1
|
Xie WS, Shehzadi K, Ma HL, Liang JH. A Potential Strategy for Treatment of Neurodegenerative Disorders by Regulation of Adult Hippocampal Neurogenesis in Human Brain. Curr Med Chem 2022; 29:5315-5347. [DOI: 10.2174/0929867329666220509114232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/13/2022] [Accepted: 03/17/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Adult hippocampal neurogenesis is a multistage mechanism that continues throughout the lifespan of human and non-human mammals. These adult-born neurons in the central nervous system (CNS) play a significant role in various hippocampus-dependent processes, including learning, mood regulation, pattern recognition, etc. Reduction of adult hippocampal neurogenesis, caused by multiple factors such as neurological disorders and aging, would impair neuronal proliferation and differentiation and result in memory loss. Accumulating studies have indicated that functional neuron impairment could be restored by promoting adult hippocampal neurogenesis. In this review, we summarized the small molecules that could efficiently promote the process of adult neurogenesis, particularly the agents that have the capacity of crossing the blood-brain barrier (BBB), and showed in vivo efficacy in mammalian brains. This may pave the way for the rational design of drugs to treat humnan neurodegenerative disorders in the future.
Collapse
Affiliation(s)
- Wei-Song Xie
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Kiran Shehzadi
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Hong-Le Ma
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jian-Hua Liang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| |
Collapse
|
2
|
Tripathi S, Jha SK. REM Sleep Deprivation Alters Learning-Induced Cell Proliferation and Generation of Newborn Young Neurons in the Dentate Gyrus of the Dorsal Hippocampus. ACS Chem Neurosci 2022; 13:194-206. [PMID: 34990120 DOI: 10.1021/acschemneuro.1c00465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The hippocampus-dependent "trace-appetitive conditioning task" increases cell proliferation and the generation of newborn young neurons. Evidence suggests that adult hippocampal neurogenesis and rapid eye movement (REM) sleep play an essential role in memory consolidation. On the other hand, REM sleep deprivation (REM-SD) induces detrimental effects on training-induced cell proliferation in the hippocampus's dentate gyrus (DG). Nonetheless, the role of REM sleep in the trace-appetitive memory and fate determination of the newly proliferated cells is not known. Here, we have studied the following: (I) the effects of 24 h of REM-SD (soon after training) on trace- and delay-appetitive memory and cell proliferation in the adult DG and (II) the effects of chronic (96 h) REM-SD (3 days after the training, the period in which newly generated cells progressed toward the neuronal lineage) on trace-appetitive memory and the generation of newborn young neurons. We used a modified multiple platform method for the selective REM-SD without altering non-REM (NREM) sleep. We found that 24 h of REM-SD, soon after trace-conditioning, impaired the trace-appetitive memory and the training-induced cell proliferation. Nevertheless, 96 h of REM-SD (3 days after the training) did not impair trace memory. Interestingly, 96 h of REM-SD altered the generation of newborn young neurons. These results suggest that REM sleep plays an essential role in training-induced cell proliferation and the fate determination of the newly generated cells toward the neuronal lineage.
Collapse
Affiliation(s)
- Shweta Tripathi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sushil K. Jha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
3
|
Langley MR, Ghaisas S, Palanisamy BN, Ay M, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Characterization of nonmotor behavioral impairments and their neurochemical mechanisms in the MitoPark mouse model of progressive neurodegeneration in Parkinson's disease. Exp Neurol 2021; 341:113716. [PMID: 33839143 PMCID: PMC9797183 DOI: 10.1016/j.expneurol.2021.113716] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 12/30/2022]
Abstract
Mitochondrial dysfunction has been implicated as a key player in the pathogenesis of Parkinson's disease (PD). The MitoPark mouse, a transgenic mitochondrial impairment model developed by specific inactivation of TFAM in dopaminergic neurons, spontaneously exhibits progressive motor deficits and neurodegeneration, recapitulating several features of PD. Since nonmotor symptoms are now recognized as important features of the prodromal stage of PD, we comprehensively assessed the clinically relevant motor and nonmotor deficiencies from ages 8-24 wk in both male and female MitoPark mice and their littermate controls. As expected, motor deficits in MitoPark mice began around 12-14 wk and became severe by 16-24 wk. Interestingly, MitoPark mice exhibited olfactory deficits in the novel and social scent tests as early as 10-12 wk as compared to age-matched littermate controls. Additionally, male MitoPark mice showed spatial memory deficits before female mice, beginning at 8 wk and becoming most severe at 16 wk, as determined by the Morris water maze. MitoPark mice between 16 and 24 wk spent more time immobile in forced swim and tail suspension tests, and made fewer entries into open arms of the elevated plus maze, indicating a depressive and anxiety-like phenotype, respectively. Importantly, depressive behavior as determined by immobility in forced swim test was reversible by antidepressant treatment with desipramine. Neurochemical and mechanistic studies revealed significant changes in CREB phosphorylation, BDNF, and catecholamine levels as well as neurogenesis in key brain regions. Collectively, our results indicate that MitoPark mice progressively exhibit deficits in olfactory discrimination, cognitive learning and memory, and anxiety- and depression-like behaviors as well as key neurochemical signaling associated with nonmotor deficits in PD. Thus, MitoPark mice can serve as an invaluable model for studying nonmotor deficits in addition to studying the motor deficits related to pathology in PD.
Collapse
Affiliation(s)
- Monica R Langley
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Shivani Ghaisas
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Bharathi N Palanisamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Muhammet Ay
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Huajun Jin
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Vellareddy Anantharam
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Arthi Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Anumantha G Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America.
| |
Collapse
|
4
|
Puri D, Subramanyam D. Stress - (self) eating: Epigenetic regulation of autophagy in response to psychological stress. FEBS J 2019; 286:2447-2460. [PMID: 30927484 DOI: 10.1111/febs.14826] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/19/2019] [Accepted: 03/27/2019] [Indexed: 12/16/2022]
Abstract
Autophagy is a constitutive and cytoprotective catabolic process. Aberrations in autophagy lead to a multitude of degenerative disorders, with neurodegeneration being one of the most widely studied autophagy-related disorders. While the field has largely been focusing on the cytosolic constituents and processes of autophagy, recent studies are increasingly appreciating the role of chromatin modifications and epigenetic regulation in autophagy maintenance. Autophagy has been implicated in the regulation of neurogenesis, and disruption of neurogenesis in response to psychological stress is a proximal risk factor for development of neuropsychiatric disorders such as major depressive disorder (MDD). In this review, we will discuss the regulation of autophagy in normal neurogenesis as well as during chronic psychological stress, focusing on the epigenetic control of autophagy in these contexts, and also highlight the lacunae in our understanding of this process. The systematic study of these regulatory mechanisms will provide a novel therapeutic strategy, based on the use epigenetic regulators of autophagy to enhance neurogenesis and potentially alleviate stress-related behavioral disorders.
Collapse
Affiliation(s)
- Deepika Puri
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Deepa Subramanyam
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
5
|
Sheppard PAS, Choleris E, Galea LAM. Structural plasticity of the hippocampus in response to estrogens in female rodents. Mol Brain 2019; 12:22. [PMID: 30885239 PMCID: PMC6423800 DOI: 10.1186/s13041-019-0442-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/11/2019] [Indexed: 01/05/2023] Open
Abstract
It is well established that estrogens affect neuroplasticity in a number of brain regions. In particular, estrogens modulate and mediate spine and synapse formation as well as neurogenesis in the hippocampal formation. In this review, we discuss current research exploring the effects of estrogens on dendritic spine plasticity and neurogenesis with a focus on the modulating factors of sex, age, and pregnancy. Hormone levels, including those of estrogens, fluctuate widely across the lifespan from early life to puberty, through adulthood and into old age, as well as with pregnancy and parturition. Dendritic spine formation and modulation are altered both by rapid (likely non-genomic) and classical (genomic) actions of estrogens and have been suggested to play a role in the effects of estrogens on learning and memory. Neurogenesis in the hippocampus is influenced by age, the estrous cycle, pregnancy, and parity in female rodents. Furthermore, sex differences exist in hippocampal cellular and molecular responses to estrogens and are briefly discussed throughout. Understanding how structural plasticity in the hippocampus is affected by estrogens and how these effects can influence function and be influenced by other factors, such as experience and sex, is critical and can inform future treatments in conditions involving the hippocampus.
Collapse
Affiliation(s)
- Paul A. S. Sheppard
- Department of Psychology, Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Elena Choleris
- Department of Psychology & Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Liisa A. M. Galea
- Department of Psychology, Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| |
Collapse
|
6
|
Kumar RS, Narayanan SN, Kumar N, Nayak S. Exposure to Enriched Environment Restores Altered Passive Avoidance Learning and Ameliorates Hippocampal Injury in Male Albino Wistar Rats Subjected to Chronic Restraint Stress. Int J Appl Basic Med Res 2019; 8:231-236. [PMID: 30598910 PMCID: PMC6259305 DOI: 10.4103/ijabmr.ijabmr_379_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Aims: The aim of the study was to investigate the effects of exposure to enriched environment (EE) on passive avoidance learning and hippocampal cellular morphology in rats exposed to chronic restraint stress. Materials and Methods: Adult male albino Wistar rats were assigned into the following groups: normal control (NC) remained undisturbed in their home cages; stressed group (S) subjected to restrained stress (6 h/day) followed by housing in standard housing for 21 days; And stressed + EE (S + EE) subjected to restrained stress followed by housing in EE for 21 days. On 22nd day, six animals from each of the three groups were exposed to passive avoidance test. The remaining animals were sacrificed. Hippocampus was isolated and processed for cellular morphology using cresyl violet staining. Statistical Analysis Used: Data were analyzed using one-way analysis of variance followed by Tukey's multiple comparison test (post hoc). Results: Stressed rats exposed to EE showed significant improvement in passive avoidance learning test compared to NC. Quantification of the surviving neurons in the hippocampal subfields and their cellular morphology revealed significant neuroprotection in S + EE in cornu ammonis-2 (CA2) neurons and CA3 hippocampal neurons. No significant changes were found in CA1 hippocampal subfield. Conclusions: The outcome of this study makes us to think the possibilities of adopting EE as an alternative strategy in brain diseases where there is chronic stress and to minimize the impairment in learning and memory.
Collapse
Affiliation(s)
- Raju Suresh Kumar
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Sareesh Naduvil Narayanan
- Department of Physiology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | - Naveen Kumar
- Department of Anatomy, Melaka Manipal Medical College Manipal Academy of Higher Education, Karnataka, India
| | - Satheesha Nayak
- Department of Anatomy, Melaka Manipal Medical College Manipal Academy of Higher Education, Karnataka, India
| |
Collapse
|
7
|
van Loenhoud AC, Groot C, Vogel JW, van der Flier WM, Ossenkoppele R. Is intracranial volume a suitable proxy for brain reserve? Alzheimers Res Ther 2018; 10:91. [PMID: 30205838 PMCID: PMC6134772 DOI: 10.1186/s13195-018-0408-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Brain reserve is a concept introduced to explain why Alzheimer's disease (AD) patients with a greater brain volume prior to onset of pathology generally have better clinical outcomes. In this review, we provide a historical background of the emergence of brain reserve and discuss several aspects that need further clarification, including the dynamic or static nature of the concept and its underlying mechanisms and clinical effect. We then describe how brain reserve has been operationalized over the years, and critically evaluate the use of intracranial volume (ICV) as the most widely used proxy for brain reserve. Furthermore, we perform a meta-analysis showing that ICV is associated with higher cognitive performance after adjusting for the presence and amount of pathology. Although we acknowledge its imperfections, we conclude that the use of ICV as a proxy for brain reserve is currently warranted. However, further development of more optimal measures of brain reserve as well as a more clearly defined theoretical framework is essential.
Collapse
Affiliation(s)
- Anna Catharina van Loenhoud
- Department of Neurology and Alzheimer Center, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Colin Groot
- Department of Neurology and Alzheimer Center, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Jacob William Vogel
- Department of Neurology and Alzheimer Center, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Montreal Neurological Institute, McGill University, Montreal, QC Canada
| | - Wiesje Maria van der Flier
- Department of Neurology and Alzheimer Center, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Department of Neurology and Alzheimer Center, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Department of Clinical Memory Research, Lund University, Lund, Sweden
| |
Collapse
|
8
|
|
9
|
Sakalem ME, Seidenbecher T, Zhang M, Saffari R, Kravchenko M, Wördemann S, Diederich K, Schwamborn JC, Zhang W, Ambrée O. Environmental enrichment and physical exercise revert behavioral and electrophysiological impairments caused by reduced adult neurogenesis. Hippocampus 2016; 27:36-51. [PMID: 27701786 DOI: 10.1002/hipo.22669] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2016] [Indexed: 01/17/2023]
Abstract
It is well known that adult neurogenesis occurs in two distinct regions, the subgranular zone of the dentate gyrus and the subventricular zone along the walls of the lateral ventricles. Until now, the contribution of these newly born neurons to behavior and cognition is still uncertain. The current study tested the functional impacts of diminished hippocampal neurogenesis on emotional and cognitive functions in transgenic Gfap-tk mice. Our results showed that anxiety-related behavior evaluated both in the elevated plus maze as well as in the open field, social interaction in the sociability test, and spatial working memory in the spontaneous alternation test were not affected. On the other hand, recognition and emotional memory in the object recognition test and contextual fear conditioning, and hippocampal long-term potentiation were impaired in transgenic mice. Furthermore, we evaluated whether environmental enrichment together with physical exercise could improve or even restore the level of adult neurogenesis, as well as the behavioral functions. Our results clearly demonstrated that environmental enrichment together with physical exercise successfully elevated the overall number of progenitor cells and young neurons in the dentate gyrus of transgenic mice. Furthermore, it led to a significant improvement in object recognition memory and contextual fear conditioning, and reverted impairments in hippocampal long-term potentiation. Thus, our results confirm the importance of adult neurogenesis for learning and memory processes and for hippocampal circuitry in general. Environmental enrichment and physical exercise beneficially influenced adult neurogenesis after it had been disrupted and most importantly recovered cognitive functions and long-term potentiation. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marna Eliana Sakalem
- Department of Psychiatry, Laboratory of Molecular Psychiatry, University of Münster, Münster, Germany
| | | | - Mingyue Zhang
- Department of Psychiatry, Laboratory of Molecular Psychiatry, University of Münster, Münster, Germany
| | - Roja Saffari
- Department of Psychiatry, Laboratory of Molecular Psychiatry, University of Münster, Münster, Germany
| | - Mykola Kravchenko
- Department of Psychiatry, Laboratory of Molecular Psychiatry, University of Münster, Münster, Germany
| | - Stephanie Wördemann
- Department of Psychiatry, Laboratory of Molecular Psychiatry, University of Münster, Münster, Germany
| | - Kai Diederich
- Department of Neurology, University of Münster, Münster, Germany
| | - Jens C Schwamborn
- Luxembourg Centre for System Biomedicine (LCSB) and Faculty of Science, Technology and Communication, University of Luxembourg, Luxembourg
| | - Weiqi Zhang
- Department of Psychiatry, Laboratory of Molecular Psychiatry, University of Münster, Münster, Germany
| | - Oliver Ambrée
- Department of Psychiatry, Laboratory of Molecular Psychiatry, University of Münster, Münster, Germany.,Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
10
|
Zhang XM, Cai Y, Wang F, Wu J, Mo L, Zhang F, Patrylo PR, Pan A, Ma C, Fu J, Yan XX. Sp8 expression in putative neural progenitor cells in guinea pig and human cerebrum. Dev Neurobiol 2015; 76:939-55. [PMID: 26585436 DOI: 10.1002/dneu.22367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 10/05/2015] [Accepted: 11/12/2015] [Indexed: 12/19/2022]
Abstract
Neural stem/progenitor cells have been characterized at neurogenic sites in adult mammalian brain with various molecular markers. Here it has been demonstrated that Sp8, a transcription factor typically expressed among mature GABAergic interneurons, also labels putative neural precursors in adult guinea pig and human cerebrum. In guinea pigs, Sp8 immunoreactive (Sp8+) cells were localized largely in the superficial layers of the cortex including layer I, as well as the subventricular zone (SVZ) and subgranular zone (SGZ). Sp8+ cells at the SGZ showed little colocalization with mature and immature neuronal markers, but co-expressed neural stem cell markers including Sox2. Some layer I Sp8+ cells also co-expressed Sox2. The amount of Sp8+ cells in the dentate gyrus was maintained 2 weeks after X-ray irradiation, while that of doublecortin (DCX+) cells was greatly reduced. Mild ischemic insult caused a transient increase of Sp8+ cells in the SGZ and layer I, with the subgranular Sp8+ cells exhibited an increased colabeling for the mitotic marker Ki67 and pulse-chased bromodeoxyuridine (BrdU). Sp8+ cells in the dentate gyrus showed an age-related decline in guinea pigs, in parallel with the loss of DCX+ cells in the same region. In adult humans, Sp8+ cells exhibited comparable morphological features as seen in guinea pigs, with those at the SGZ and some in cortical layer I co-expressed Sox2. Together, these results suggested that Sp8 may label putative neural progenitors in guinea pig and human cerebrum, with the labeled cells in the SGZ appeared largely not mitotically active under normal conditions. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 939-955, 2016.
Collapse
Affiliation(s)
- Xue-Mei Zhang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yan Cai
- Department of Anatomy and Neurobiology, Central South University School of Basic Medicine, Changsha, Hunan, China
| | - Fang Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jun Wu
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lin Mo
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Feng Zhang
- Department of Radiation Oncology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Peter R Patrylo
- Southern Illinois University School of Medicine, Center for Integrated Research in Cognitive and Neural Sciences, Carbondale, Illinois
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University School of Basic Medicine, Changsha, Hunan, China
| | - Chao Ma
- Department of Human Anatomy, Histology & Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jin Fu
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University School of Basic Medicine, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Changsha, Hunan, China
| |
Collapse
|