness, but Not Arterial Health, after Spinal Cord Injury: The CHOICES Trial. J Neurotrauma 2021; 38:3020-3029. [PMID: 34314235 DOI: 10.1089/neu.2021.0071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Arterial stiffness, as measured by carotid-femoral pulse wave velocity (cfPWV), is elevated after spinal cord injury (SCI). In the uninjured population, exercise training has been shown to reduce arterial stiffness. In a randomized, multi-center clinical trial, we evaluated the impact of two exercise interventions on cardiovascular disease risk factors in persons with chronic SCI. A total of 46 adults with motor-complete SCI with neurological levels of injury between the fourth cervical and sixth thoracic spinal cord segments (C4-T6) were randomly assigned to either body-weight-supported treadmill training (BWSTT) or arm-cycle ergometer training (ACET). Participants trained 3 days per week for 24 weeks. Exercise session duration progressed gradually to reach 30 and 60 min for ACET and BWSTT, respectively. The primary outcome was arterial stiffness, assessed by cfPWV, and was measured at baseline, 12 weeks of training, and at 24 weeks. Secondary outcomes included cardiorespiratory fitness (CRF) and cardiometabolic health measures and were measured before and after completion of training. Fourteen participants per intervention arm completed the exercise intervention. Our results show no effect of either exercise intervention on arterial stiffness (p = 0.07) and cardiometabolic health measures (p > 0.36). However, peak oxygen uptake increased with ACET compared with BWSTT (p = 0.04). The findings of this trial demonstrate that although 24 weeks of upper-body exercise improved CRF in persons with motor-complete SCI ≥T6, neither intervention resulted in improvements in arterial stiffness or cardiometabolic health measures. ClinicalTrials.gov identifier: NCT01718977.
Collapse
Affiliation(s)
- Abdullah A Alrashidi
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada.,Experimental Medicine, Department of Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,Department of Physical Therapy, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Tom E Nightingale
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada.,School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Katharine D Currie
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada.,Department of Kinesiology, Michigan State University, East Lansing, Michigan, USA
| | - Michèle Hubli
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada.,Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | | | - Audrey L Hicks
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Paul Oh
- Department of Medicine University Health Network, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, Ontario, Canada
| | - Beverley Catharine Craven
- Department of Medicine University Health Network, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, Ontario, Canada
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada.,Experimental Medicine, Department of Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,GF Strong Rehabilitation Center, Vancouver Coastal Health, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
MacLean MK, Ferris DP. Human muscle activity and lower limb biomechanics of overground walking at varying levels of simulated reduced gravity and gait speeds. PLoS One 2021; 16:e0253467. [PMID: 34260611 PMCID: PMC8279339 DOI: 10.1371/journal.pone.0253467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/04/2021] [Indexed: 12/03/2022] Open
Abstract
Reducing the mechanical load on the human body through simulated reduced gravity can reveal important insight into locomotion biomechanics. The purpose of this study was to quantify the effects of simulated reduced gravity on muscle activation levels and lower limb biomechanics across a range of overground walking speeds. Our overall hypothesis was that muscle activation amplitudes would not decrease proportionally to gravity level. We recruited 12 participants (6 female, 6 male) to walk overground at 1.0, 0.76, 0.55, and 0.31 G for four speeds: 0.4, 0.8, 1.2, and 1.6 ms-1. We found that peak ground reaction forces, peak knee extension moment in early stance, peak hip flexion moment, and peak ankle extension moment all decreased substantially with reduced gravity. The peak knee extension moment at late stance/early swing did not change with gravity. The effect of gravity on muscle activity amplitude varied considerably with muscle and speed, often varying nonlinearly with gravity level. Quadriceps (rectus femoris, vastus lateralis, & vastus medialis) and medial gastrocnemius activity decreased in stance phase with reduced gravity. Soleus and lateral gastrocnemius activity had no statistical differences with gravity level. Tibialis anterior and biceps femoris increased with simulated reduced gravity in swing and stance phase, respectively. The uncoupled relationship between simulated gravity level and muscle activity have important implications for understanding biomechanical muscle functions during human walking and for the use of bodyweight support for gait rehabilitation after injury.
Collapse
Affiliation(s)
- Mhairi K. MacLean
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (MKM); (DPF)
| | - Daniel P. Ferris
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (MKM); (DPF)
| |
Collapse
|
10
|
Postol N, Lamond S, Galloway M, Palazzi K, Bivard A, Spratt NJ, Marquez J. The Metabolic Cost of Exercising With a Robotic Exoskeleton: A Comparison of Healthy and Neurologically Impaired People. IEEE Trans Neural Syst Rehabil Eng 2021; 28:3031-3039. [PMID: 33211660 DOI: 10.1109/tnsre.2020.3039202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
While neuro-recovery is maximized through active engagement, it has been suggested that the use of robotic exoskeletons in neuro-rehabilitation provides passive therapy. Using oxygen consumption (VO2) as an indicator of energy expenditure, we investigated the metabolic requirements of completing exercises in a free-standing robotic exoskeleton, with 20 healthy and 12 neurologically impaired participants (six with stroke, and six with multiple sclerosis (MS)). Neurological participants were evaluated pre- and post- 12 weeks of twice weekly robotic therapy. Healthy participants were evaluated in, and out of, the exoskeleton. Both groups increased their VO2 level from baseline during exoskeleton-assisted exercise (Healthy: mean change in VO2 = 2.10 ± 1.61 ml/kg/min, p =< 0.001; Neurological: 1.38 ± 1.22, p = 0.002), with a lower predicted mean in the neurological sample (-1.08, 95%CI -2.02, -0.14, p = 0.02). Healthy participants exercised harder out of the exoskeleton than in it (difference in VO2 = 3.50, 95%CI 2.62, 4.38, p =< 0.001). There was no difference in neurological participants' predicted mean VO2 pre- and post- 12 weeks of robotic therapy 0.45, 95%CI -0.20, 1.11, p = 0.15), although subgroup analysis revealed a greater change after 12 weeks of robotic therapy in those with stroke (MS: -0.06, 95%CI -0.78, 0.66, p = 0.85; stroke: 1.00, 95%CI 0.3, 1.69, p = 0.01; difference = 1.06, p = 0.04). Exercise in a free-standing robotic exoskeleton is not passive in healthy or neurologically impaired people, and those with stroke may derive more benefit than those with MS.
Collapse
|
11
|
Huber JP, Sawaki L. Dynamic body-weight support to boost rehabilitation outcomes in patients with non-traumatic spinal cord injury: an observational study. J Neuroeng Rehabil 2020; 17:157. [PMID: 33256797 PMCID: PMC7706039 DOI: 10.1186/s12984-020-00791-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/18/2020] [Indexed: 11/13/2022] Open
Abstract
Background Dynamic body-weight support (DBWS) may play an important role in rehabilitation outcomes, but the potential benefit among disease-specific populations is unclear. In this study, we hypothesize that overground therapy with DBWS during inpatient rehabilitation yields greater functional improvement than standard-of-care in adults with non-traumatic spinal cord injury (NT-SCI). Methods This retrospective cohort study included individuals diagnosed with NT-SCI and undergoing inpatient rehabilitation. All participants were recruited at a freestanding inpatient rehabilitation hospital. Individuals who trained with DBWS for at least three sessions were allocated to the experimental group. Participants in the historical control group received standard-of-care (i.e., no DBWS). The primary outcome was change in the Functional Independence Measure scores (FIMgain). Results During an inpatient rehabilitation course, participants in the experimental group (n = 11), achieved a mean (SD) FIMgain of 48 (11) points. For the historical control group (n = 11), participants achieved a mean (SD) FIMgain of 36 (12) points. From admission to discharge, both groups demonstrated a statistically significant FIMgain. Between groups analysis revealed no significant difference in FIMgain (p = 0.022; 95% CI 2.0–22) after a post hoc correction for multiple comparisons. In a secondary subscore analysis, the experimental group achieved significantly higher gains in sphincter control (p = 0.011: 95% CI 0.83–5.72) with a large effect size (Cohen’s d 1.19). Locomotion subscores were not significantly different (p = 0.026; 95% CI 0.37–5.3) nor were the remaining subscores in self-care, mobility, cognition, and social cognition. Conclusions This is the first study to explore the impact of overground therapy with DBWS on inpatient rehabilitation outcomes for persons with NT-SCI. Overground therapy with DBWS appears to significantly improve functional gains in sphincter control compared to the standard-of-care. Gains achieved in locomotion, mobility, cognition, and social cognition did not meet significance. Findings from the present study will benefit from future large prospective and randomized studies.
Collapse
Affiliation(s)
- Justin P Huber
- Department of Physical Medicine and Rehabilitation, University of Kentucky, 2050 Versailles Road, Lexington, KY, 40504, USA.,Department of Mechanical Engineering, University of Kentucky, 2050 Versailles Road, Lexington, KY, 40504, USA
| | - Lumy Sawaki
- Department of Physical Medicine and Rehabilitation, University of Kentucky, 2050 Versailles Road, Lexington, KY, 40504, USA. .,Department of Neurology, University of Kentucky, 2050 Versailles Road, Lexington, KY, 40504, USA.
| |
Collapse
|
12
|
MacLean MK, Ferris DP. Design and Validation of a Low-Cost Bodyweight Support System for Overground Walking. J Med Device 2020; 14:045001. [PMID: 33442440 PMCID: PMC7580661 DOI: 10.1115/1.4047996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/10/2020] [Indexed: 11/08/2022] Open
Abstract
Walking with bodyweight support is a vital tool for both gait rehabilitation and biomechanics research. There are few commercially available bodyweight support systems for overground walking that are able to provide a near constant lifting force of more than 50% bodyweight. The devices that do exist are expensive and are not often used outside of rehabilitation clinics. Our aim was to design, build, and validate a bodyweight support device for overground walking that: (1) cost less than $5000, (2) could support up to 75% of the users' bodyweight (BW), and (3) had small (±5% BW) fluctuations in force. We used pairs of constant force springs to provide the constant lifting force. To validate the force fluctuation, we recruited eight participants to walk at 0.4, 0.8, 1.2, and 1.6 m/s with 0%, 22%, 46%, and 69% of their bodyweight supported. We used a load cell to measure force through the system and motion capture data to create a vector of the supplied lifting force. The final prototype cost less than $4000 and was able to support 80% of the users' bodyweight. Fluctuations in vertical force increased with speed and bodyweight support, reaching a maximum of 10% at 1.6 m/s and 69% BW support.
Collapse
Affiliation(s)
- Mhairi K MacLean
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Building 1275 Center Drive, Gainesville, FL 32611
| | - Daniel P Ferris
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Building 1275 Center Drive, Gainesville, FL 32611
| |
Collapse
|
13
|
Hicks AL. Locomotor training in people with spinal cord injury: is this exercise? Spinal Cord 2020; 59:9-16. [PMID: 32581307 DOI: 10.1038/s41393-020-0502-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 11/09/2022]
Abstract
Locomotor training holds tremendous appeal to people with spinal cord injury who are wheelchair dependent, as the reacquisition of gait remains one of the most coveted goals in this population. For the last few decades this type of training has remained primarily in the clinical environment, as it requires the use of expensive treadmills with bodyweight support or complex overhead suspension tracks to facilitate overground walking. The development of powered exoskeletons has taken locomotor training out of the clinic, both improving accessibility and providing a potential option for community ambulation in people with lower limb paralysis. A question that has yet to be answered, however, is whether or not locomotor training offers a sufficiently intense stimulus to induce improvements in fitness or health. As inactivity-related secondary health complications are a major source of morbidity and mortality in people with SCI, it would be important to characterize the potential of locomotor training to not only improve functional walking ability, but also improve health-related fitness. This narrative review will summarize the key literature in this area to determine whether locomotor training challenges the cardiovascular, muscular or metabolic systems enough to be considered a viable form of exercise.
Collapse
Affiliation(s)
- Audrey L Hicks
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
14
|
Kim K, Chong WS, Yu CH. Rehabilitative training system based on a ceiling rail for detecting the intended movement direction of a user. Technol Health Care 2020; 28:443-452. [PMID: 32364177 PMCID: PMC7369058 DOI: 10.3233/thc-209045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND: Accurate detection of the intended movement direction of a patient plays an important role in the development of a training system for gait rehabilitation and enables to increase the effect of gait rehabilitation training. OBJECTIVE: This study investigated the detection of the intended movement of a user to operate a ceiling rail-based rehabilitative training system with accurate timing. METHODS: To detect the movement direction intention of a user, two potentiometers were used to measure the movement direction in the anterior, posterior, and left and right directions of the user when operating the driving motor of the rehabilitative training system. A simple test mock-up with two potentiometers was fabricated, and the experiments were conducted to determine the effect of the direction of movement on the measured values of potentiometers. A direction measurement algorithm was developed to control the driving motor of the rail-based gait rehabilitative training system. RESULTS: The intended movement direction of the user could be predicted for eight directions by combining the “positive value, 0, negative value” of each measured value of the two potentiometers. Further, the developed algorithm was effectively used to control the driving function to assist the walking, sitting–standing, and climbing up–down the step activities in daily life. CONCLUSIONS: The movement intention detection function for users developed in this paper can be used to effectively control a rehabilitative training system for patients with hemiplegia to improve gait movement and posture balance, thereby improving their function of activities of daily living.
Collapse
Affiliation(s)
- Kyong Kim
- Division of Biomedical Engineering, Jeonbuk National University, Jeonju, Jeonbuk, Korea
| | - Woo Suk Chong
- New Technology Convergence Team, R&BD Division, CAMTIC Advanced Mechatronics Technology Institute for Commercialization, Jeonju, Jeonbuk, Korea
| | - Chang Ho Yu
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju, Jeonbuk, Korea
| |
Collapse
|
15
|
Korupolu R, Stampas A, Singh M, Zhou P, Francisco G. Electrophysiological Outcome Measures in Spinal Cord Injury Clinical Trials: A Systematic Review. Top Spinal Cord Inj Rehabil 2020; 25:340-354. [PMID: 31844386 DOI: 10.1310/sci2504-340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Electrophysiological measures are being increasingly utilized due to their ability to provide objective measurements with minimal bias and to detect subtle changes with quantitative data on neural function. Heterogeneous reporting of trial outcomes limits effective interstudy comparison and optimization of treatment. Objective: The objective of this systematic review is to describe the reporting of electrophysiological outcome measures in spinal cord injury (SCI) clinical trials in order to inform a subsequent consensus study. Methods: A systematic search of PubMed and EMBASE databases was conducted according to PRISMA guidelines. Adult human SCI clinical trials published in English between January 1, 2008 and September 15, 2018 with at least one electrophysiological outcome measure were eligible. Findings were reviewed by all authors to create a synthesis narrative describing each outcome measure. Results: Sixty-four SCI clinical trials were included in this review. Identified electrophysiological outcomes included electromyography activity (44%), motor evoked potentials (33%), somatosensory evoked potentials (33%), H-reflex (20%), reflex electromyography activity (11%), nerve conduction studies (9%), silent period (3%), contact heat evoked potentials (2%), and sympathetic skin response (2%). Heterogeneity was present in regard to both methods of measurement and reporting of electrophysiological outcome measures. Conclusion: This review demonstrates need for the development of a standardized reporting set for electrophysiological outcome measures. Limitations of this review include exclusion of non-English publications, studies more than 10 years old, and an inability to assess methodological quality of primary studies due to a lack of guidelines on reporting of systematic reviews of outcome measures.
Collapse
Affiliation(s)
- Radha Korupolu
- Department of Physical Medicine and Rehabilitation, University of Texas John P and Katherine G McGovern Medical School, Houston, Texas
| | - Argyrios Stampas
- Department of Physical Medicine and Rehabilitation, University of Texas John P and Katherine G McGovern Medical School, Houston, Texas
| | - Mani Singh
- Department of Physical Medicine and Rehabilitation, University of Texas John P and Katherine G McGovern Medical School, Houston, Texas
| | - Ping Zhou
- Department of Physical Medicine and Rehabilitation, University of Texas John P and Katherine G McGovern Medical School, Houston, Texas
| | - Gerard Francisco
- Department of Physical Medicine and Rehabilitation, University of Texas John P and Katherine G McGovern Medical School, Houston, Texas
| |
Collapse
|
16
|
Physical Activity and Spinal Cord Injury: Lessons Learned at the Lowest End of the Physical Activity Spectrum. ACTA ACUST UNITED AC 2019. [DOI: 10.1123/kr.2018-0062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Apte S, Plooij M, Vallery H. Influence of body weight unloading on human gait characteristics: a systematic review. J Neuroeng Rehabil 2018; 15:53. [PMID: 29925400 PMCID: PMC6011391 DOI: 10.1186/s12984-018-0380-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 04/30/2018] [Indexed: 11/15/2022] Open
Abstract
Background Body weight support (BWS) systems have shown promise as rehabilitation tools for neurologically impaired individuals. This paper reviews the experiment-based research on BWS systems with the aim: (1) To investigate the influence of body weight unloading (BWU) on gait characteristics; (2) To study whether the effects of BWS differ between treadmill and overground walking and (3) To investigate if modulated BWU influences gait characteristics less than unmodulated BWU. Method A systematic literature search was conducted in the following search engines: Pubmed, Scopus, Web of Science and Google Scholar. Statistical analysis was used to quantify the effects of BWU on gait parameters. Results 54 studies of experiments with healthy and neurologically impaired individuals walking in a BWS system were included and 32 of these were used for the statistical analysis. Literature was classified using three distinctions: (1) treadmill or overground walking; (2) the type of subjects and (3) the nature of unloading force. Only 27% studies were based on neurologically impaired subjects; a low number considering that they are the primary user group for BWS systems. The studies included BWU from 5% to 100% and the 30% and 50% BWU conditions were the most widely studied. The number of participants varied from 1 to 28, with an average of 12. It was seen that due to the increase in BWU level, joint moments, muscle activity, energy cost of walking and ground reaction forces (GRF) showed higher reduction compared to gait spatio-temporal and joint kinematic parameters. The influence of BWU on kinematic and spatio-temporal gait parameters appeared to be limited up to 30% unloading. 5 gait characteristics presented different behavior in response to BWU for overground and treadmill walking. Remaining 21 gait characteristics showed similar behavior but different magnitude of change for overground and treadmill walking. Modulated unloading force generally led to less difference from the 0% condition than unmodulated unloading. Conclusion This review has shown that BWU influences all gait characteristics, albeit with important differences between the kinematic, spatio-temporal and kinetic characteristics. BWU showed stronger influence on the kinetic characteristics of gait than on the spatio-temporal parameters and the kinematic characteristics. It was ascertained that treadmill and overground walking can alter the effects of BWU in a different manner. Our results indicate that task-specific gait training is likely to be achievable at a BWU level of 30% and below. Electronic supplementary material The online version of this article (10.1186/s12984-018-0380-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Salil Apte
- Mechanical, Maritime and Materials Engineering (3mE), TU Delft, Mekelweg 2, Delft, 2628 CD, Netherlands
| | - Michiel Plooij
- Mechanical, Maritime and Materials Engineering (3mE), TU Delft, Mekelweg 2, Delft, 2628 CD, Netherlands.,Motekforce Link, Hogehilweg 18-C, Amsterdam, 1101 CD, Netherlands
| | - Heike Vallery
- Mechanical, Maritime and Materials Engineering (3mE), TU Delft, Mekelweg 2, Delft, 2628 CD, Netherlands.
| |
Collapse
|
18
|
Kim K, Song WK, Chong WS, Yu CH. Structural analysis of a rehabilitative training system based on a ceiling rail for safety of hemiplegia patients. Technol Health Care 2018; 26:259-268. [PMID: 29710754 PMCID: PMC6004960 DOI: 10.3233/thc-174604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The body-weight support (BWS) function, which helps to decrease load stresses on a user, is an effective tool for gait and balance rehabilitation training for elderly people with weakened lower-extremity muscular strength, hemiplegic patients, etc. This study conducts structural analysis to secure user safety in order to develop a rail-type gait and balance rehabilitation training system (RRTS). The RRTS comprises a rail, trolley, and brain-machine interface. The rail (platform) is connected to the ceiling structure, bearing the loads of the RRTS and of the user and allowing locomobility. The trolley consists of a smart drive unit (SDU) that assists the user with forward and backward mobility and a body-weight support (BWS) unit that helps the user to control his/her body-weight load, depending on the severity of his/her hemiplegia. The brain-machine interface estimates and measures on a real-time basis the body-weight (load) of the user and the intended direction of his/her movement. Considering the weight of the system and the user, the mechanical safety performance of the system frame under an applied 250-kg static load is verified through structural analysis using ABAQUS (6.14-3) software. The maximum stresses applied on the rail and trolley under the given gravity load of 250 kg, respectively, are 18.52 MPa and 48.44 MPa. The respective safety factors are computed to be 7.83 and 5.26, confirming the RRTS's mechanical safety. An RRTS with verified structural safety could be utilized for gait movement and balance rehabilitation and training for patients with hemiplegia.
Collapse
Affiliation(s)
- Kyong Kim
- Department of Medical and Electronic Device, Chungbuk Provincial College, Chungbuk, Korea
| | - Won Kyung Song
- Translational Research Center for Rehabilitation Robots, Research Institute, National Rehabilitation Center, Seoul, Korea
| | - Woo Suk Chong
- R&D Division, CAMTIC Advanced Mechatronics Technology Institute for Commercialization, Jeonju, Jeonbuk, Korea
| | - Chang Ho Yu
- Division of Convergence Technology Engineering, Chonbuk National University, Jeonju, Jeonbuk, Korea
| |
Collapse
|
19
|
Holanda LJ, Silva PMM, Amorim TC, Lacerda MO, Simão CR, Morya E. Robotic assisted gait as a tool for rehabilitation of individuals with spinal cord injury: a systematic review. J Neuroeng Rehabil 2017; 14:126. [PMID: 29202845 PMCID: PMC5715997 DOI: 10.1186/s12984-017-0338-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/23/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is characterized by a total or partial deficit of sensory and motor pathways. Impairments of this injury compromise muscle recruitment and motor planning, thus reducing functional capacity. SCI patients commonly present psychological, intestinal, urinary, osteomioarticular, tegumentary, cardiorespiratory and neural alterations that aggravate in chronic phase. One of the neurorehabilitation goals is the restoration of these abilities by favoring improvement in the quality of life and functional independence. Current literature highlights several benefits of robotic gait therapies in SCI individuals. OBJECTIVES The purpose of this study was to compare the robotic gait devices, and systematize the scientific evidences of these devices as a tool for rehabilitation of SCI individuals. METHODS A systematic review was carried out in which relevant articles were identified by searching the following databases: Cochrane Library, PubMed, PEDro and Capes Periodic. Two authors selected the articles which used a robotic device for rehabilitation of spinal cord injury. RESULTS Databases search found 2941 articles, 39 articles were included due to meet the inclusion criteria. The robotic devices presented distinct features, with increasing application in the last years. Studies have shown promising results regarding the reduction of pain perception and spasticity level; alteration of the proprioceptive capacity, sensitivity to temperature, vibration, pressure, reflex behavior, electrical activity at muscular and cortical level, classification of the injury level; increase in walking speed, step length and distance traveled; improvements in sitting posture, intestinal, cardiorespiratory, metabolic, tegmental and psychological functions. CONCLUSIONS This systematic review shows a significant progress encompassing robotic devices as an innovative and effective therapy for the rehabilitation of individuals with SCI.
Collapse
Affiliation(s)
- Ledycnarf J Holanda
- Neuroengineering Program, Edmond and Lily Safra International Neuroscience Institute, Santos Dumont Institute, Rodovia RN 160, Km 03, 3001 Distrito Jundiaí, Macaíba, 59280-000, Brazil.
| | - Patrícia M M Silva
- Neuroengineering Program, Edmond and Lily Safra International Neuroscience Institute, Santos Dumont Institute, Rodovia RN 160, Km 03, 3001 Distrito Jundiaí, Macaíba, 59280-000, Brazil
| | - Thiago C Amorim
- Neuroengineering Program, Edmond and Lily Safra International Neuroscience Institute, Santos Dumont Institute, Rodovia RN 160, Km 03, 3001 Distrito Jundiaí, Macaíba, 59280-000, Brazil
| | - Matheus O Lacerda
- Federal University of Rio Grande do Norte, Av. Sen. Salgado Filho Lagoa Nova, Natal, 59078-970, Brazil
| | - Camila R Simão
- Federal University of Rio Grande do Norte, Av. Sen. Salgado Filho Lagoa Nova, Natal, 59078-970, Brazil.,Anita Garibaldi Center of Education and Research in Health, Santos Dumont Institute, Rodovia RN 160, Km 02, 2010 Distrito Jundiaí, Macaíba, 59280-970, Brazil
| | - Edgard Morya
- Neuroengineering Program, Edmond and Lily Safra International Neuroscience Institute, Santos Dumont Institute, Rodovia RN 160, Km 03, 3001 Distrito Jundiaí, Macaíba, 59280-000, Brazil.,Anita Garibaldi Center of Education and Research in Health, Santos Dumont Institute, Rodovia RN 160, Km 02, 2010 Distrito Jundiaí, Macaíba, 59280-970, Brazil
| |
Collapse
|
20
|
Shuai L, Yu GH, Feng Z, Wang WS, Sun WM, Zhou L, Yan Y. Application of a paraplegic gait orthosis in thoracolumbar spinal cord injury. Neural Regen Res 2017; 11:1997-2003. [PMID: 28197198 PMCID: PMC5270440 DOI: 10.4103/1673-5374.197144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Paraplegic gait orthosis has been shown to help paraplegic patients stand and walk, although this method cannot be individualized for patients with different spinal cord injuries and functional recovery of the lower extremities. There is, however, a great need to develop individualized paraplegic orthosis to improve overall quality of life for paraplegic patients. In the present study, 36 spinal cord (below T4) injury patients were equally and randomly divided into control and observation groups. The control group received systematic rehabilitation training, including maintenance of joint range of motion, residual muscle strength training, standing training, balance training, and functional electrical stimulation. The observation group received an individualized paraplegic locomotion brace and functional training according to the various spinal cord injury levels and muscle strength based on comprehensive systematic rehabilitation training. After 3 months of rehabilitation training, the observation group achieved therapeutic locomotion in 8 cases, family-based locomotion in 7 cases, and community-based locomotion in 3 cases. However, locomotion was not achieved in any of the control group patients. These findings suggest that individualized paraplegic braces significantly improve activity of daily living and locomotion in patients with thoracolumbar spinal cord injury.
Collapse
Affiliation(s)
- Lang Shuai
- Department of Rehabilitation, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Guo-Hua Yu
- Department of Rehabilitation, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhen Feng
- Department of Rehabilitation, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Wan-Song Wang
- Department of Rehabilitation, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Wei-Ming Sun
- Department of Rehabilitation, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Lu Zhou
- Department of Rehabilitation, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yin Yan
- Department of Rehabilitation, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
21
|
Lefeber N, Swinnen E, Kerckhofs E. The immediate effects of robot-assistance on energy consumption and cardiorespiratory load during walking compared to walking without robot-assistance: a systematic review. Disabil Rehabil Assist Technol 2016; 12:657-671. [DOI: 10.1080/17483107.2016.1235620] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Nina Lefeber
- Faculty of Physical Education and Physiotherapy, Rehabilitation Research, Vrije Universiteit Brussel, Brussels, Belgium
- C4N, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
- BruBotics, Brussels Human Robotic Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eva Swinnen
- Faculty of Physical Education and Physiotherapy, Rehabilitation Research, Vrije Universiteit Brussel, Brussels, Belgium
- C4N, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
- BruBotics, Brussels Human Robotic Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eric Kerckhofs
- Faculty of Physical Education and Physiotherapy, Rehabilitation Research, Vrije Universiteit Brussel, Brussels, Belgium
- C4N, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
- BruBotics, Brussels Human Robotic Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
22
|
Gorman PH, Scott W, York H, Theyagaraj M, Price-Miller N, McQuaid J, Eyvazzadeh M, Ivey FM, Macko RF. Robotically assisted treadmill exercise training for improving peak fitness in chronic motor incomplete spinal cord injury: A randomized controlled trial. J Spinal Cord Med 2016; 39:32-44. [PMID: 25520035 PMCID: PMC4725790 DOI: 10.1179/2045772314y.0000000281] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVE To assess the effectiveness of robotically assisted body weight supported treadmill training (RABWSTT) for improving cardiovascular fitness in chronic motor incomplete spinal cord injury (CMISCI). DESIGN Pilot prospective randomized, controlled clinical trial. SETTING Outpatient rehabilitation specialty hospital. PARTICIPANTS Eighteen individuals with CMISCI with American Spinal Injury Association (ASIA) level between C4 and L2 and at least one-year post injury. Interventions CMISCI participants were randomized to RABWSTT or a home stretching program (HSP) three times per week for three months. Those in the home stretching group were crossed over to three months of RABWSTT following completion of the initial three month phase. OUTCOME MEASURES Peak oxygen consumption (peak VO(2)) was measured during both robotic treadmill walking and arm cycle ergometry: twice at baseline, once at six weeks (mid-training) and twice at three months (post-training). Peak VO(2) values were normalized for body mass. RESULTS The RABWSTT group improved peak VO(2) by 12.3% during robotic treadmill walking (20.2 ± 7.4 to 22.7 ± 7.5 ml/kg/min, P = 0.018), compared to a non-significant 3.9% within group change observed in HSP controls (P = 0.37). Neither group displayed a significant change in peak VO2 during arm cycle ergometry (RABWSTT, 8.5% (P = 0.25); HSP, 1.76% (P = 0.72)). A repeated measures analysis showed statistically significant differences between treatments for peak VO(2) during both robotic treadmill walking (P = 0.002) and arm cycle ergometry (P = 0.001). CONCLUSION RABWSTT is an effective intervention model for improving peak fitness levels assessed during robotic treadmill walking in persons with CMISCI.
Collapse
Affiliation(s)
- Peter H. Gorman
- Correspondence to: Peter H. Gorman, University of Maryland Rehabilitation and Orthopaedic Institute, 2200 Kernan Drive, Baltimore, MD 21207, USA.
| | - William Scott
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Naomi Price-Miller
- University of Maryland Rehabilitation and Orthopaedic Institute (formerly Kernan Orthopaedics and Rehabilitation Hospital), Baltimore, MD, USA
| | - Jean McQuaid
- University of Maryland Rehabilitation and Orthopaedic Institute (formerly Kernan Orthopaedics and Rehabilitation Hospital), Baltimore, MD, USA
| | | | | | | |
Collapse
|
23
|
Evans N, Hartigan C, Kandilakis C, Pharo E, Clesson I. Acute Cardiorespiratory and Metabolic Responses During Exoskeleton-Assisted Walking Overground Among Persons with Chronic Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2015; 21:122-32. [PMID: 26364281 DOI: 10.1310/sci2102-122] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Lower extremity robotic exoskeleton technology is being developed with the promise of affording people with spinal cord injury (SCI) the opportunity to stand and walk. The mobility benefits of exoskeleton-assisted walking can be realized immediately, however the cardiorespiratory and metabolic benefits of this technology have not been thoroughly investigated. OBJECTIVE The purpose of this pilot study was to evaluate the acute cardiorespiratory and metabolic responses associated with exoskeleton-assisted walking overground and to determine the degree to which these responses change at differing walking speeds. METHODS Five subjects (4 male, 1 female) with chronic SCI (AIS A) volunteered for the study. Expired gases were collected during maximal graded exercise testing and two, 6-minute bouts of exoskeleton-assisted walking overground. Outcome measures included peak oxygen consumption (V̇O2peak), average oxygen consumption (V̇O2avg), peak heart rate (HRpeak), walking economy, metabolic equivalent of tasks for SCI (METssci), walk speed, and walk distance. RESULTS Significant differences were observed between walk-1 and walk-2 for walk speed, total walk distance, V̇O2avg, and METssci. Exoskeleton-assisted walking resulted in %V̇O2peak range of 51.5% to 63.2%. The metabolic cost of exoskeleton-assisted walking ranged from 3.5 to 4.3 METssci. CONCLUSIONS Persons with motor-complete SCI may be limited in their capacity to perform physical exercise to the extent needed to improve health and fitness. Based on preliminary data, cardiorespiratory and metabolic demands of exoskeleton-assisted walking are consistent with activities performed at a moderate intensity.
Collapse
Affiliation(s)
- Nicholas Evans
- Beyond Therapy, Shepherd Center, Atlanta, Georgia.,Hulse Spinal Cord Injury Laboratory, Shepherd Center, Atlanta, Georgia
| | - Clare Hartigan
- Virginia C. Crawford Research Institute, Shepherd Center, Atlanta, Georgia
| | - Casey Kandilakis
- Virginia C. Crawford Research Institute, Shepherd Center, Atlanta, Georgia
| | | | - Ismari Clesson
- Virginia C. Crawford Research Institute, Shepherd Center, Atlanta, Georgia
| |
Collapse
|
24
|
Almeida GJ, Wert DM, Brower KS, Piva SR. Validity of physical activity measures in individuals after total knee arthroplasty. Arch Phys Med Rehabil 2014; 96:524-31. [PMID: 25450127 DOI: 10.1016/j.apmr.2014.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 10/02/2014] [Accepted: 10/03/2014] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To determine the concurrent criterion-related validity of 2 activity monitors in comparison with the criterion method of indirect calorimetry in older adults after total knee arthroplasty (TKA). DESIGN Validation study. SETTING Subjects completed 9 increasingly demanding daily activities in a research laboratory; each activity was performed for 7 minutes, for a total of 80 minutes, while the activity monitors and criterion method were used concurrently. PARTICIPANTS Subjects (N=21, 67% women) had a mean age ± SD of 68±7 years and a body mass index of 29±4. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Energy expenditure (in kcal/min) measured by accelerometer-based and multisensor-based monitors and by a criterion method. Validity was assessed by the paired t test, intraclass correlation coefficient (ICC), and Bland-Altman plots comparing the measurements from the activity monitors with those of the criterion method. RESULTS Measurements from the accelerometer-based monitor were significantly lower than those of the criterion method across all walking and nonwalking activities. The underestimations ranged from 40% to 100%. The accelerometer-based monitor demonstrated small to moderate agreement compared with the criterion method (ICCs from 0 to .38). Measurements from the multisensor-based monitor were significantly lower than those of the criterion method during several nonwalking activities; yet, the differences were minor (2%-19%). Measurements from the multisensor-based monitor during walking activities were not different compared with the criterion method. The multisensor-based monitor demonstrated moderate to excellent agreement with the criterion method (ICCs from .48 to .81). CONCLUSIONS The multisensor-based monitor showed better criterion-related validity than the accelerometer-based monitor and should be considered as a tool to measure physical activity in individuals after TKA.
Collapse
Affiliation(s)
- Gustavo J Almeida
- Department of Physical Therapy, University of Pittsburgh, Pittsburgh, PA.
| | - David M Wert
- Department of Physical Therapy, University of Pittsburgh, Pittsburgh, PA
| | - Kelly S Brower
- School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Sara R Piva
- Department of Physical Therapy, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|