1
|
Macciacchera M, McDonnell JM, Amir A, Sowa A, Cunniffe G, Darwish S, Murphy C, Butler JS. Mechanical Vertebral Body Augmentation Versus Conventional Balloon Kyphoplasty for Osteoporotic Thoracolumbar Compression Fractures: A Systematic Review and Meta-Analysis of Outcomes. Global Spine J 2025; 15:1356-1366. [PMID: 38889443 PMCID: PMC11571360 DOI: 10.1177/21925682241261988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/20/2024] Open
Abstract
STUDY DESIGN Systematic review and meta-analysis. OBJECTIVE Surgical management of osteoporotic vertebral compression fractures (OVCFs) has traditionally consisted of vertebroplasty or kyphoplasty procedures. Mechanical percutaneous vertebral body augmentation (MPVA) systems have recently been introduced as alternatives to traditional methods. However, the effectiveness of MPVA systems vs conventional augmentation techniques for OVCFs remains unclear. This serves as the premise for this study. METHODS A systematic review and meta-analysis was conducted as per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Studies of interest included randomized controlled trials (RCTs) which directly compared patient outcomes following kyphoplasty to patients treated with MPVA systems. Clinical and radiological findings were collated and compared for significance between cohorts. RESULTS 6 RCTs were identified with 1024 patients total. The mean age of all patients was 73.5 years. 17% of the cohort were male, 83% were female. 515 patients underwent kyphoplasty and 509 underwent mechanical vertebral body augmentation using MPVA systems. MPVAs showed similar efficacy for restoration of vertebral body height (P = .18), total complications (P = .36), cement extravasation (P = .58) and device-related complications (P = .06). MPVAs also showed reduced rates of all new fractures (16.4% vs 22.2%; P = .17) and adjacent fractures (14.7% vs 18.9%; P = .23), with improved visual analogue scale (VAS) scores at 6-month (P = .13). CONCLUSION The results of this meta-analysis highlight no significant improvement in clinical or radiological outcomes for MPVA systems when compared to balloon kyphoplasty for vertebral body augmentation. Further research is needed to establish a true benefit over traditional operative methods.
Collapse
Affiliation(s)
| | - Jake M. McDonnell
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Aisyah Amir
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Aubrie Sowa
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Dublin, Ireland
- School of Medicine, University of College Dublin, Belfield, Dublin, Ireland
| | - Gráinne Cunniffe
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Stacey Darwish
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Ciara Murphy
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Advanced Materials and BioEngineering Research= (AMBER) Centre, Trinity College Dublin, Ireland
| | - Joseph S. Butler
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Dublin, Ireland
- School of Medicine, University of College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
2
|
Hung HY, Chen SY. Tripod-Fix device for the treatment of painful osteoporotic vertebral compression fractures. Sci Rep 2024; 14:23877. [PMID: 39396082 PMCID: PMC11470962 DOI: 10.1038/s41598-024-75326-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024] Open
Abstract
Current vertebral augmentation procedures (VAPs) often involve devices associated with bone cement leakage. Tripod-Fix is designed to mitigate the risk of bone cement leakage by expanding in three dimensions to fit a narrower vertebral space. This study enrolled 12 patients diagnosed with osteoprorotic vertebral compression fractures (VCFs) for 12 month follow up. The primary outcomes assessed were changes in the Visual Analog Score (VAS) and Oswestry Disability Index (ODI) before and after treatment. Our results demonstrated significant pain relief with VAS decreasing from 8.58 ± 1.83 to 2.75 ± 1.54 cm and improved mobility with ODI decreasing from 73.67 ± 16.29 to 31.83 ± 23.33% post-treatment and sustained for 12 months. Follow-up radiographs revealed no device-related adverse events such as cement leakage, vertebral body collapse, or adjacent vertebral fractures (AVFs). In addition, the mean anterior height restoration ratio after treatment was 15.87 ± 5.13%. Our preliminary findings suggest that Tripod-Fix exhibits safety and efficacy comparable to the third-generation devices currently utilized for treating osteoporotic VCFs.
Collapse
Affiliation(s)
- Hsiang-Yi Hung
- Department of Neurosurgery, Hualien Tzu Chi Hospital, 707, Sec. 3, Chung-Yang Rd., Hualien, 970, Taiwan R.O.C
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Shin-Yuan Chen
- Department of Neurosurgery, Hualien Tzu Chi Hospital, 707, Sec. 3, Chung-Yang Rd., Hualien, 970, Taiwan R.O.C..
- School of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
3
|
Yıldız Potter İ, Rodriguez EK, Wu J, Nazarian A, Vaziri A. An Automated Vertebrae Localization, Segmentation, and Osteoporotic Compression Fracture Detection Pipeline for Computed Tomographic Imaging. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2428-2443. [PMID: 38717516 PMCID: PMC11522205 DOI: 10.1007/s10278-024-01135-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/29/2024]
Abstract
Osteoporosis is the most common chronic metabolic bone disease worldwide. Vertebral compression fracture (VCF) is the most common type of osteoporotic fracture. Approximately 700,000 osteoporotic VCFs are diagnosed annually in the USA alone, resulting in an annual economic burden of ~$13.8B. With an aging population, the rate of osteoporotic VCFs and their associated burdens are expected to rise. Those burdens include pain, functional impairment, and increased medical expenditure. Therefore, it is of utmost importance to develop an analytical tool to aid in the identification of VCFs. Computed Tomography (CT) imaging is commonly used to detect occult injuries. Unlike the existing VCF detection approaches based on CT, the standard clinical criteria for determining VCF relies on the shape of vertebrae, such as loss of vertebral body height. We developed a novel automated vertebrae localization, segmentation, and osteoporotic VCF detection pipeline for CT scans using state-of-the-art deep learning models to bridge this gap. To do so, we employed a publicly available dataset of spine CT scans with 325 scans annotated for segmentation, 126 of which also graded for VCF (81 with VCFs and 45 without VCFs). Our approach attained 96% sensitivity and 81% specificity in detecting VCF at the vertebral-level, and 100% accuracy at the subject-level, outperforming deep learning counterparts tested for VCF detection without segmentation. Crucially, we showed that adding predicted vertebrae segments as inputs significantly improved VCF detection at both vertebral and subject levels by up to 14% Sensitivity and 20% Specificity (p-value = 0.028).
Collapse
Affiliation(s)
| | - Edward K Rodriguez
- Carl J. Shapiro Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, 330 Brookline Avenue, Stoneman 10, Boston, MA, 02215, USA
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN123, Boston, MA, 02215, USA
| | - Jim Wu
- Department of Radiology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, 330 Brookline Avenue, Shapiro 4, Boston, MA, 02215, USA
| | - Ara Nazarian
- Carl J. Shapiro Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, 330 Brookline Avenue, Stoneman 10, Boston, MA, 02215, USA
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN123, Boston, MA, 02215, USA
- Department of Orthopaedics Surgery, Yerevan State University, Yerevan, Armenia
| | - Ashkan Vaziri
- BioSensics, LLC, 57 Chapel Street, Newton, MA, 02458, USA
| |
Collapse
|
4
|
Luo Y, Yang DM, Yang HM, Wu D, Xie FY. Innovative minimally invasive implants for osteoporosis vertebral compression fractures. Front Med (Lausanne) 2023; 10:1161174. [PMID: 37020680 PMCID: PMC10067727 DOI: 10.3389/fmed.2023.1161174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/06/2023] [Indexed: 03/22/2023] Open
Abstract
With increasing population aging, osteoporosis vertebral compression fractures (OVCFs), resulting in severe back pain and functional impairment, have become progressively common. Percutaneous vertebroplasty (PVP) and percutaneous kyphoplasty (PKP) as minimally invasive procedures have revolutionized OVCFs treatment. However, PVP- and PKP-related complications, such as symptomatic cement leakage and adjacent vertebral fractures, continue to plague physicians. Consequently, progressively more implants for OVCFs have been developed recently to overcome the shortcomings of traditional procedures. Therefore, we conducted a literature review on several new implants for OVCFs, including StaXx FX, Vertebral Body Stenting, Vesselplasty, Sky Bone Expander, Kiva, Spine Jack, Osseofix, Optimesh, Jack, and V-strut. Additionally, this review highlights the individualized applications of these implants for OVCFs. Nevertheless, current clinical studies on these innovative implants remain limited. Future prospective, randomized, and controlled studies are needed to elucidate the effectiveness and indications of these new implants for OVCFs.
Collapse
|
5
|
|
6
|
|
7
|
Advances in Vertebral Augmentation Systems for Osteoporotic Vertebral Compression Fractures. Pain Res Manag 2020; 2020:3947368. [PMID: 33376566 PMCID: PMC7738798 DOI: 10.1155/2020/3947368] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/15/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022]
Abstract
Osteoporotic vertebral compression fracture (OVCF) is a common cause of pain and disability and is steadily increasing due to the growth of the elderly population. To date, percutaneous vertebroplasty (PVP) and percutaneous kyphoplasty (PKP) are almost universally accepted as appropriate vertebral augmentation procedures for OVCFs. There are many advantages of vertebral augmentation, such as short surgical time, performance under local anaesthesia, and rapid pain relief. However, there are certain issues regarding the utilization of these vertebral augmentations, such as loss of vertebral height, cement leakage, and adjacent vertebral refracture. Hence, the treatment for OVCF has changed in recent years. Satisfactory clinical results have been obtained worldwide after application of the OsseoFix System, the SpineJack System, radiofrequency kyphoplasty of the vertebral body, and the Kiva VCF treatment system. The following review discusses the development of the current techniques used for vertebral augmentation.
Collapse
|
8
|
Efficacy of a Novel Vertebral Body Augmentation System in the Treatment of Patients with Symptomatic Vertebral Body Fractures. Cardiovasc Intervent Radiol 2020; 44:289-299. [PMID: 33099702 PMCID: PMC7806563 DOI: 10.1007/s00270-020-02658-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/18/2020] [Indexed: 11/17/2022]
Abstract
Purpose To evaluate the safety and efficacy of a novel augmentation implant in the treatment of patients with symptomatic vertebral body fractures. Materials and Methods Thirty consecutive patients (seven males and 23 females), mean age of 70 years (range 56 to 89) with osteoporotic fractures and/or low-energy trauma fractures (osteoporosis confirmed by CT), were enrolled in an IRB-approved prospective study. The type of fracture was classified according to the Magerl classification. The patients were treated with the Tektona® dedicated vertebral body augmentation system. Visual analogue scale (VAS) and Oswestry Disability Index (ODI) scores were obtained after 1, 6 and 12 months. Quality of life was assessed with the SF36 score. Results A total of 37 vertebral bodies, mostly from T6 to L5, were treated in the 30 enrolled patients. In 67.6% of the cases (n = 25), lumbar fractures were treated. Most of the fractures (43%; n = 16) were A1.1 according to the Magerl classification. A significant pain reduction evaluated by VAS scores (p < 0.0001) was observed on average 7.6 (before the procedure) to 2.8 (immediately post-treatment), 2.1 and 2.7 (after 6 and 12 months later, respectively). The mean ODI score was 55.5% before treatment, and this was statistically significant reduced to 22.3% and 26.9%, respectively, at 6 and 12 months after treatment (p < 0.0001). The SF36 scores, both physical and mental components, showed statistically significant variations (p < 0.0001) whose direction was subpopulation dependent. Conclusion Patients with confirmed osteoporosis, suffering from symptomatic vertebral body fractures (osteoporotic and/or low-energy traumatic), were treated safely and effectively using this novel implant.
Collapse
|
9
|
Innovative Spine Implants for Improved Augmentation and Stability in Neoplastic Vertebral Compression Fracture. ACTA ACUST UNITED AC 2019; 55:medicina55080426. [PMID: 31370309 PMCID: PMC6722751 DOI: 10.3390/medicina55080426] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/17/2019] [Accepted: 07/29/2019] [Indexed: 01/19/2023]
Abstract
Background and objectives: Tumor-related vertebral compression fractures often result in severe back pain as well as progressive neurologic impairment and additional morbidities. The fixation of these fractures is essential to obtain good pain relief and to improve the patients’ quality of life. Thus far, several spine implants have been developed and studied. The aims of this review were to describe the implants and the techniques proposed to treat cancer-related vertebral compression fractures and to compile their safety and efficacy results. Materials and Methods: A systematic MEDLINE/PubMed literature search was performed, time period included articles published between January 2000 and March 2019. Original articles were selected based on their clinical relevance. Results: Four studies of interest and other cited references were analyzed. These studies reported significant pain and function improvement as well as kyphotic angle and vertebral height restoration and maintain for every implant and technique investigated. Conclusions: Although good clinical performance is reported on these devices, the small numbers of studies and patients investigated draw the need for further larger evaluation before drawing a definitive treatment decision tree to guide physicians managing patients presenting with neoplastic vertebral compression fracture.
Collapse
|
10
|
|
11
|
Vanni D, Galzio R, Kazakova A, Pantalone A, Grillea G, Bartolo M, Salini V, Magliani V. Third-generation percutaneous vertebral augmentation systems. JOURNAL OF SPINE SURGERY 2016; 2:13-20. [PMID: 27683690 DOI: 10.21037/jss.2016.02.01] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Currently, there is no general consensus about the management of osteoporotic vertebral fractures (OVF). In the past, conservative treatment for at least one month was deemed appropriate for the majority of vertebral fractures. When pain persisted after conservative treatment, it was necessary to consider surgical interventions including: vertebroplasty for vertebral fractures with less than 30% loss of height of the affected vertebral body and kyphoplasty for vertebral fractures with greater than 30% loss of height. Currently, this type of treatment is not feasible. Herein we review the characteristics and methods of operation of three of the most common percutaneous vertebral augmentation systems (PVAS) for the treatment of OVF: Vertebral Body Stenting(®) (VBS), OsseoFix(®) and Spine Jack(®). VBS is a titanium device accompanied by a hydraulic (as opposed to mechanical) working system which allows a partial and not immediate possibility to control the opening of the device. On the other hand, OsseoFix(®) and Spine Jack(®) are accompanied by a mechanical working system which allows a progressive and controlled reduction of the vertebral fracture. Another important aspect to consider is the vertebral body height recovery. OsseoFix(®) has an indirect mechanism of action: the compaction of the trabecular bone causes an increase in the vertebral body height. Unlike the Vertebral Body Stenting(®) and Spine Jack(®), the OsseoFix(®) has no direct lift mechanism. Therefore, for these characteristics and for the force that this device is able to provide. In our opinion, Spine Jack(®) is the only device also suitable for the treatment OVF, traumatic fracture (recent, old or inveterate) and primary or secondary bone tumors.
Collapse
Affiliation(s)
- Daniele Vanni
- Orthopaedic and Traumatology Department, "G. D'Annunzio" University, Chieti, Italy
| | - Renato Galzio
- Neurosurgery Department, "L'Aquila" University, L'Aquila, Italy
| | - Anna Kazakova
- Neurotraumatology and Vertebro-Medullary Surgery, "Renzetti Hospital", Lanciano, Italy
| | - Andrea Pantalone
- Orthopaedic and Traumatology Department, "G. D'Annunzio" University, Chieti, Italy
| | - Giovanni Grillea
- Diagnostic and Therapeutic Neuroradiology Unit, IRCCS INM Neuromed, Pozzilli, Isernia, Italy
| | - Marcello Bartolo
- Diagnostic and Therapeutic Neuroradiology Unit, IRCCS INM Neuromed, Pozzilli, Isernia, Italy
| | - Vincenzo Salini
- Orthopaedic and Traumatology Department, "G. D'Annunzio" University, Chieti, Italy
| | - Vincenzo Magliani
- Neurotraumatology and Vertebro-Medullary Surgery, "Renzetti Hospital", Lanciano, Italy
| |
Collapse
|
12
|
Marcia S, Saba L, Marras M, Suri JS, Calabria E, Masala S. Percutaneous stabilization of lumbar spine: a literature review and new options in treating spine pain. Br J Radiol 2016; 89:20150436. [PMID: 27351691 DOI: 10.1259/bjr.20150436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Vertebral fracture (VF) is a common condition with >160,000 patients affected every year in North America and most of them with affected lumbar vertebrae. The management of VF is well known and defined by many protocols related to associated clinical neurological symptoms, especially in case of the presence or absence of myelopathy or radicular deficit. In this article, we will explore the percutaneous stabilization of the lumbar spine by showing the newest approaches for this condition.
Collapse
Affiliation(s)
- Stefano Marcia
- 1 Department of Radiology, SS Trinità Hospital, Cagliari, Italy
| | - Luca Saba
- 2 Department of Radiology, Azienda Ospedaliero, Universitaria (AOU) di Cagliari-Polo di Monserrato, Cagliari, Italy
| | | | - Jasjit S Suri
- 4 Diagnostic and Monitoring Division, AtheroPoint™ LLC, Roseville, CA, USA.,5 Department of Biomedical Engineering, University of Idaho (Affiliated), ID, USA
| | - Eros Calabria
- 6 Department of Diagnostic and Molecular Imaging, Interventional Radiology and Radiation Therapy, University of Rome Tor Vergata, Rome, Italy
| | - Salvatore Masala
- 6 Department of Diagnostic and Molecular Imaging, Interventional Radiology and Radiation Therapy, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
13
|
Cementless Titanium Mesh Fixation of Osteoporotic Burst Fractures of the Lumbar Spine Leads to Bony Healing: Results of an Experimental Sheep Model. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4094161. [PMID: 27019848 PMCID: PMC4785241 DOI: 10.1155/2016/4094161] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/04/2016] [Indexed: 01/12/2023]
Abstract
Introduction. Current treatment strategies for osteoporotic vertebral compression fractures (VCFs) focus on cement-associated solutions. Complications associated with cement application are leakage, embolism, adjacent fractures, and compromise in bony healing. This study comprises a validated VCF model in osteoporotic sheep in order to (1) evaluate a new cementless fracture fixation technique using titanium mesh implants (TMIs) and (2) demonstrate the healing capabilities in osteoporotic VCFs. Methods. Twelve 5-year-old Merino sheep received ovariectomy, corticosteroid injections, and a calcium/phosphorus/vitamin D-deficient diet for osteoporosis induction. Standardized VCFs (type AO A3.1) were created, reduced, and fixed using intravertebral TMIs. Randomly additional autologous spongiosa grafting (G1) or no augmentation was performed (G2, n = 6 each). Two months postoperatively, macroscopic, micro-CT and biomechanical evaluation assessed bony consolidation. Results. Fracture reduction succeeded in all cases without intraoperative complications. Bony consolidation was proven for all cases with increased amounts of callus development for G2 (58.3%). Micro-CT revealed cage integration. Neither group showed improved results with biomechanical testing. Conclusions. Fracture reduction/fixation using TMIs without cement in osteoporotic sheep lumbar VCF resulted in bony fracture healing. Intravertebral application of autologous spongiosa showed no beneficial effects. The technique is now available for clinical use; thus, it offers an opportunity to abandon cement-associated complications.
Collapse
|
14
|
Eschler A, Roepenack P, Herlyn PKE, Roesner J, Martin H, Vollmar B, Mittlmeier T, Gradl G. Intrabody application of eptotermin alpha enhances bone formation in osteoporotic fractures of the lumbar spine; however, fails to increase biomechanical stability - results of an experimental sheep model. Growth Factors 2015; 33:290-7. [PMID: 26365170 DOI: 10.3109/08977194.2015.1077827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study analyses the effect of eptotermin α application into fractured vertebrae. It is hypothesized that eptotermin α is capable to enhance bony healing of the osteoporotic spine. In 10 Merino sheep osteoporosis induction was performed by ovariectomy, corticosteroid therapy and calcium/phosphorus/vitamin D-deficient diet; followed by standardized creation of lumbar vertebral compression fractures (VCFs) type A3.1 and consecutive fracture reduction/fixation using expandable mesh cages. Randomly, intravertebral eptotermin α (G1) or no augmentation was added (G2). Macroscopic, micro-CT, and biomechanical evaluation assessed bony consolidation two months postoperatively: Micro-CT data revealed bony consolidation for all cases with significant increased callus development for G2 (60%) and BV/TV (bone volume/total volume 73.45%, osteoporotic vertebrae 35.76%). Neither group showed improved biomechanical stability. Eptotermin α enhanced mineralisation in VCFs in an experimental setup with use of cementless augmentation via an expandable cage. However, higher bone mineral density did not lead to superior biomechanical properties.
Collapse
Affiliation(s)
- Anica Eschler
- a Department of Trauma, Hand and Reconstructive Surgery , Rostock University, Medical Center , Rostock , Germany
| | - Paula Roepenack
- a Department of Trauma, Hand and Reconstructive Surgery , Rostock University, Medical Center , Rostock , Germany
| | - Philipp Karl Ewald Herlyn
- a Department of Trauma, Hand and Reconstructive Surgery , Rostock University, Medical Center , Rostock , Germany
| | - Jan Roesner
- b Clinic for Anesthesiology and Critical Care Medicine, Rostock University, Medical Center , Rostock , Germany
| | - Heiner Martin
- c Institute for Biomedical Engineering, Rostock University, Medical Center , Rostock , Germany
| | - Brigitte Vollmar
- d Rudolf-Zenker-Institute for Experimental Surgery, Rostock University, Medical Center , Rostock , Germany , and
| | - Thomas Mittlmeier
- a Department of Trauma, Hand and Reconstructive Surgery , Rostock University, Medical Center , Rostock , Germany
| | - Georg Gradl
- e Department of Trauma, Orthopedic and Reconstructive Surgery , Munich Municipal Hospital Group, Clinic Harlaching , Munich , Germany
| |
Collapse
|