Sinphitukkul K, Manotham K, Eiam-Ong S, Eiam-Ong S. Aldosterone nongenomically induces angiotensin II receptor dimerization in rat kidney: role of mineralocorticoid receptor and NADPH oxidase.
Arch Med Sci 2019;
15:1589-1598. [PMID:
31749889 PMCID:
PMC6855162 DOI:
10.5114/aoms.2019.87135]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/01/2017] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION
Previous in vitro studies demonstrated that aldosterone nongenomically induces transglutaminase (TG) and reactive oxygen species (ROS), which enhanced angiotensin II receptor (ATR) dimerization. There are no in vivo data in the kidney.
MATERIAL AND METHODS
Male Wistar rats were intraperitoneally injected with normal saline solution, or aldosterone (Aldo: 150 μg/kg BW); or received pretreatment with eplerenone (mineralocorticoid receptor (MR) blocker, Ep. + Aldo), or with apocynin (nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, Apo. + Aldo) 30 min before aldosterone. Thirty minutes after aldosterone injection, protein abundances of dimeric and monomeric forms of AT1R and AT2R, and protein abundances and localizations of TG2 and p47phox, a cytosolic subunit of NADPH oxidase, were determined by Western blot analysis and immunohistochemistry, respectively.
RESULTS
Protein abundances of dimeric forms of AT1R and AT2R were enhanced by 170% and 70%, respectively. Apocynin could block dimeric forms of both receptors while eplerenone inhibited only AT2R. Monomeric protein levels of both receptors were maintained. Aldosterone significantly enhanced TG2 and p47phox protein abundances, which were blunted by eplerenone or apocynin. Aldosterone stimulated p47phox protein expression in both the cortex and the medulla while TG2 was induced mostly in the medulla. Eplerenone or apocynin normalized the immunoreactivity of both TG2 and p47phox.
CONCLUSIONS
This is the first in vivo study demonstrating that aldosterone nongenomically increases renal TG2 and p47phox protein expression and then activates AT1R and AT2R dimerizations. Aldosterone-stimulated AT1R and AT2R dimerizations are mediated through activation of NADPH oxidase. Aldosterone-induced AT1R dimer formation is an MR-independent pathway, whereas the formation of AT2R dimer is modulated in an MR-dependent manner.
Collapse