1
|
Deng M, Li X, Shi D, Fan Q, Zhang H, Wang Z, Wang Y, Xiao Z. iTRAQ-Based Serum Proteomic Analysis Reveals Multifactorial Cellular Function Impairment and Aggravated Systematic Inflammation in Drug-free Obsessive-Compulsive Disorders. ACS Chem Neurosci 2024; 15:3053-3063. [PMID: 39120470 DOI: 10.1021/acschemneuro.4c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating mental disorder with obvious difficulties in treatment. Its pathogenesis has not been fully elucidated. Further understanding of etiology and mechanism needs to be explored further. We employed the isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis to compare serum proteome profile between OCD patients and healthy controls, in order to find out the possible mechanism of OCD in the downstream biological process. Eighty-one drug-free OCD patients and 78 healthy controls were enrolled. A total of 475 proteins were identified. Totally, 80 proteins with p < 0.05 were selected for gene set enrichment analysis (GSEA), and only those with a fold change ≥1.2 and q value <0.2 between groups were accepted as differentially expressed proteins (DEPs). We observed a significant enrichment of immuno-inflammation-related pathways, along with intriguing expression trends that immuno-inflammation-related proteins were upregulated in GSEA. After that, 2 up-regulated proteins and 13 down-regulated ones were accepted as DEP. According to the available literature, most of the DEPs have not been reported in OCD. These DEPs were enriched in 121 gene ontology (GO) terms, including hepatocyte growth factor receptor activity, angiogenin-PRI complex, and so on. DEPs were enriched in pathways including adherens junction in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Alterations in DEPs including STXBP5L, GRN, and ANG were validated in OCD animal models. Our study suggested that OCD patients manifested multifactorial impairment in neuronal or non-neuronal cellular function under the inflammatory background. Further research employing larger sample sizes, longitudinal design, stratified analysis, and multiomics methodology will be needed. Experiments in laboratories were essential in illuminating the mechanism.
Collapse
Affiliation(s)
- Miaohan Deng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xia Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Dongdong Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Qing Fan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Haiyin Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yuan Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zeping Xiao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| |
Collapse
|
2
|
McLouth CJ, Maglinger B, Frank JA, Hazelwood HS, Harp JP, Cranford W, Pahwa S, Sheikhi L, Dornbos D, Trout AL, Stowe AM, Fraser JF, Pennypacker KR. The differential proteomic response to ischemic stroke in appalachian subjects treated with mechanical thrombectomy. J Neuroinflammation 2024; 21:205. [PMID: 39154085 PMCID: PMC11330053 DOI: 10.1186/s12974-024-03201-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024] Open
Abstract
INTRODUCTION The Appalachia region of North America is known to have significant health disparities, specifically, worse risk factors and outcomes for stroke. Appalachians are more likely to have comorbidities related to stroke, such as diabetes, obesity, and tobacco use, and are often less likely to have stroke interventions, such as mechanical thrombectomy (MT), for emergent large vessel occlusion (ELVO). As our Comprehensive Stroke Center directly serves stroke subjects from both Appalachian and non-Appalachian areas, inflammatory proteomic biomarkers were identified associated with stroke outcomes specific to subjects residing in Appalachia. METHODS There were 81 subjects that met inclusion criteria for this study. These subjects underwent MT for ELVO, and carotid arterial blood samples acquired at time of intervention were sent for proteomic analysis. Samples were processed in accordance with the Blood And Clot Thrombectomy Registry And Collaboration (BACTRAC; clinicaltrials.gov; NCT03153683). Statistical analyses were utilized to examine whether relationships between protein expression and outcomes differed by Appalachian status for functional (NIH Stroke Scale; NIHSS and Modified Rankin Score; mRS), and cognitive outcomes (Montreal Cognitive Assessment; MoCA). RESULTS No significant differences were found in demographic data or co-morbidities when comparing Appalachian to non-Appalachian subjects. However, time from stroke onset to treatment (last known normal) was significantly longer and edema volume significantly higher in patients from Appalachia. Further, when comparing Appalachian to non-Appalachian subjects, there were significant unadjusted differences in the NIHSS functional outcome. A comprehensive analysis of 184 proteins from Olink proteomic (92 Cardiometabolic and 92 Inflammation panels) showed that the association between protein expression outcomes significantly differed by Appalachian status for seven proteins for the NIHSS, two proteins for the MoCA, and three for the mRS. CONCLUSION Our study utilizes an ELVO tissue bank and registry to investigate the intracranial/intravascular proteomic environment occurring at the time of thrombectomy. We found that patients presenting from Appalachian areas have different levels of proteomic expression at the time of MT when compared to patients presenting from non-Appalachian areas. These proteins differentially relate to stroke outcome and could be used as prognostic biomarkers, or as targets for novel therapies. The identification of a disparate proteomic response in Appalachian patients provides initial insight to the biological basis for health disparity. Nevertheless, further investigations through community-based studies are imperative to elucidate the underlying causes of this differential response.
Collapse
Affiliation(s)
- Christopher J McLouth
- Department of Biostatistics, University of Kentucky, Lexington, KY, USA
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Benton Maglinger
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jacqueline A Frank
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, Department of Neurology and Neuroscience Building BBSRB Office B463, University of Kentucky, Lexington, KY, 40536, USA
| | | | - Jordan P Harp
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, Department of Neurology and Neuroscience Building BBSRB Office B463, University of Kentucky, Lexington, KY, 40536, USA
| | - Will Cranford
- Department of Biostatistics, University of Kentucky, Lexington, KY, USA
| | - Shivani Pahwa
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Department of Radiology, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Lila Sheikhi
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Department of Radiology, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - David Dornbos
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Department of Radiology, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Amanda L Trout
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, Department of Neurology and Neuroscience Building BBSRB Office B463, University of Kentucky, Lexington, KY, 40536, USA
| | - Ann M Stowe
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, Department of Neurology and Neuroscience Building BBSRB Office B463, University of Kentucky, Lexington, KY, 40536, USA
| | - Justin F Fraser
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Department of Radiology, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, Department of Neurology and Neuroscience Building BBSRB Office B463, University of Kentucky, Lexington, KY, 40536, USA
| | - Keith R Pennypacker
- Department of Neurology, University of Kentucky, Lexington, KY, USA.
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA.
- Center for Advanced Translational Stroke Science, Department of Neurology and Neuroscience Building BBSRB Office B463, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
3
|
Bang Y, Hwang S, Kim YE, Sung DK, Yang M, Ahn SY, Sung SI, Joo KM, Chang YS. Therapeutic efficacy of thrombin-preconditioned mesenchymal stromal cell-derived extracellular vesicles on Escherichia coli-induced acute lung injury in mice. Respir Res 2024; 25:303. [PMID: 39112999 PMCID: PMC11308396 DOI: 10.1186/s12931-024-02908-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/07/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Acute lung injury (ALI) following pneumonia involves uncontrolled inflammation and tissue injury, leading to high mortality. We previously confirmed the significantly increased cargo content and extracellular vesicle (EV) production in thrombin-preconditioned human mesenchymal stromal cells (thMSCs) compared to those in naïve and other preconditioning methods. This study aimed to investigate the therapeutic efficacy of EVs derived from thMSCs in protecting against inflammation and tissue injury in an Escherichia coli (E. coli)-induced ALI mouse model. METHODS In vitro, RAW 264.7 cells were stimulated with 0.1 µg/mL liposaccharides (LPS) for 1 h, then were treated with either PBS (LPS Ctrl) or 5 × 107 particles of thMSC-EVs (LPS + thMSC-EVs) for 24 h. Cells and media were harvested for flow cytometry and ELISA. In vivo, ICR mice were anesthetized, intubated, administered 2 × 107 CFU/100 µl of E. coli. 50 min after, mice were then either administered 50 µL saline (ECS) or 1 × 109 particles/50 µL of thMSC-EVs (EME). Three days later, the therapeutic efficacy of thMSC-EVs was assessed using extracted lung tissue, bronchoalveolar lavage fluid (BALF), and in vivo computed tomography scans. One-way analysis of variance with post-hoc TUKEY test was used to compare the experimental groups statistically. RESULTS In vitro, IL-1β, CCL-2, and MMP-9 levels were significantly lower in the LPS + thMSC-EVs group than in the LPS Ctrl group. The percentages of M1 macrophages in the normal control, LPS Ctrl, and LPS + thMSC-EV groups were 12.5, 98.4, and 65.9%, respectively. In vivo, the EME group exhibited significantly lower histological scores for alveolar congestion, hemorrhage, wall thickening, and leukocyte infiltration than the ECS group. The wet-dry ratio for the lungs was significantly lower in the EME group than in the ECS group. The BALF levels of CCL2, TNF-a, and IL-6 were significantly lower in the EME group than in the ECS group. In vivo CT analysis revealed a significantly lower percentage of damaged lungs in the EME group than in the ECS group. CONCLUSION Intratracheal thMSC-EVs administration significantly reduced E. coli-induced inflammation and lung tissue damage. Overall, these results suggest therapeutically enhanced thMSC-EVs as a novel promising therapeutic option for ARDS/ALI.
Collapse
Affiliation(s)
- Yuna Bang
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Sein Hwang
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Young Eun Kim
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Dong Kyung Sung
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Misun Yang
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - So Yoon Ahn
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Se In Sung
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Kyeung Min Joo
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Yun Sil Chang
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea.
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea.
| |
Collapse
|
4
|
He D, Xu Y, Liu M, Cui L. The Inflammatory Puzzle: Piecing together the Links between Neuroinflammation and Amyotrophic Lateral Sclerosis. Aging Dis 2024; 15:96-114. [PMID: 37307819 PMCID: PMC10796096 DOI: 10.14336/ad.2023.0519] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/19/2023] [Indexed: 06/14/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that has a complex genetic basis. Through advancements in genetic screening, researchers have identified more than 40 mutant genes associated with ALS, some of which impact immune function. Neuroinflammation, with abnormal activation of immune cells and excessive production of inflammatory cytokines in the central nervous system, significantly contributes to the pathophysiology of ALS. In this review, we examine recent evidence on the involvement of ALS-associated mutant genes in immune dysregulation, with a specific focus on the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway and N6-methyladenosine (m6A)-mediated immune regulation in the context of neurodegeneration. We also discuss the perturbation of immune cell homeostasis in both the central nervous system and peripheral tissues in ALS. Furthermore, we explore the advancements made in the emerging genetic and cell-based therapies for ALS. This review underscores the complex relationship between ALS and neuroinflammation, highlighting the potential to identify modifiable factors for therapeutic intervention. A deeper understanding of the connection between neuroinflammation and the risk of ALS is crucial for advancing effective treatments for this debilitating disorder.
Collapse
Affiliation(s)
- Di He
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yan Xu
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Mingsheng Liu
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| |
Collapse
|
5
|
Massenet-Regad L, Poirot J, Jackson M, Hoffmann C, Amblard E, Onodi F, Bouhidel F, Djouadou M, Ouzaid I, Xylinas E, Medvedovic J, Soumelis V. Large-scale analysis of cell-cell communication reveals angiogenin-dependent tumor progression in clear cell renal cell carcinoma. iScience 2023; 26:108367. [PMID: 38025776 PMCID: PMC10663819 DOI: 10.1016/j.isci.2023.108367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/25/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Cellular crosstalk in the tumor microenvironment (TME) is still largely uncharacterized, while it plays an essential role in shaping immunosuppression or anti-tumor response. Large-scale analyses are needed to better decipher cell-cell communication in cancer. In this work, we used original and publicly available single-cell RNA sequencing (scRNAseq) data to characterize in-depth the communication networks in human clear cell renal cell carcinoma (ccRCC). We identified 50 putative communication channels specifically used by cancer cells to interact with other cells, including two novel angiogenin-mediated interactions. Expression of angiogenin and its receptors was validated at the protein level in primary ccRCC. Mechanistically, angiogenin enhanced ccRCC cell line proliferation and down-regulated secretion of IL-6, IL-8, and MCP-1 proinflammatory molecules. This study provides novel biological insights into molecular mechanisms of ccRCC, and suggests angiogenin and its receptors as potential therapeutic targets in clear cell renal cancer.
Collapse
Affiliation(s)
- Lucile Massenet-Regad
- Université Paris Cité, INSERM, U976 HIPI, F-75010 Paris, France
- Université Paris-Saclay, F-91190 Saint Aubin, France
| | - Justine Poirot
- Université Paris Cité, INSERM, U976 HIPI, F-75010 Paris, France
- Université Paris-Saclay, F-91190 Saint Aubin, France
| | | | - Caroline Hoffmann
- INSERM U932, Department of Surgical Oncology, PSL University, Institut Curie, 75005 Paris, France
- Owkin France, 75010 Paris, France
| | - Elise Amblard
- Université Paris Cité, INSERM, U976 HIPI, F-75010 Paris, France
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble Alpes University, 38000 Grenoble, France
| | - Fanny Onodi
- Université Paris Cité, INSERM, U976 HIPI, F-75010 Paris, France
| | - Fatiha Bouhidel
- Department of Pathology, Saint-Louis Hospital, AP-HP.Nord, Université Paris Cité, 75010 Paris, France
| | - Malika Djouadou
- Department of Urology, Saint-Louis Hospital, AP-HP.Nord, Université Paris Cité, 75010 Paris, France
| | - Idir Ouzaid
- Department of Urology, Bichat-Claude Bernard Hospital, AP-HP.Nord, Université Paris Cité, 75018 Paris, France
| | - Evanguelos Xylinas
- Université Paris Cité, INSERM, U976 HIPI, F-75010 Paris, France
- Department of Urology, Bichat-Claude Bernard Hospital, AP-HP.Nord, Université Paris Cité, 75018 Paris, France
| | | | - Vassili Soumelis
- Université Paris Cité, INSERM, U976 HIPI, F-75010 Paris, France
- Owkin France, 75010 Paris, France
- Department of Immunology-Histocompatibility, Saint-Louis Hospital, AP-HP.Nord, Université Paris Cité, 75010 Paris, France
| |
Collapse
|
6
|
Wang J, Shan A, Shi F, Zheng Q. Molecular and clinical characterization of ANG expression in gliomas and its association with tumor-related immune response. Front Med (Lausanne) 2023; 10:1044402. [PMID: 37928479 PMCID: PMC10621067 DOI: 10.3389/fmed.2023.1044402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
Background Angiogenin (ANG) has been widely reported as a crucial molecular regulator in multiple malignancies. However, its role in gliomagenesis remains unclear. This study aimed to investigate the molecular and clinical characterization of ANG expression at transcriptome level and the association with glioma-related immune response. Methods A total of 301 glioma samples with mRNA microarray data (CGGA301) was obtained from the official website of CGGA project for yielding preliminary results, followed by validation in two independent RNAseq datasets, including TCGA with 697 samples and CGGA325 with 325 patients. Moreover, CGGA single-cell RNAseq (scRNAseq) data were analyzed to identify differential and dynamic ANG expression in different cells. Immunohistochemistry was performed to evaluate ANG protein expression across different WHO grades in a tissue microarray (TMA). Figure generation and statistical analysis were conducted using R software. Results ANG expression was associated with clinical features, malignant phenotypes, and genomic alterations. Based on significantly correlated genes of ANG, subsequent gene ontology (GO) and gene set enrichment analysis (GSEA) concordantly pointed to the significant association of ANG in immune-related biological processes. Moreover, ANG showed robust correlations with canonical immune checkpoint molecules, including PD1 signaling, CTLA4, TIM3, and B7H3. Gene sets variation analysis (GSVA) found that ANG was particularly associated with activities of macrophages and antigen presentation cells (APCs) in both LGG and GBM across different datasets. Furthermore, the higher-ANG milieu seemed to recruit monocyte-macrophage lineage and dendritic cells into the glioma microenvironment. According to scRNAseq analysis, ANG was mainly expressed by neoplastic cells and tumor-associated macrophages (TAMs) and was correlated with the initiation and progression of tumor cells and the polarization of TAMs. Finally, Kaplan-Meier plots demonstrated that higher expression of ANG was significantly correlated with shorter survival in gliomas. Cox regression analysis further confirmed ANG as an independent predictor of prognosis for gliomas of all three datasets. Conclusion ANG is significantly correlated with a range of malignant and aggressive characteristics in gliomas and reveals considerable prognostic value for glioma patients. ANG seems to be primarily associated with immune activities of macrophages and APCs in gliomas. Furthermore, ANG is mainly expressed in neoplastic cells and TAMs and is involved in the initiation and progression of neoplastic cells as well as macrophage polarization.
Collapse
Affiliation(s)
- Jin Wang
- Department of Emergency, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Aijun Shan
- Department of Emergency, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Fei Shi
- Department of Emergency, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Qijun Zheng
- Department of Cardiovascular Surgery, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, China
| |
Collapse
|
7
|
Pasquier C, Guerlais V, Pallez D, Rapetti-Mauss R, Soriani O. A network embedding approach to identify active modules in biological interaction networks. Life Sci Alliance 2023; 6:e202201550. [PMID: 37339804 PMCID: PMC10282331 DOI: 10.26508/lsa.202201550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023] Open
Abstract
The identification of condition-specific gene sets from transcriptomic experiments is important to reveal regulatory and signaling mechanisms associated with a given cellular response. Statistical methods of differential expression analysis, designed to assess individual gene variations, have trouble highlighting modules of small varying genes whose interaction is essential to characterize phenotypic changes. To identify these highly informative gene modules, several methods have been proposed in recent years, but they have many limitations that make them of little use to biologists. Here, we propose an efficient method for identifying these active modules that operates on a data embedding combining gene expressions and interaction data. Applications carried out on real datasets show that our method can identify new groups of genes of high interest corresponding to functions not revealed by traditional approaches. Software is available at https://github.com/claudepasquier/amine.
Collapse
Affiliation(s)
- Claude Pasquier
- Laboratoire d'Informatique, Signaux et Systèmes de Sophia-Antipolis, I3S - UMR7271 - UNS CNRS, Les Algorithmes - bât. Euclide B, Sophia Antipolis, France
| | - Vincent Guerlais
- Laboratoire d'Informatique, Signaux et Systèmes de Sophia-Antipolis, I3S - UMR7271 - UNS CNRS, Les Algorithmes - bât. Euclide B, Sophia Antipolis, France
| | - Denis Pallez
- Laboratoire d'Informatique, Signaux et Systèmes de Sophia-Antipolis, I3S - UMR7271 - UNS CNRS, Les Algorithmes - bât. Euclide B, Sophia Antipolis, France
| | - Raphaël Rapetti-Mauss
- iBV - Institut de Biologie Valrose, Université Nice Sophia Antipolis, Faculté des Sciences, Parc Valrose, Nice cedex 2, France
| | - Olivier Soriani
- iBV - Institut de Biologie Valrose, Université Nice Sophia Antipolis, Faculté des Sciences, Parc Valrose, Nice cedex 2, France
| |
Collapse
|
8
|
Maksimova AA, Shevela EY, Tikhonova MA, Tyrinova TV, Bogachev SS, Ostanin AA, Chernykh ER. Angiogenin as a Possible Mediator of Macrophage-Mediated Regulation of Fibroblast Functions. Bull Exp Biol Med 2023; 175:658-661. [PMID: 37861896 DOI: 10.1007/s10517-023-05921-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Indexed: 10/21/2023]
Abstract
We studied angiogenin production by human macrophages and evaluated the role of this factor in the macrophage-mediated regulation of fibroblasts. All macrophage subtypes, and especially the efferocytosis-polarized macrophages, M2(LS), actively produced angiogenin. Exogenous recombinant angiogenin dose-dependently enhanced the proliferation and differentiation of dermal fibroblasts. The addition of the angiogenin inhibitor to fibroblasts cultures suppressed the stimulating effect of exogenous angiogenin or M2(LS) conditioned media. These findings indicate the involvement of angiogenin in the macrophage-mediated paracrine regulation of skin fibroblasts.
Collapse
Affiliation(s)
- A A Maksimova
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia.
| | - E Ya Shevela
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - M A Tikhonova
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - T V Tyrinova
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - S S Bogachev
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A A Ostanin
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - E R Chernykh
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| |
Collapse
|
9
|
van Gelderen TA, Ladisa C, Salazar-Moscoso M, Folgado C, Habibi HR, Ribas L. Metabolomic and transcriptomic profiles after immune stimulation in the zebrafish testes. Genomics 2023; 115:110581. [PMID: 36796654 DOI: 10.1016/j.ygeno.2023.110581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
Fish farms are prone to disease outbreaks and stress due to high-density rearing conditions in tanks and sea cages, adversely affecting growth, reproduction, and metabolism. To understand the molecular mechanisms affected in the gonads of breeder fish after an immune challenge, we investigated the metabolome and the transcriptome profiles in zebrafish testes after inducing an immune response. After 48 h of the immune challenge, ultra-high-performance liquid chromatography (LC-MS) and transcriptomic analysis by RNA-seq (Illumina) resulted in 20 different released metabolites and 80 differentially expressed genes. Among these, glutamine and succinic acid were the most abundant metabolites released and 27,5% of the genes belong to either the immune or reproduction systems. Pathway analysis based on metabolomic and transcriptomic crosstalk identified cad and iars genes that act simultaneously with succinate metabolite. This study deciphers interactions between reproduction and immune systems and provides a basis to improve protocols in generating more resistant broodstock.
Collapse
Affiliation(s)
- T A van Gelderen
- Institut de Ciències del Mar - Consejo Superior de Investigaciones Científicas (ICM-CSIC), Department of Renewable Marine Resources, 08003 Barcelona, Spain
| | - C Ladisa
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - M Salazar-Moscoso
- Institut de Ciències del Mar - Consejo Superior de Investigaciones Científicas (ICM-CSIC), Department of Renewable Marine Resources, 08003 Barcelona, Spain
| | - C Folgado
- Institut de Ciències del Mar - Consejo Superior de Investigaciones Científicas (ICM-CSIC), Department of Renewable Marine Resources, 08003 Barcelona, Spain
| | - H R Habibi
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - L Ribas
- Institut de Ciències del Mar - Consejo Superior de Investigaciones Científicas (ICM-CSIC), Department of Renewable Marine Resources, 08003 Barcelona, Spain.
| |
Collapse
|
10
|
Giovannelli I, Higginbottom A, Kirby J, Azzouz M, Shaw PJ. Prospects for gene replacement therapies in amyotrophic lateral sclerosis. Nat Rev Neurol 2023; 19:39-52. [PMID: 36481799 DOI: 10.1038/s41582-022-00751-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating and incurable neurodegenerative disease characterized by the progressive loss of upper and lower motor neurons. ALS causes death, usually within 2-5 years of diagnosis. Riluzole, the only drug currently approved in Europe for the treatment of this condition, offers only a modest benefit, increasing survival by 3 months on average. Recent advances in our understanding of causative or disease-modifying genetic variants and in the development of genetic therapy strategies present exciting new therapeutic opportunities for ALS. In addition, the approval of adeno-associated virus-mediated delivery of functional copies of the SMN1 gene to treat spinal muscular atrophy represents an important therapeutic milestone and demonstrates the potential of gene replacement therapies for motor neuron disorders. In this Review, we describe the current landscape of genetic therapies in ALS, highlighting achievements and critical challenges. In particular, we discuss opportunities for gene replacement therapy in subgroups of people with ALS, and we describe loss-of-function mutations that are known to contribute to the pathophysiology of ALS and could represent novel targets for gene replacement therapies.
Collapse
Affiliation(s)
- Ilaria Giovannelli
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK.
| |
Collapse
|
11
|
Premature Macrophage Activation by Stored Red Blood Cell Transfusion Halts Liver Regeneration Post-Partial Hepatectomy in Rats. Cells 2022; 11:cells11213522. [DOI: 10.3390/cells11213522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Liver resection is a common treatment for various conditions and often requires blood transfusions to compensate for operative blood loss. As partial hepatectomy (PHx) is frequently performed in patients with a pre-damaged liver, avoiding further injury is of paramount clinical importance. Our aim was to study the impact of red blood cell (RBC) resuscitation on liver regeneration. We assessed the impact of RBC storage time on liver regeneration following 50% PHx in rats and explored possible contributing molecular mechanisms using immunohistochemistry, RNA-Seq, and macrophage depletion. The liver was successfully regenerated after PHx when rats were transfused with fresh RBCs (F-RBCs). However, in rats resuscitated with stored RBCs (S-RBCs), the regeneration process was disrupted, as detected by delayed hepatocyte proliferation and lack of hypertrophy. The delayed regeneration was associated with elevated numbers of hemorrhage-activated liver macrophages (Mhem) secreting HO-1. Depletion of macrophages prior to PHx and transfusion improved the regeneration process. Gene expression profiling revealed alterations in numerous genes belonging to critical pathways, including cell cycle and DNA replication, and genes associated with immune cell activation, such as chemokine signaling and platelet activation and adhesion. Our results implicate activated macrophages in delayed liver regeneration following S-RBC transfusion via HO-1 and PAI-1 overexpression.
Collapse
|
12
|
A Graphene Oxide-Angiogenin Theranostic Nanoplatform for the Therapeutic Targeting of Angiogenic Processes: The Effect of Copper-Supplemented Medium. INORGANICS 2022. [DOI: 10.3390/inorganics10110188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Graphene oxide (GO) nanosheets with different content in the defective carbon species bound to oxygen sp3 were functionalized with the angiogenin (ANG) protein, to create a novel nanomedicine for modulating angiogenic processes in cancer therapies. The GO@ANG nanocomposite was scrutinized utilizing UV-visible and fluorescence spectroscopies. GO exhibits pro- or antiangiogenic effects, mostly attributed to the disturbance of ROS concentration, depending both on the total concentration (i.e., >100 ng/mL) as well as on the number of carbon species oxidized, that is, the C/O ratio. ANG is considered one of the most effective angiogenic factors that plays a vital role in the angiogenic process, often in a synergic role with copper ions. Based on these starting hypotheses, the GO@ANG nanotoxicity was assessed with the MTT colorimetric assay, both in the absence and in the presence of copper ions, by in vitro cellular experiments on human prostatic cancer cells (PC-3 line). Laser confocal microscopy (LSM) cell imaging evidenced an enhanced internationalization of GO@ANG than bare GO nanosheets, as well as significant changes in cell cytoskeleton organization and mitochondrial staining compared to the cell treatments with free ANG.
Collapse
|
13
|
Culurciello R, Bosso A, Troisi R, Barrella V, Di Nardo I, Borriello M, Gaglione R, Pistorio V, Aceto S, Cafaro V, Notomista E, Sica F, Arciello A, Pizzo E. Protective Effects of Recombinant Human Angiogenin in Keratinocytes: New Insights on Oxidative Stress Response Mediated by RNases. Int J Mol Sci 2022; 23:ijms23158781. [PMID: 35955913 PMCID: PMC9369303 DOI: 10.3390/ijms23158781] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
Human angiogenin (ANG) is a 14-kDa ribonuclease involved in different pathophysiological processes including tumorigenesis, neuroprotection, inflammation, innate immunity, reproduction, the regeneration of damaged tissues and stress cell response, depending on its intracellular localization. Under physiological conditions, ANG moves to the cell nucleus where it enhances rRNA transcription; conversely, recent reports indicate that under stress conditions, ANG accumulates in the cytoplasmic compartment and modulates the production of tiRNAs, a novel class of small RNAs that contribute to the translational inhibition and recruitment of stress granules (SGs). To date, there is still limited and controversial experimental evidence relating to a hypothetical role of ANG in the epidermis, the outermost layer of human skin, which is continually exposed to external stressors. The present study collects compelling evidence that endogenous ANG is able to modify its subcellular localization on HaCaT cells, depending on different cellular stresses. Furthermore, the use of recombinant ANG allowed to determine as this special enzyme is effectively able to counter at various levels the alterations of cellular homeostasis in HaCaT cells, actually opening a new vision on the possible functions that this special enzyme can support also in the stress response of human skin.
Collapse
Affiliation(s)
- Rosanna Culurciello
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), University of Naples Federico II, 80126 Naples, Italy
| | - Andrea Bosso
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Romualdo Troisi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Valentina Barrella
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Ilaria Di Nardo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Margherita Borriello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Rosa Gaglione
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Valeria Pistorio
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Serena Aceto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Valeria Cafaro
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Elio Pizzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), University of Naples Federico II, 80126 Naples, Italy
- Correspondence: ; Tel.: +39-081679151
| |
Collapse
|
14
|
Yang H, Yuan L, Ibaragi S, Li S, Shapiro R, Vanli N, Goncalves KA, Yu W, Kishikawa H, Jiang Y, Hu AJ, Jay D, Cochran B, Holland EC, Hu GF. Angiogenin and plexin-B2 axis promotes glioblastoma progression by enhancing invasion, vascular association, proliferation and survival. Br J Cancer 2022; 127:422-435. [PMID: 35418212 PMCID: PMC9345892 DOI: 10.1038/s41416-022-01814-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Angiogenin is a multifunctional secreted ribonuclease that is upregulated in human cancers and downregulated or mutationally inactivated in neurodegenerative diseases. A role for angiogenin in glioblastoma was inferred from the inverse correlation of angiogenin expression with patient survival but had not been experimentally investigated. METHODS Angiogenin knockout mice were generated and the effect of angiogenin deficiency on glioblastoma progression was examined. Angiogenin and plexin-B2 genes were knocked down in glioblastoma cells and the changes in cell proliferation, invasion and vascular association were examined. Monoclonal antibodies of angiogenin and small molecules were used to assess the therapeutic activity of the angiogenin-plexin-B2 pathway in both genetic and xenograft animal models. RESULTS Deletion of Ang1 gene prolonged survival of PDGF-induced glioblastoma in mice in the Ink4a/Arf-/-:Pten-/- background, accompanied by decreased invasion, vascular association and proliferation. Angiogenin upregulated MMP9 and CD24 leading to enhanced invasion and vascular association. Inhibition of angiogenin or plexin-B2, either by shRNA, monoclonal antibody or small molecule inhibitor, decreases sphere formation of patient-derived glioma stem cells, reduces glioblastoma proliferation and invasion and inhibits glioblastoma growth in both genetic and xenograft animal models. CONCLUSIONS Angiogenin and its receptor, plexin-B2, are a pair of novel regulators that mediate invasion, vascular association and proliferation of glioblastoma cells. Inhibitors of the angiogenin-plexin-B2 axis have therapeutic potential against glioblastoma.
Collapse
Affiliation(s)
- Hailing Yang
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Liang Yuan
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Soichiro Ibaragi
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Shuping Li
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Robert Shapiro
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Nil Vanli
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Program in Biochemistry, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Kevin A Goncalves
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Wenhao Yu
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Hiroko Kishikawa
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Yuxiang Jiang
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Alexander J Hu
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA.,Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Daniel Jay
- Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.,Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Brent Cochran
- Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.,Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Eric C Holland
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Guo-Fu Hu
- Division of Hematology and Oncology, Department of Medicine, Tufts Medical Center, Boston, MA, USA. .,Program in Cellular and Molecular Physiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA. .,Program in Cell, Molecular, and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA. .,Department of Pathology, Harvard Medical School, Boston, MA, USA. .,Program in Biochemistry, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.
| |
Collapse
|
15
|
Van Der Heijden H, Fatou B, Sibai D, Hoyt K, Taylor M, Cheung K, Lemme J, Cay M, Goodlett B, Lo J, Hazen MM, Halyabar O, Meidan E, Schreiber R, Jaimes C, Ecklund K, Henderson LA, Chang MH, Nigrovic PA, Sundel RP, Steen H, Upadhyay J. Proteomics based markers of clinical pain severity in juvenile idiopathic arthritis. Pediatr Rheumatol Online J 2022; 20:3. [PMID: 35033099 PMCID: PMC8761318 DOI: 10.1186/s12969-022-00662-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/01/2022] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Juvenile idiopathic arthritis (JIA) is a cluster of autoimmune rheumatic diseases occurring in children 16 years of age or less. While it is well-known that pain may be experienced during inflammatory and non-inflammatory states, much remains ambiguous regarding the molecular mechanisms that may drive JIA pain. Thus, in this pilot study, we explored the variability of the serum proteomes in relation to pain severity in a cohort of JIA patients. METHODS Serum samples from 15 JIA patients (male and female, 12.7 ± 2.8 years of age) were assessed using liquid chromatography/mass spectrometry (LC/MS). Correlation analyses were performed to determine the relationships among protein levels and self-reported clinical pain severity. Additionally, how the expression of pain-associated proteins related to markers of inflammation (Erythrocyte Sedimentation Rate (ESR)) or morphological properties of the central nervous system (subcortical volume and cortical thickness) implicated in JIA were also evaluated. RESULTS 306 proteins were identified in the JIA cohort of which 14 were significantly (p < 0.05) associated with clinical pain severity. Functional properties of the identified pain-associated proteins included but were not limited to humoral immunity (IGLV3.9), inflammatory response (PRG4) and angiogenesis (ANG). Associations among pain-associated proteins and ESR (IGHV3.9, PRG4, CST3, VWF, ALB), as well as caudate nucleus volume (BTD, AGT, IGHV3.74) and insular cortex thickness (BTD, LGALS3BP) were also observed. CONCLUSIONS The current proteomic findings suggest both inflammatory- and non-inflammatory mediated mechanisms as potential factors associated with JIA pain. Validation of these preliminary observations using larger patient cohorts and a longitudinal study design may further point to novel serologic markers of pain in JIA.
Collapse
Affiliation(s)
- Hanne Van Der Heijden
- grid.38142.3c000000041936754XDepartment of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA ,grid.5012.60000 0001 0481 6099Faculty of Psychology and Neuroscience, Section Neuropsychology & Psychopharmacology Maastricht University, Maastricht, The Netherlands ,grid.7177.60000000084992262Faculty of Science, Biomedical Sciences Neurobiology, University of Amsterdam, Amsterdam, The Netherlands
| | - Benoit Fatou
- grid.38142.3c000000041936754XDepartment of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Diana Sibai
- grid.38142.3c000000041936754XDepartment of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Kacie Hoyt
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Maria Taylor
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Kin Cheung
- BioSAS Consulting, Inc, Wellesley, MA USA
| | - Jordan Lemme
- grid.38142.3c000000041936754XDepartment of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Mariesa Cay
- grid.38142.3c000000041936754XDepartment of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Benjamin Goodlett
- grid.38142.3c000000041936754XDivision of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Jeffery Lo
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Melissa M. Hazen
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Olha Halyabar
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Esra Meidan
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Rudy Schreiber
- grid.5012.60000 0001 0481 6099Faculty of Psychology and Neuroscience, Section Neuropsychology & Psychopharmacology Maastricht University, Maastricht, The Netherlands
| | - Camilo Jaimes
- grid.38142.3c000000041936754XDepartment of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Kirsten Ecklund
- grid.38142.3c000000041936754XDepartment of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Lauren A. Henderson
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Margaret H. Chang
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Peter A. Nigrovic
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Robert P. Sundel
- grid.38142.3c000000041936754XDivision of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Hanno Steen
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA. .,Neurobiology Program, Boston Children's Hospital, Boston, MA, USA. .,Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA.
| | - Jaymin Upadhyay
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Psychiatry, McLean Hospital, Harvard Medical School, MA, Belmont, USA.
| |
Collapse
|
16
|
Jeng BH, Hamrah P, Kirshner ZZ, Mendez BC, Wessel HC, Brown LR, Steed DL. Exploratory Phase II Multicenter, Open-Label, Clinical Trial of ST266, a Novel Secretome for Treatment of Persistent Corneal Epithelial Defects. Transl Vis Sci Technol 2022; 11:8. [PMID: 34994777 PMCID: PMC8742509 DOI: 10.1167/tvst.11.1.8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Objective An exploratory phase II, multicenter, open-label, clinical trial (NCT03687632) was conducted to evaluate the safety and effectiveness in treating persistent corneal epithelial defects (PEDs) with ST266, a proprietary novel multi-cytokine platform biologic solution secreted by cultured Amnion-derived Multipotent Progenitor (AMP) cells. Methods Subjects with a PED were treated with ST266 eye drops 4 times daily for 28 days, then followed for 1 week. Safety was assessed by monitoring of adverse events (AEs) and serious adverse events (SAEs). Efficacy was assessed by measuring the area of the PED by slit lamp biomicroscopy. Tolerability of ST266, percentage of eyes with complete healing, reduction in area of the epithelial defect, and maintenance of a reduction in the area of the epithelial defect 7 days after treatment were recorded. Results Thirteen patients were enrolled into the trial at one of eight sites. The first patient withdrew after 5 days. The remaining 12 patients with PEDs with median duration of 39 days (range = 12 to 393 days) completed treatment. Ten of the 12 eyes had been refractory to treatment with various conventional therapies prior to enrollment. After 28 days of treatment, there was a significant decrease in mean PED area compared with baseline (66.4% ± 35.3%, P = 0.001). At follow-up, 1 week after completion of treatment, on day 35, the PED area was further reduced by 78.8% ± 37.5% (P = 0.01) compared with baseline. During 28 days of treatment, 5 eyes (41.7%) had complete wound closure. There were no AEs of concern thought to be related to the drug, and no SAEs were noted. Conclusions In this trial, we found ST266 eye drops might promote corneal epithelization, thereby reducing the PED area, including in refractory cases in a wide range of etiologies. ST266 was well-tolerated by most patients.
Collapse
Affiliation(s)
- Bennie H Jeng
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Pedram Hamrah
- Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ziv Z Kirshner
- Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania, USA
| | | | - Howard C Wessel
- Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania, USA
| | - Larry R Brown
- Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania, USA
| | - David L Steed
- Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania, USA
| |
Collapse
|
17
|
Garnett ER, Raines RT. Emerging biological functions of ribonuclease 1 and angiogenin. Crit Rev Biochem Mol Biol 2021; 57:244-260. [PMID: 34886717 DOI: 10.1080/10409238.2021.2004577] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pancreatic-type ribonucleases (ptRNases) are a large family of vertebrate-specific secretory endoribonucleases. These enzymes catalyze the degradation of many RNA substrates and thereby mediate a variety of biological functions. Though the homology of ptRNases has informed biochemical characterization and evolutionary analyses, the understanding of their biological roles is incomplete. Here, we review the functions of two ptRNases: RNase 1 and angiogenin. RNase 1, which is an abundant ptRNase with high catalytic activity, has newly discovered roles in inflammation and blood coagulation. Angiogenin, which promotes neovascularization, is now known to play roles in the progression of cancer and amyotrophic lateral sclerosis, as well as in the cellular stress response. Ongoing work is illuminating the biology of these and other ptRNases.
Collapse
Affiliation(s)
- Emily R Garnett
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ronald T Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
18
|
Lee S, Shin J, Kim JS, Shin J, Lee SK, Park HW. Targeting TBK1 Attenuates LPS-Induced NLRP3 Inflammasome Activation by Regulating of mTORC1 Pathways in Trophoblasts. Front Immunol 2021; 12:743700. [PMID: 34858401 PMCID: PMC8630692 DOI: 10.3389/fimmu.2021.743700] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/22/2021] [Indexed: 01/28/2023] Open
Abstract
Pathological maternal inflammation and abnormal placentation contribute to several pregnancy-related disorders, including preterm birth, intrauterine growth restriction, and preeclampsia. TANK-binding kinase 1 (TBK1), a serine/threonine kinase, has been implicated in the regulation of various physiological processes, including innate immune response, autophagy, and cell growth. However, the relevance of TBK1 in the placental pro-inflammatory environment has not been investigated. In this study, we assessed the effect of TBK1 inhibition on lipopolysaccharide (LPS)-induced NLRP3 inflammasome activation and its underlying mechanisms in human trophoblast cell lines and mouse placenta. TBK1 phosphorylation was upregulated in the trophoblasts and placenta in response to LPS. Pharmacological and genetic inhibition of TBK1 in trophoblasts ameliorated LPS-induced NLRP3 inflammasome activation, placental inflammation, and subsequent interleukin (IL)-1 production. Moreover, maternal administration of amlexanox, a TBK1 inhibitor, reversed LPS-induced adverse pregnancy outcomes. Notably, TBK1 inhibition prevented LPS-induced NLRP3 inflammasome activation by targeting the mammalian target of rapamycin complex 1 (mTORC1). Thus, this study provides evidence for the biological significance of TBK1 in placental inflammation, suggesting that amlexanox may be a potential therapeutic candidate for treating inflammation-associated pregnancy-related complications.
Collapse
Affiliation(s)
- Sohee Lee
- Department of Cell Biology, Konyang University College of Medicine, Daejeon, South Korea
| | - Jiha Shin
- Department of Cell Biology, Konyang University College of Medicine, Daejeon, South Korea
| | - Jong-Seok Kim
- Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon, South Korea
| | - Jongdae Shin
- Department of Cell Biology, Konyang University College of Medicine, Daejeon, South Korea.,Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon, South Korea
| | - Sung Ki Lee
- Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon, South Korea.,Department of Obstetrics and Gynecology, Konyang University Hospital, Daejeon, South Korea
| | - Hwan-Woo Park
- Department of Cell Biology, Konyang University College of Medicine, Daejeon, South Korea
| |
Collapse
|
19
|
Angiogenin and Copper Crossing in Wound Healing. Int J Mol Sci 2021; 22:ijms221910704. [PMID: 34639045 PMCID: PMC8509573 DOI: 10.3390/ijms221910704] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis plays a key role in the wound healing process, involving the migration, growth, and differentiation of endothelial cells. Angiogenesis is controlled by a strict balance of different factors, and among these, the angiogenin protein plays a relevant role. Angiogenin is a secreted protein member of the ribonuclease superfamily that is taken up by cells and translocated to the nucleus when the process of blood vessel formation has to be promoted. However, the chemical signaling that activates the protein, normally present in the plasma, and the transport pathways through which the protein enters the cell are still largely unclear. Copper is also an angiogenic factor that regulates angiogenin expression and participates in the activation of common signaling pathways. The interaction between angiogenin and copper could be a relevant mechanism in regulating the formation of new blood vessel pathways and paving the way to the development of new drugs for chronic non-healing wounds.
Collapse
|
20
|
Rani V, Prabhu A. Combining Angiogenesis Inhibitors with Radiation: Advances and Challenges in Cancer Treatment. Curr Pharm Des 2021; 27:919-931. [PMID: 33006535 DOI: 10.2174/1381612826666201002145454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Radiation therapy is a widely employed modality that is used to destroy cancer cells, but it also tends to induce changes in the tumor microenvironment and promote angiogenesis. Radiation, when used as a sole means of therapeutic approach to treat cancer, tends to trigger the angiogenic pathways, leading to the upregulation of several angiogenic growth factors such as VEGF, bFGF, PDGF and angiogenin. This uncontrolled angiogenesis leads to certain angiogenic disorders like vascular outgrowth and an increase in tumor progression that can pose a serious threat to patients. OBJECTIVE This review emphasizes on various components of the tumor microenvironment, angiogenic growth factors and biological effects of radiation on tumors in provoking the relapse. It also describes the angiogenic mechanisms that trigger the tumor relapse after radiation therapy and how angiogenesis inhibitors can help in overcoming this phenomenon. It gives an overview of various angiogenesis inhibitors in pre-clinical as well as in clinical trials. CONCLUSION The review focuses on the beneficial effects of the combinatorial therapeutic approach of anti-angiogenesis therapy and radiation in tumor management.
Collapse
Affiliation(s)
- Vinitha Rani
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore - 575 018, Karnataka, India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore - 575 018, Karnataka, India
| |
Collapse
|
21
|
Yurina NV, Ageeva TA, Goryachkin AM, Varaksin NA, Ryabicheva TG, Ostanin AA, Chernykh ER, Romashchenko AV, Proskurina AS, Bogachev S, Purtov AV. Effects of Recombinant Angiogenin on Collagen Fiber Formation and Angiogenesis in the Dermis of Wistar Rats. Clin Cosmet Investig Dermatol 2021; 14:187-196. [PMID: 33679135 PMCID: PMC7926187 DOI: 10.2147/ccid.s294825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/29/2021] [Indexed: 12/11/2022]
Abstract
Purpose The purpose of this study was to assess the capability of recombinant angiogenin isolated from Pichia pastoris yeasts to stimulate regenerative processes in the dermis of experimental animals. Patients and Methods Wistar rats were administered with recombinant angiogenin intracutaneously. Morphological examination of the skin and the assessment of the proliferative activity of the epidermal cells were carried out. Additionally, cytokine production by human whole blood cells exposed to angiogenin was analyzed ex vivo. Results Administration of angiogenin stimulates collagen fiber formation and angiogenesis. This stimulation is tightly associated with an increase in the number of fibroblasts, an increased numerical density of dermal blood vessels and an increased density of collagen fibers; also, it activates the proliferation of basal cells. Angiogenin induces the production of MCP, IL-8, IL-6, IL-1β, TNF-α, IL-10, TGF-β, and VEGF by blood cells. Conclusion The results obtained indicate a broad spectrum of actions of recombinant angiogenin during regenerative processes in the basal layer of the dermis.
Collapse
Affiliation(s)
- Natalia V Yurina
- Autonomous Non-Profit Organization "Regional Center for High Medical Technologies", Novosibirsk, Russia
| | | | | | | | | | - Alexandr A Ostanin
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Elena R Chernykh
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Alexander V Romashchenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Anastasia S Proskurina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey Bogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | |
Collapse
|
22
|
Sung SM, Lee SJ, Lee KW, Kim JC. Ultraviolet B-induced Senescence Model Using Corneal Fibroblasts and the Anti-aging Effect of Angiogenin. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2020. [DOI: 10.3341/jkos.2020.61.9.1015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
The Anti-Inflammatory Effects of Angiogenin in an Endotoxin Induced Uveitis in Rats. Int J Mol Sci 2020; 21:ijms21020413. [PMID: 31936482 PMCID: PMC7014170 DOI: 10.3390/ijms21020413] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/21/2022] Open
Abstract
Angiogenin (ANG) is involved in the innate immune system and inflammatory disease. The aim of this study is to evaluate the anti-inflammatory effects of ANG in an endotoxin induced uveitis (EIU) rat model and the pathways involved. EIU rats were treated with balanced salt solution (BSS), a non-functional mutant ANG (mANG), or wild-type ANG (ANG). The integrity of the blood-aqueous barrier was evaluated by the infiltrating cell and protein concentrations in aqueous humor. Histopathology, Western blot, and real-time qRT-PCR of aqueous humor and ocular tissue were performed to analyze inflammatory cytokines and transcription factors. EIU treated with ANG had decreased inflammatory cells and protein concentrations in the anterior chamber. Compared to BSS and mANG, ANG treatment showed reduced expression of IL-1β, IL-8, TNF-α, and Myd88, while the expression of IL-4 and IL-10 was increased. Western blot of ANG treatment showed decreased expression of IL-6, inducible nitric oxide synthase (iNOS), IL-1β, TNF-α, and phosphorylated NF-κB and increased expression of IL-10. In conclusion, ANG seems to reduce effectively immune mediated inflammation in the EIU rat model by reducing the expression of proinflammatory cytokines, while increasing the expression of anti-inflammatory cytokines through pathways related to NF-κB. Therefore, ANG shows potential for effectively suppressing immune-inflammatory responses in vivo.
Collapse
|
24
|
Intrathecal Infusion of Autologous Adipose-Derived Regenerative Cells in Autoimmune Refractory Epilepsy: Evaluation of Safety and Efficacy. Stem Cells Int 2020; 2020:7104243. [PMID: 32190059 PMCID: PMC7066423 DOI: 10.1155/2020/7104243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/22/2019] [Accepted: 12/03/2019] [Indexed: 01/22/2023] Open
Abstract
Objective/Purpose. Evaluation of efficacy and safety of autologous adipose-derived regenerative cells (ADRCs) treatment in autoimmune refractory epilepsy. Patients. Six patients with proven or probable autoimmune refractory epilepsy (2 with Rasmussen encephalitis, 2 with antineuronal autoantibodies in serum, and 2 with possible FIRES) were included in the project with approval of the Bioethics Committee.
Collapse
|
25
|
Kim J, Kim WJ, Ha KS, Han ET, Park WS, Yang SR, Hong SH. Perivascular Stem Cells Suppress Inflammasome Activation during Inflammatory Responses in Macrophages. Int J Stem Cells 2019; 12:419-429. [PMID: 31658511 PMCID: PMC6881042 DOI: 10.15283/ijsc19115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/06/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022] Open
Abstract
Background and Objectives Perivascular stem cells (PVCs) have been identified as precursors of mesenchymal stem cells (MSCs) that offer promising prospects for application in the development of cellular therapies. Although PVCs have been demonstrated to have greater therapeutic potential compared to bone marrow and adipose tissue-derived MSCs in various diseases, the regulatory role of PVCs on inflammasome activation during macrophage-mediated inflammatory responses has not been investigated. Methods and Results In this study, we found that the PVC secretome effectively alleviates secretion of both caspase-1 and interleukin-1β in lipopolysaccharide-primed and activated human and murine macrophages by blocking inflammasome activation and attenuating the production of mitochondrial reactive oxygen species (ROS). We further showed that the PVC secretome significantly reduces inflammatory responses and endoplasmic reticulum stress in peritoneal macrophages in a mouse model of monosodium urate-induced peritonitis. A cytokine antibody array analysis revealed that the PVC secretome contains high levels of serpin E1 and angiogenin, which may be responsible for the inhibitory effects on mitochondrial ROS generation as well as on inflammasome activation. Conclusions Our results suggest that PVCs may be therapeutically useful for the treatment of macrophage- and inflammation-mediated diseases by paracrine action via the secretion of various biological factors.
Collapse
Affiliation(s)
- Jeeyoung Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Woo Jin Kim
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Kwon-Soo Ha
- Scripps Korea Antibody Institute and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Won Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
26
|
Ge YS, Zhang QZ, Li H, Bai G, Jiao ZH, Wang HB. Hydrogen-rich saline protects against hepatic injury induced by ischemia-reperfusion and laparoscopic hepatectomy in swine. Hepatobiliary Pancreat Dis Int 2019; 18:48-61. [PMID: 30573299 DOI: 10.1016/j.hbpd.2018.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/28/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hydrogen-rich saline (HRS) has antioxidative, anti-inflammatory and anti-apoptotic properties. We investigated the effects of hydrogen on hepatic ischemia-reperfusion (I/R) and laparoscopic hepatectomy in swine. METHODS Twenty-one healthy Bama miniature pigs were randomly divided into the sham group, ischemia-reperfusion injury (IRI) group, HRS-5 (5 mL/kg) group, and HRS-10 (10 mL/kg) group. HRS was injected through the portal vein 10 min before reperfusion and at postoperative day 1, 2 and 3. The roles of HRS on oxidative stress, inflammatory response and liver regeneration were studied. RESULTS Compared with the IRI group, HRS treatment attenuated oxidative stress by increasing catalase activity and reducing myeloperoxidase. White blood cells in the HRS-10 group were reduced compared with the IRI group (P < 0.01). In the HRS-10 group, interleukin-1 beta, interleukin-6 and tumor necrosis factor alpha, C-reactive protein and cortisol were downregulated, whereas interleukin-10 was upregulated. In addition, HRS attenuated endothelial cell injury and promoted the secretion of angiogenic cytokines, including vascular endothelial growth factor, angiopoietin-1 and angiopoietin-2. HRS elevated the levels of hepatocyte growth factor, Cyclin D1, proliferating cell nuclear antigen, Ki-67 and reduced the secretion of transforming growth factor-beta. CONCLUSIONS HRS treatment may exert a protective effect against I/R and hepatectomy-induced hepatic damage by reducing oxidative stress, suppressing the inflammatory response and promoting liver regeneration.
Collapse
Affiliation(s)
- Yan-Song Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Qian-Zhen Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hui Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ge Bai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhi-Hui Jiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hong-Bin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
27
|
Lai NS, Yu HC, Tung CH, Huang KY, Huang HB, Lu MC. Aberrant expression of interleukin-23-regulated miRNAs in T cells from patients with ankylosing spondylitis. Arthritis Res Ther 2018; 20:259. [PMID: 30463609 PMCID: PMC6247500 DOI: 10.1186/s13075-018-1754-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023] Open
Abstract
Background Interleukin (IL)-23 can facilitate the differentiation of IL-17-producing helper T cells (Th17). The IL-23/IL-17 axis is known to play a key role in the immunopathogenesis of ankylosing spondylitis (AS). We hypothesized that the expression of microRNAs (miRNAs, miRs) would be regulated by IL-23 and that these miRNAs could participate in the immunopathogenesis of AS. Methods Expression profiles of human miRNAs in K562 cells, cultured in the presence or absence of IL-23 for 3 days, were analyzed by microarray. Potentially aberrantly expressed miRNAs were validated using T-cell samples from 24 patients with AS and 16 control subjects. Next-generation sequencing (NGS) was conducted to search for gene expression and biological functions regulated by specific miRNAs in the IL-23-mediated signaling pathway. Results Initial analysis revealed that the expression levels of 12 miRNAs were significantly higher, whereas those of 4 miRNAs were significantly lower, in K562 cells after coculture with IL-23 for 3 days. Among these IL-23-regulated miRNAs, the expression levels of miR-29b-1-5p, miR-4449, miR-211-3p, miR-1914-3p, and miR-7114-5p were found to be higher in AS T cells. The transfection of miR-29b-1-5p mimic suppressed IL-23-mediated signal transducer and activator of transcription 3 (STAT3) phosphorylation in K562 cells. After NGS analysis and validation, we found that miR-29b-1-5p upregulated the expression of angiogenin, which was also upregulated in K562 cells after coculture with IL-23. Increased expression of miR-29b-1-5p or miR-211-3p could enhance interferon-γ expression. Conclusions Among the miRNAs regulated by IL-23, expression levels of five miRNAs were increased in T cells from patients with AS. The transfection of miR-29b-1-5p mimic could inhibit the IL-23-mediated STAT3 phosphorylation and might play a role in negative feedback control in the immunopathogenesis of AS.
Collapse
Affiliation(s)
- Ning-Sheng Lai
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 2, Minsheng Road, Dalin, Chiayi, 62247, Taiwan.,School of Medicine, Tzu Chi University, Hualien City, Taiwan
| | - Hui-Chun Yu
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 2, Minsheng Road, Dalin, Chiayi, 62247, Taiwan
| | - Chien-Hsueh Tung
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 2, Minsheng Road, Dalin, Chiayi, 62247, Taiwan.,School of Medicine, Tzu Chi University, Hualien City, Taiwan
| | - Kuang-Yung Huang
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 2, Minsheng Road, Dalin, Chiayi, 62247, Taiwan.,School of Medicine, Tzu Chi University, Hualien City, Taiwan
| | - Hsien-Bin Huang
- Department of Life Science and Institute of Molecular Biology, National Chung Cheng University, Minxiong, Chiayi, Taiwan
| | - Ming-Chi Lu
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 2, Minsheng Road, Dalin, Chiayi, 62247, Taiwan. .,School of Medicine, Tzu Chi University, Hualien City, Taiwan.
| |
Collapse
|
28
|
Cui K, Zhang S, Liu X, Yan Z, Huang L, Yang X, Zhu R, Sang A. Inhibition of TBK1 reduces choroidal neovascularization in vitro and in vivo. Biochem Biophys Res Commun 2018; 503:202-208. [PMID: 29864423 DOI: 10.1016/j.bbrc.2018.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 06/01/2018] [Indexed: 01/09/2023]
Abstract
choroidal neovascularization (CNV), a characteristic of wet age-related macular degeneration (AMD), causes severe vision loss among elderly patients. TANK-binding kinase 1 (TBK1) is a ubiquitously expressed serine-threonine kinase and is found to induce endothelial cells proliferation, represent a novel mediator of tumor angiogenesis and exert pro-inflammatory effect. However, the role of TBK1 in choroidal neovascularization has not been investigated so far. In this study, we found that the expression of TBK1 and VEGF was up-regulated in RF/6 A cells chemical hypoxia model and laser-induced mouse CNV model. Silencing of TBK1 suppressed the proliferation and tube formation activity of RF/6 A cells. Intravitreal injection of anti-TBK1 monoclonal antibody ameliorates CNV formation. Taken together, these findings exhibit a proangiogenic role for TBK1 via upregulating the expression of VEGF, and may suggest that TBK1 inhibition offers a unique and alternative method for prevention and treatment of AMD.
Collapse
Affiliation(s)
- Kaixuan Cui
- School of Medicine, Nantong University, Nantong, 226001, Jiangsu, China
| | | | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, 226001, Jiangsu, China; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, 226001, Jiangsu, China
| | - Zhenzhen Yan
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Lili Huang
- Department of Ophthalmology, The First People's Hospital of Nantong, 226001, Jiangsu Province, China
| | - Xiaowei Yang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Rongrong Zhu
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Aimin Sang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
29
|
Lee SH, Lee HR, Kwon JY, Jung K, Kim SY, Cho KH, Choi J, Lee HH, Lee BI, Jue DM, Cho ML. A20 ameliorates inflammatory bowel disease in mice via inhibiting NF-κB and STAT3 activation. Immunol Lett 2018; 198:44-51. [PMID: 29608924 DOI: 10.1016/j.imlet.2018.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/05/2018] [Accepted: 03/28/2018] [Indexed: 02/07/2023]
Abstract
A20 is a zinc finger protein that effectively inhibits the activation of nuclear factor (NF)-κB to downregulate the expression of tumor necrosis factor-α, interleukin (IL)-1β, and IL-17. A20 also plays a crucial role as a feedback inhibitor of the inflammatory response. Due to its inhibitory role, A20 may be useful in regulating diseases resulting from chronic inflammation and excessive pro-inflammatory cytokine production, such as colitis. Patients with colitis produce high levels of pro-inflammatory cytokines in the intestine. Therefore, this study aimed to investigate whether A20 improves experimental colitis by reducing high levels of inflammation in the intestine. An A20 overexpression vector was administered to mice by intrarectal injection after colitis induction. Histological analysis by immunohistochemistry was used to score sections of the intestine. Confocal laser scanning microscopy was used to identify the expression of IL-17 and forkhead box p (FOXP) 3 protein in spleen tissues. Protein expression induced by STAT3 and NF-κB signaling was analyzed by western blot. We found that A20 reduced the colitis activity index score and the histological score of the intestine. A20 also decreased inflammatory cytokine levels in the intestine and increased colon length. Additionally, A20 overexpression downregulated the activation of NF-kB and STAT3. A20 also reduced IL-17 expression in CD4+ T cells from spleen sections. In contrast, A20 overexpression enhanced the expression of FOXP3 in CD4+ T cells. These results suggest that A20 may inhibit the progression of colitis by decreasing inflammation via inhibition of NF-κB, phosphorylated STAT3, and IL-17.
Collapse
Affiliation(s)
- Seung Hoon Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea; Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States
| | - Hye-Rim Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Ji Ye Kwon
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - KyungAh Jung
- Impact Biotech, Korea 505 Banpo-Dong, Seocho-Ku, 137-040, Seoul, Korea
| | - Se-Young Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Keun-Hyung Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - JeongWon Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Han Hee Lee
- Division of Gastroenterlogy, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bo-In Lee
- Division of Gastroenterlogy, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dae-Myung Jue
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
30
|
Angiogenin Attenuates Scar Formation in Burn Patients by Reducing Fibroblast Proliferation and Transforming Growth Factor β1 Secretion. Ann Plast Surg 2018; 80:S79-S83. [DOI: 10.1097/sap.0000000000001306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
31
|
Nandi A, Bishayi B. A novel CCR-2/TLR-2 triggered signaling in murine peritoneal macrophages intensifies bacterial ( Staphylococcus aureus ) killing by reactive oxygen species through TNF-R1. Immunol Lett 2017; 190:93-107. [DOI: 10.1016/j.imlet.2017.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/15/2017] [Indexed: 10/19/2022]
|
32
|
Joint inflammation related citrullination of functional arginines in extracellular proteins. Sci Rep 2017; 7:8246. [PMID: 28811641 PMCID: PMC5557964 DOI: 10.1038/s41598-017-08597-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/12/2017] [Indexed: 01/22/2023] Open
Abstract
We report the extent, specific sites and structural requirements of joint inflammation related citrullination in extracellular proteins. A total of 40 synovial fluid samples derived from chronically inflamed human joints were analysed by heparin-agarose fractionation and LC-MS/MS. Citrullination of 55 arginines in extracellular proteins was detected. Importantly, 20% of the sites have a characterized function related to the hallmarks of destructive joint inflammation. E.g. four arginine residues, shown here to be citrullinated, are also affected by mutations in inherited diseases causing haemolysis or blood clotting dysfunction. Citrullination of integrin ligands was selected for further studies since fibronectin R234 in isoDGR was among the most frequently citrullinated arginines in synovial fluid. Assays with synovial fibroblasts and integrin αVβ3 indicated decreased affinity to the enzymatically citrullinated integrin binding sites. To conclude, our data indicate that in inflamed joints extensive citrullination affects the functional arginine residues in extracellular proteins.
Collapse
|
33
|
Lee SH, Kim EK, Kwon JE, Lee JK, Lee D, Kim SY, Seo HB, Na HS, Jung K, Kwok SK, Lee CW, Park SH, Cho ML. Ssu72 attenuates autoimmune arthritis via targeting of STAT3 signaling and Th17 activation. Sci Rep 2017; 7:5506. [PMID: 28710354 PMCID: PMC5511296 DOI: 10.1038/s41598-017-05421-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/30/2017] [Indexed: 02/06/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) orchestrates the differentiation of several cell types, including interleukin-17 (IL-17)-releasing Th17 cells. Dysregulation of Th17 cells results in chronic inflammatory responses. Ssu72 is a C-terminal domain phosphatase required for transcriptional regulation. However, the mechanism by which Ssu72 affects STAT3 activation and Th17 cell differentiation is unclear. Here, we found that Ssu72 overexpression suppresses STAT3 activation and Th17 cell responses in vitro. A systemic infusion of Ssu72 attenuates experimental autoimmune arthritis by reducing STAT3 activity and the differentiation of Th17 cells. It also reduces joint destruction, serum immunoglobulin concentrations and osteoclastogenesis but increases the number of marginal zone B cells and B10 cells. These effects are associated with reduced p-STAT3 levels and the suppression of Th17 cell formation in vivo. Based on these data, Ssu72 is related to STAT3 activation and the inflammatory response; and Ssu72 overexpression in T-cell-mediated immunity has potential utility for the treatment of autoimmune arthritis.
Collapse
Affiliation(s)
- Seung Hoon Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Eun-Kyung Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jeong-Eun Kwon
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jin-Kwan Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Korea
| | - DoHyeong Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Se-Young Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyeon-Beom Seo
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun Sik Na
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | | | - Seung-Ki Kwok
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 137-701, South Korea
| | - Chang-Woo Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea. .,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 137-701, South Korea.
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea. .,Laboratory of Immune Network, Conversant Research Consortium in Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, South Korea. .,The Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea.
| |
Collapse
|
34
|
IL-17 axis accelerates the inflammatory progression of obese in mice via TBK1 and IKBKE pathway. Immunol Lett 2017; 184:67-75. [PMID: 28237848 DOI: 10.1016/j.imlet.2017.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/04/2017] [Accepted: 02/09/2017] [Indexed: 02/06/2023]
Abstract
Obesity mediates immune inflammatory response and induces IL-17 expression. Adipgenesis can be regulated by IL-17 and it causes TBK1 activation. The inhibition of TBK1 and the inhibition of I IKBKE reduces inflammatory response and improves obesity. It is hypothesized that IL-17 deficiency inhibits obesity progression and inflammation. 3T3-L1 preadipocytes were differentiated in vitro and treated with IL-17. RAW264.7 cells and differentiated 3T3-L1 were pretreated with TBK1 inhibitor and then stimulated with IL-17. Wild-type and IL-17 knock out mice were fed with high-fat diet. IL-17 inhibits adipocyte differentiation from mouse-derived 3T3-L1 preadipocytes and reduces mRNA expression of proadipogenic transcription factors and adipokines in adipocyte cells. IL-17 also showed up-regulation of mRNA levels of inflammatory cytokines in RAW cells. The inhibitor of TBK1 and IKBKE attenuates the effect of IL-17. Loss of IL-17 deficiency improves diet-induced obesity, fatty liver, glucose and lipid metabolism in mice. The expression of TBK1 and IKBKE decreased in the spleen and liver of IL-17 deficiency mice. Moreover, the inflammatory response within the visceral adipose tissue and Th1 cells were inhibited, however, M2 macrophage and Th2 cells increased in IL-17 deficiency mice. IL-17 inhibits adipogenesis where a lack of IL-17 ameliorates glucose metabolism. As well, the inhibition of TBK1 reduces inflammation induced by IL-17. Therefore, IL-17 may be involved in the development of obesity and metabolic dysfunction in a TBK1-dependent manner.
Collapse
|
35
|
Anderson RC, Bassett SA, Haggarty NW, Gopal PK, Armstrong KM, Roy NC. Short communication: Early-lactation, but not mid-lactation, bovine lactoferrin preparation increases epithelial barrier integrity of Caco-2 cell layers. J Dairy Sci 2016; 100:886-891. [PMID: 27939537 DOI: 10.3168/jds.2016-11803] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 10/13/2016] [Indexed: 12/15/2022]
Abstract
Bovine lactoferrin is an important milk protein with many health-promoting properties, including improving intestinal barrier integrity. Dysfunction of this barrier, commonly referred to as "leaky gut," has been linked to inflammatory and autoimmune diseases. With some processing techniques, lactoferrin isolated from milk collected at the start of the milking season (early lactation) may have lower purity than that isolated from milk collected during the rest of the milking season (mid-lactation) and could result in differences in bioactivity based on the stage of lactation. We compared reversed-phase HPLC chromatographs of early-lactation and mid-lactation preparations and found that both had large chromatograph peaks at the time predicted for lactoferrin. The notable difference between the 2 chromatographs was a much larger peak in the early-lactation lactoferrin sample that was determined to be angiogenin. Angiogenin was first identified due to its ability to induce new blood vessel formation, but is now known to be involved in numerous physiological processes. Then, we compared the effects of early-lactation and mid-lactation lactoferrin preparations in 2 bioassays: trans-epithelial electrical resistance (TEER), a measure of intestinal barrier integrity, and peripheral blood mononuclear cell cytokine secretion, a measure of immune-stimulatory properties. We found that early-lactation lactoferrin increased TEER across Caco-2 cell layers compared with control from 10 to 48 h, mid-lactation lactoferrin did not alter TEER. We also found that early-lactation lactoferrin reduced the amount of IL-8 produced by peripheral blood mononuclear cells (compared with those treated with control medium) to a greater extent than mid-lactation lactoferrin. A pro-inflammatory chemokine, IL-8 is also known to decrease barrier function. These results suggest that the decrease in IL-8 production in the presence of early-lactation lactoferrin may be the mechanism by which it increases TEER. The anti-inflammatory effect of early-lactation lactoferrin may be related to the presence of angiogenin, which is known to suppress inflammatory responses. This work indicates that products rich in angiogenin may have intestinal health benefits, and further work to investigate this is warranted.
Collapse
Affiliation(s)
- Rachel C Anderson
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch, Private Bag 11008, Palmerston North, 4442, New Zealand; Riddet Centre of Research Excellence, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand.
| | - Shalome A Bassett
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Neill W Haggarty
- Fonterra Research and Development Centre, Private Bag 11029, Palmerston North, 4442, New Zealand
| | - Pramod K Gopal
- Fonterra Research and Development Centre, Private Bag 11029, Palmerston North, 4442, New Zealand
| | - Kelly M Armstrong
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Nicole C Roy
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch, Private Bag 11008, Palmerston North, 4442, New Zealand; Riddet Centre of Research Excellence, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| |
Collapse
|
36
|
Kim WS, Wee SW, Lee SH, Kim JC. Angiogenin for the Diagnosis and Grading of Dry Eye Syndrome. KOREAN JOURNAL OF OPHTHALMOLOGY 2016; 30:163-71. [PMID: 27247515 PMCID: PMC4878976 DOI: 10.3341/kjo.2016.30.3.163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 09/02/2015] [Indexed: 11/23/2022] Open
Abstract
Purpose To investigate the properties of angiogenin (ANG) as a potential tool for the diagnosis and grading of dry eye syndrome (DES) by analyzing tear protein profiles. Methods Tear samples were collected with capillary tubes from 52 DES patients and 29 normal individuals as controls. Tear protein profiles were analyzed with an immunodot blot assay as a screening test. To confirm that the tear ANG levels were in inverse proportion to the disease severity grade, the ANG and lactoferrin (LF) tear contents of normal controls and DES patients were compared in an enzyme-linked immunosorbent assay. Results In the immunodot blot assay, the ANG area was lower in patients with grades 3 and 4 DES than in normal controls. The areas of basic fibroblast growth factor, transforming growth factor β2, and interleukin 10 were significantly greater than those of normal controls only in grade 4 DES patients, but these proteins were not linearly correlated with dry eye severity. Upon enzyme-linked immunosorbent assay analysis, the mean concentrations of ANG and LF decreased significantly as dry eye severity increased, except between grades 1 and 2. In addition, the ratios of ANG and LF to total tear proteins were correlated significantly with DES severity. Conclusions ANG level was significantly lower in DES patients than in normal controls, and was significantly correlated with the worsening severity of DES, except between grades 1 and 2, as was LF. Therefore, ANG may be a useful measure of DES severity through proteomic analysis.
Collapse
Affiliation(s)
- Won Soo Kim
- Department of Ophthalmology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Sung Wook Wee
- Department of Ophthalmology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Seung Hoon Lee
- Department of Ophthalmology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jae Chan Kim
- Department of Ophthalmology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
37
|
Lee SH, Kim KW, Joo K, Kim JC. Angiogenin ameliorates corneal opacity and neovascularization via regulating immune response in corneal fibroblasts. BMC Ophthalmol 2016; 16:57. [PMID: 27356868 PMCID: PMC4926301 DOI: 10.1186/s12886-016-0235-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 05/10/2016] [Indexed: 12/04/2022] Open
Abstract
Background Angiogenin (ANG), a component of tears, is involved in the innate immune system and is related with inflammatory disease. We investigated whether ANG has an immune modulatory function in human corneal fibroblasts (HCFs). Methods HCFs were cultured from excised corneal tissues. The gene or protein expression levels of interleukin (IL)-1beta (β), IL-4, IL-6, IL-8, IL-10, complements, toll-like receptor (TLR)4, myeloid differentiation primary response gene (MYD)88, TANK-binding kinase (TBK)1, IkappaB kinase-epsilon (IKK-ε) and nuclear factor-kappaB (NF-κB) were analyzed with or without ANG treatment in tumor necrosis factor-alpha (TNF-α)- or lipopolysaccharide (LPS)-induced inflammatory HCFs by real-time polymerase chain reaction (PCR), Western blotting and immunocytochemistry. Inflammatory cytokine profiles with or without ANG were evaluated through immunodot blot analysis in inflammatory HCFs. Corneal neovascularization and opacity in a rat model of corneal alkali burn were evaluated after application of ANG eye drops. Results ANG decreased the mRNA levels of IL-1β, IL-6, IL-8, TNF-α receptor (TNFR)1, 2, TLR4, MYD88, and complement components except for C1r and C1s and elevated the mRNA expression of IL-4 and IL-10. Increased signal intensity of IL-6, IL-8 and monocyte chemotactic protein (MCP)-1 and MCP-2 induced by TNF-α or LPS was weakened by ANG treatment. ANG reduced the protein levels of IKK-ε by either TNF-α and LPS, and decreased TBK1 production induced by TNF-α, but not induced by LPS. The expression of NF-κB in the nuclei was decreased after ANG treatment. ANG application lowered corneal neovascularization and opacity in rats compared to controls. Conclusion These results demonstrate that ANG reduces the inflammatory response induced by TNF-α or LPS in HCFs through common suppression of IKK-ε-mediated activation of NF-κB. This may support the targeting of immune-mediated corneal inflammation by using ANG.
Collapse
Affiliation(s)
- Seung Hoon Lee
- Department of Ophthalmology, College of Medicine, Chung-Ang University Hospital, 224-1, Heukseok-dong, Dongjak-Gu, Seoul, 156-755, Republic of Korea.,Graduate School of Chung-Ang University, College of Medicine, Seoul, Republic of Korea
| | - Kyoung Woo Kim
- Department of Ophthalmology, College of Medicine, Chung-Ang University Hospital, 224-1, Heukseok-dong, Dongjak-Gu, Seoul, 156-755, Republic of Korea.,Graduate School of Chung-Ang University, College of Medicine, Seoul, Republic of Korea
| | - Kwangsic Joo
- Department of Ophthalmology, College of Medicine, Chung-Ang University Hospital, 224-1, Heukseok-dong, Dongjak-Gu, Seoul, 156-755, Republic of Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Republic of Korea
| | - Jae Chan Kim
- Department of Ophthalmology, College of Medicine, Chung-Ang University Hospital, 224-1, Heukseok-dong, Dongjak-Gu, Seoul, 156-755, Republic of Korea.
| |
Collapse
|
38
|
Sheng J, Xu Z. Three decades of research on angiogenin: a review and perspective. Acta Biochim Biophys Sin (Shanghai) 2016; 48:399-410. [PMID: 26705141 DOI: 10.1093/abbs/gmv131] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/23/2015] [Indexed: 01/17/2023] Open
Abstract
As a member of the vertebrate-specific secreted ribonucleases, angiogenin (ANG) was first isolated and identified solely by its ability to induce new blood vessel formation, and now, it has been recognized to play important roles in various physiological and pathological processes through regulating cell proliferation, survival, migration, invasion, and/or differentiation. ANG exhibits very weak ribonucleolytic activity that is critical for its biological functions, and exerts its functions through activating different signaling transduction pathways in different target cells. A series of recent studies have indicated that ANG contributes to cellular nucleic acid metabolism. Here, we comprehensively review the results of studies regarding the structure, mechanism, and function of ANG over the past three decades. Moreover, current problems and future research directions of ANG are discussed. The understanding of the function and mechanism of ANG in a wide context will help to better delineate its roles in diseases, especially in cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jinghao Sheng
- Institute of Environmental Health, Zhejiang University School of Public Health, Hangzhou 310058, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhengping Xu
- Institute of Environmental Health, Zhejiang University School of Public Health, Hangzhou 310058, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
39
|
Kanwar JR, Kanwar RK, Stathopoulos S, Haggarty NW, MacGibbon AKH, Palmano KP, Roy K, Rowan A, Krissansen GW. Comparative activities of milk components in reversing chronic colitis. J Dairy Sci 2016; 99:2488-2501. [PMID: 26805965 DOI: 10.3168/jds.2015-10122] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/16/2015] [Indexed: 12/18/2022]
Abstract
Inflammatory bowel disease (IBD) is a poorly understood chronic immune disorder for which there is no medical cure. Milk and colostrum are rich sources of bioactives with immunomodulatory properties. Here we compared the therapeutic effects of oral delivery of bovine milk-derived iron-saturated lactoferrin (Fe-bLF), angiogenin, osteopontin (OPN), colostrum whey protein, Modulen IBD (Nestle Healthsciences, Rhodes, Australia), and cis-9,trans-11 conjugated linoleic acid (CLA)-enriched milk fat in a mouse model of dextran sulfate-induced colitis. The CLA-enriched milk fat significantly increased mouse body weights after 24d of treatment, reduced epithelium damage, and downregulated the expression of proinflammatory cytokines and nitrous oxide. Modulen IBD most effectively decreased the clinical score at d 12, and Modulen IBD and OPN most effectively lowered the inflammatory score. Myeloperoxidase activity that denotes neutrophil infiltration was significantly lower in mice fed Modulen IBD, OPN, angiogenin, and Fe-bLF. A significant decrease in the numbers of T cells, natural killer cells, dendritic cells, and a significant decrease in cytokine expression were observed in mice fed the treatment diets compared with dextran sulfate administered mice. The Fe-bLF, CLA-enriched milk fat, and Modulen IBD inhibited intestinal angiogenesis. In summary, each of the milk components attenuated IBD in mice, but with differing effectiveness against specific disease parameters.
Collapse
Affiliation(s)
- J R Kanwar
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), Centre for Molecular and Medical Research (C-MMR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia.
| | - R K Kanwar
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), Centre for Molecular and Medical Research (C-MMR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | | | - N W Haggarty
- Fonterra Research Centre, Palmerston North, New Zealand
| | | | - K P Palmano
- Fonterra Research Centre, Palmerston North, New Zealand
| | - K Roy
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), Centre for Molecular and Medical Research (C-MMR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - A Rowan
- Fonterra Research Centre, Palmerston North, New Zealand
| | - G W Krissansen
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
40
|
Kim KW, Park SH, Oh DH, Lee SH, Lim KS, Joo K, Chun YS, Chang SI, Min KM, Kim JC. Ribonuclease 5 coordinates signals for the regulation of intraocular pressure and inhibits neural apoptosis as a novel multi-functional anti-glaucomatous strategy. Biochim Biophys Acta Mol Basis Dis 2015; 1862:145-54. [PMID: 26581172 DOI: 10.1016/j.bbadis.2015.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/15/2015] [Accepted: 11/11/2015] [Indexed: 02/08/2023]
Abstract
Glaucoma is a vision-threatening disorder characterized by progressive death of retinal ganglion cells (RGCs), although little is known about therapeutic milestones. Due to its complex and multifactorial pathogenesis, multipronged therapeutic approach is needed. Angiogenin (ANG), now called ribonuclease (RNase) 5, has been previously known as angiogenic factor and more recently its biologic activity is extended to promoting cell survival via its ribonucleolytic activity. Here, we revealed the defect of ANG in human glaucomatous trabecular meshwork (TM) cells and identified novel multiple functions of ANG as an anti-glaucomatous strategy. ANG was highly expressed in normal eyes and normal TM cells compared to glaucomatous TM cells. ANG induced intraocular pressure (IOP) lowering in rat models of both normal and elevated IOP, and as a possible mechanism, activated Akt-mediated signals for nitric oxide (NO) production, an important regulator of IOP in glaucomatous TM cell. Moreover, we demonstrated ANG-induced production of matrix metalloproteinase (MMP)-1 and -3 and rho-kinase inhibition for TM remodeling. For anti-glaucomatous defense optimization, ANG not only elicited immune-modulative pathways via indolamine 2,3-dioxygenase (IDO) activation in TM cells and suppression of Jurkat T cells, but also rescued neural stem cells (NSCs) from apoptosis induced by glaucomatous stress. These results demonstrate that novel multi-functional effects of ANG may have benefits against glaucoma in ocular tissues.
Collapse
Affiliation(s)
- Kyoung Woo Kim
- Department of Ophthalmology, College of Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea; Graduate School of Chung-Ang University, College of Medicine, Seoul, Republic of Korea
| | - Soo Hyun Park
- Department of Ophthalmology, College of Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Doo Hwan Oh
- Department of Ophthalmology, College of Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Seung Hoon Lee
- Department of Ophthalmology, College of Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Kyung Sub Lim
- Department of Ophthalmology, College of Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Kwangsic Joo
- Department of Ophthalmology, College of Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yeoun Sook Chun
- Department of Ophthalmology, College of Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Soo-Ik Chang
- Department of Biochemistry, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyong-Mi Min
- Department of Biochemistry, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jae Chan Kim
- Department of Ophthalmology, College of Medicine, Chung-Ang University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
41
|
Correnti JM, Cook D, Aksamitiene E, Swarup A, Ogunnaike B, Vadigepalli R, Hoek JB. Adiponectin fine-tuning of liver regeneration dynamics revealed through cellular network modelling. J Physiol 2015; 593:365-83. [PMID: 25630259 DOI: 10.1113/jphysiol.2014.284109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/01/2014] [Indexed: 12/21/2022] Open
Abstract
Following partial hepatectomy, the liver initiates a regenerative programme involving hepatocyte priming and replication driven by the coordinated actions of cytokine and growth factors. We investigated the mechanisms underlying adiponectin's (Adn) regulation of liver regeneration through modulation of these mediators. Adn(-/-) mice showed delayed onset of hepatocyte replication, but accelerated cell cycle progression relative to wild-type mice, suggesting Adn has multiple effects fine-tuning the kinetics of liver regeneration. We developed a computational model describing the molecular and physiological kinetics of liver regeneration in Adn(-/-) mice. We employed this computational model to evaluate the underlying regulatory mechanisms. Our analysis predicted that Adn is required for an efficient early cytokine response to partial hepatectomy, but is inhibitory to later growth factor actions. Consistent with this prediction, Adn knockout reduced hepatocyte responses to interleukin-6 during the priming phase, but enhanced growth factor levels through peak hepatocyte replication. By contrast, supraphysiological concentrations of Adn resulting from rosiglitazone treatment suppressed regeneration by reducing growth factor levels during S phase, consistent with computational predictions. Together, these results revealed that Adn fine-tunes the progression of liver regeneration through dynamically modulating molecular mediator networks and cellular interactions within the liver.
Collapse
Affiliation(s)
- Jason M Correnti
- MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | | | | | | | | | | | | |
Collapse
|