1
|
Paulson OB, Schousboe A, Hultborn H. The history of Danish neuroscience. Eur J Neurosci 2023; 58:2893-2960. [PMID: 37477973 DOI: 10.1111/ejn.16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/04/2023] [Accepted: 05/29/2023] [Indexed: 07/22/2023]
Abstract
The history of Danish neuroscience starts with an account of impressive contributions made at the 17th century. Thomas Bartholin was the first Danish neuroscientist, and his disciple Nicolaus Steno became internationally one of the most prominent neuroscientists in this period. From the start, Danish neuroscience was linked to clinical disciplines. This continued in the 19th and first half of the 20th centuries with new initiatives linking basic neuroscience to clinical neurology and psychiatry in the same scientific environment. Subsequently, from the middle of the 20th century, basic neuroscience was developing rapidly within the preclinical university sector. Clinical neuroscience continued and was even reinforced during this period with important translational research and a close co-operation between basic and clinical neuroscience. To distinguish 'history' from 'present time' is not easy, as many historical events continue in present time. Therefore, we decided to consider 'History' as new major scientific developments in Denmark, which were launched before the end of the 20th century. With this aim, scientists mentioned will have been born, with a few exceptions, no later than the early 1960s. However, we often refer to more recent publications in documenting the developments of initiatives launched before the end of the last century. In addition, several scientists have moved to Denmark after the beginning of the present century, and they certainly are contributing to the present status of Danish neuroscience-but, again, this is not the History of Danish neuroscience.
Collapse
Affiliation(s)
- Olaf B Paulson
- Neurobiology Research Unit, Department of Neurology, Rigshospitalet, 9 Blegdamsvej, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Hultborn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Dekens MPS, Fontinha BM, Gallach M, Pflügler S, Tessmar‐Raible K. Melanopsin elevates locomotor activity during the wake state of the diurnal zebrafish. EMBO Rep 2022; 23:e51528. [PMID: 35233929 PMCID: PMC9066073 DOI: 10.15252/embr.202051528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 11/28/2022] Open
Abstract
Mammalian and fish pineals play a key role in adapting behaviour to the ambient light conditions through the release of melatonin. In mice, light inhibits nocturnal locomotor activity via the non‐visual photoreceptor Melanopsin. In contrast to the extensively studied function of Melanopsin in the indirect regulation of the rodent pineal, its role in the intrinsically photosensitive zebrafish pineal has not been elucidated. Therefore, it is not evident if the light signalling mechanism is conserved between distant vertebrates, and how Melanopsin could affect diurnal behaviour. A double knockout of melanopsins (opn4.1‐opn4xb) was generated in the diurnal zebrafish, which manifests attenuated locomotor activity during the wake state. Transcriptome sequencing gave insight into pathways downstream of Melanopsin, implying that sustained repression of the melatonin pathway is required to elevate locomotor activity during the diurnal wake state. Moreover, we show that light induces locomotor activity during the diurnal wake state in an intensity‐dependent manner. These observations suggest a common Melanopsin‐driven mechanism between zebrafish and mammals, while the diurnal and nocturnal chronotypes are inversely regulated downstream of melatonin.
Collapse
Affiliation(s)
- Marcus P S Dekens
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
| | - Bruno M Fontinha
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
| | - Miguel Gallach
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
- Max Perutz Laboratory Centre for Integrative Bioinformatics University of Vienna and Medical University of Vienna Vienna Austria
| | - Sandra Pflügler
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
| | - Kristin Tessmar‐Raible
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
- Research Platform “Marine Rhythms of Life” University of Vienna Vienna Austria
| |
Collapse
|
3
|
Wang Z, Teng Z, Wang Z, Song Z, Zhu P, Li N, Zhang Y, Liu X, Liu F. Melatonin ameliorates paclitaxel-induced mice spermatogenesis and fertility defects. J Cell Mol Med 2022; 26:1219-1228. [PMID: 35001532 PMCID: PMC8831955 DOI: 10.1111/jcmm.17177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/10/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Chemotherapeutic drug of paclitaxel (PTX) has been shown to cause reproductive toxicity thus affecting male fertility, but its underlying molecular basis is unclear. Melatonin (MLT) can mitigate the reproductive damage caused by certain chemotherapy drugs. In this study, we aimed to identify impact of PTX on the main biological processes and protective effect of MLT on reproductive damage caused by PTX. Mice exposed to PTX mainly impaired spermatogenesis, such as decreased sperm counts, reduced sperm motility and increased abnormal sperm. Decreased expressions of germ cell proliferation‐associated protein PCNA and meiosis‐related protein SYCP3 induced by PTX were determined by Western blot, while MLT ameliorated this effect and increased the expressions of PCNA, SYCP3, DMC1, STRA8 and fertility‐related protein of HSPA2, resulting in significantly improved spermatogenesis and sperm quality levels. In vitro fertilization experiment showed that PTX significantly decreased blastocyst formation rates, which can be improved by MLT administration, but not two‐cell development rates. Taken together, this work demonstrated PTX can adversely affect germ cell proliferation and meiosis, which ultimately influence sperm quality and male fertility, and highlighted the protective ability of MLT on ameliorating the side effects of PTX, especially on sperm quality. The results provide information to further the study on the molecular mechanism of PTX's effects on male reproduction and the protective mechanism of MLT.
Collapse
Affiliation(s)
- ZhiXin Wang
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Zi Teng
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - ZeLin Wang
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Zhan Song
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Peng Zhu
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Ning Li
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - YuSheng Zhang
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - XueXia Liu
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - FuJun Liu
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
4
|
Gorokhova SG, Atkov OY, Gorbachev AY, Generozov EV, Alchinova IB, Polyakova MV, Karganov MY. [Change of transcription level of photoreceptor-specific CRX gene in the peripheral blood of the participants of an arctic world oceanic international flight]. Vestn Oftalmol 2021; 137:5-11. [PMID: 33881257 DOI: 10.17116/oftalma20211370215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The CRX gene encoding the cone-rod homeobox protein is a specific photoreceptor transcription factor crucial for retinal function. Persons temporarily residing in the Arctic zone during the polar summer may suffer from disturbances associated with extremely high ambient illumination. These environmental changes are mediated by retinal photoreceptors; therefore, it is important to study the expression of retinal genes in order to assess individual capacities of sensory adaptation to polar day conditions. PURPOSE To reveal the dynamics of CRX expression level in humans after a prolonged temporary exposure to polar day conditions. MATERIAL AND METHODS The study included 6 pilots (males from 39 to 69 y.o.) who participated in the Arctic World Oceanic International Flight Sever Vash (West to East, from 62°N 74°E to 72°N 114°E). Samples of peripheral blood for RNA isolation were collected at the start and at the end of the flight. The level of mRNA in the samples was evaluated based on the data of quantitative real-time PCR of the CRX gene, as well as the b2M and TBP housekeeping genes (reference). RESULTS Expression of the CRX gene in the studied group (p<0.01) was revealed; the total average level of mRNA was about 3 times higher prior to, and approximately 7 times higher after normalization to the b2M gene. Five pilots had increased expression of the CRX gene within the range of -1.53 to -3.07 (Z-score of <0 before the flight and >0 after the flight). In one pilot, the level of CRX expression was higher at the start, but it reduced by the end of the circumnavigation flight. CONCLUSIONS The results confirm the hypothesis that the CRX gene is expressed after a prolonged temporary exposure to polar day conditions. It was also revealed that during rapid adaptation, equal changes in the illumination of retinal photoreceptors lead to different individual dynamics of CRX expression.
Collapse
Affiliation(s)
- S G Gorokhova
- Russian Medical Academy of Postgraduate Education, Moscow, Russia
| | - O Yu Atkov
- Russian Medical Academy of Postgraduate Education, Moscow, Russia
| | | | - E V Generozov
- Federal Research and Clinical Center of Physical and Chemical Medicine, Moscow, Russia
| | - I B Alchinova
- Institute of General Pathology and Pathophysiology, Moscow, Russia.,Research Institute of Space Medicine, Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Moscow, Russia
| | - M V Polyakova
- Institute of General Pathology and Pathophysiology, Moscow, Russia.,Research Institute of Space Medicine, Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Moscow, Russia
| | - M Yu Karganov
- Institute of General Pathology and Pathophysiology, Moscow, Russia.,Research Institute of Space Medicine, Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Moscow, Russia
| |
Collapse
|
5
|
Reiter RJ, Rosales-Corral S, Sharma R. Circadian disruption, melatonin rhythm perturbations and their contributions to chaotic physiology. Adv Med Sci 2020; 65:394-402. [PMID: 32763813 DOI: 10.1016/j.advms.2020.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/15/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
The aim of this report is to summarize the data documenting the vital nature of well-regulated cellular and organismal circadian rhythms, which are also reflected in a stable melatonin cycle, in supporting optimal health. Cellular fluctuations in physiology exist in most cells of multicellular organisms with their stability relying on the prevailing light:dark cycle, since it regulates, via specialized intrinsically-photoreceptive retinal ganglion cells (ipRGC) and the retinohypothalamic tract, the master circadian oscillator, i.e., the suprachiasmatic nuclei (SCN). The output message of the SCN, as determined by the light:dark cycle, is transferred to peripheral oscillators, so-called slave cellular oscillators, directly via the autonomic nervous system with its limited distribution. and indirectly via the pineal-derived circulating melatonin rhythm, which contacts every cell. Via its regulatory effects on the neuroendocrine system, particularly the hypothalamo-pituitary-adrenal axis, the SCN also has a major influence on the adrenal glucocorticoid rhythm which impacts neurological diseases and psychological behaviors. Moreover, the SCN regulates the circadian production and secretion of melatonin. When the central circadian oscillator is disturbed, such as by light at night, it passes misinformation to all organs in the body. When this occurs the physiology of cells becomes altered and normal cellular functions are compromised. This physiological upheaval is a precursor to pathologies. The deterioration of the SCN/pineal network is often a normal consequence of aging and its related diseases, but in today's societies where manufactured light is becoming progressively more common worldwide, the associated pathologies may also be occurring at an earlier age.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX, USA.
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX, USA
| |
Collapse
|
6
|
Hysi PG, Choquet H, Khawaja AP, Wojciechowski R, Tedja MS, Yin J, Simcoe MJ, Patasova K, Mahroo OA, Thai KK, Cumberland PM, Melles RB, Verhoeven VJM, Vitart V, Segre A, Stone RA, Wareham N, Hewitt AW, Mackey DA, Klaver CCW, MacGregor S, Consortium for Refractive Error and Myopia, Khaw PT, Foster PJ, UK Eye and Vision Consortium, Guggenheim JA, 23andMe Inc., Rahi JS, Jorgenson E, Hammond CJ. Meta-analysis of 542,934 subjects of European ancestry identifies new genes and mechanisms predisposing to refractive error and myopia. Nat Genet 2020; 52:401-407. [PMID: 32231278 PMCID: PMC7145443 DOI: 10.1038/s41588-020-0599-0] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 02/24/2020] [Indexed: 01/10/2023]
Abstract
Refractive errors, in particular myopia, are a leading cause of morbidity and disability worldwide. Genetic investigation can improve understanding of the molecular mechanisms that underlie abnormal eye development and impaired vision. We conducted a meta-analysis of genome-wide association studies (GWAS) that involved 542,934 European participants and identified 336 novel genetic loci associated with refractive error. Collectively, all associated genetic variants explain 18.4% of heritability and improve the accuracy of myopia prediction (area under the curve (AUC) = 0.75). Our results suggest that refractive error is genetically heterogeneous, driven by genes that participate in the development of every anatomical component of the eye. In addition, our analyses suggest that genetic factors controlling circadian rhythm and pigmentation are also involved in the development of myopia and refractive error. These results may enable the prediction of refractive error and the development of personalized myopia prevention strategies in the future.
Collapse
Affiliation(s)
- Pirro G Hysi
- Section of Ophthalmology, School of Life Course Sciences, King's College London, London, UK.
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Robert Wojciechowski
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Milly S Tedja
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jie Yin
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Mark J Simcoe
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Karina Patasova
- Section of Ophthalmology, School of Life Course Sciences, King's College London, London, UK
| | - Omar A Mahroo
- Section of Ophthalmology, School of Life Course Sciences, King's College London, London, UK
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Khanh K Thai
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Phillippa M Cumberland
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Ulverscroft Vision Research Group, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Ronald B Melles
- Department of Ophthalmology Kaiser Permanente Northern California, Redwood City, CA, USA
| | - Virginie J M Verhoeven
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Veronique Vitart
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Ayellet Segre
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear, Boston, MA, USA
| | - Richard A Stone
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nick Wareham
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Alex W Hewitt
- Department of Ophthalmology, Royal Hobart Hospital, Hobart, Tasmania, Australia
| | - David A Mackey
- Department of Ophthalmology, Royal Hobart Hospital, Hobart, Tasmania, Australia
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, Perth, Western Australia, Australia
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Rotterdam, the Netherlands
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Peng T Khaw
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Paul J Foster
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
- Division of Genetics and Epidemiology, UCL Institute of Ophthalmology, London, UK
| | | | | | | | - Jugnoo S Rahi
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
- Ulverscroft Vision Research Group, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Ophthalmology and NIHR, Biomedical Research Centre, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Christopher J Hammond
- Section of Ophthalmology, School of Life Course Sciences, King's College London, London, UK
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| |
Collapse
|
7
|
Xie Z, Wang J, Wang W, Wang Y, Xu J, Li Z, Zhao X, Fu B. Integrated Analysis of the Transcriptome and Metabolome Revealed the Molecular Mechanisms Underlying the Enhanced Salt Tolerance of Rice Due to the Application of Exogenous Melatonin. FRONTIERS IN PLANT SCIENCE 2020; 11:618680. [PMID: 33519878 PMCID: PMC7840565 DOI: 10.3389/fpls.2020.618680] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/22/2020] [Indexed: 05/13/2023]
Abstract
High salinity is one of the major abiotic stresses limiting rice production. Melatonin has been implicated in the salt tolerance of rice. However, the molecular basis of melatonin-mediated salt tolerance in rice remains unclear. In the present study, we performed an integrated transcriptome and metabolome profiling of rice seedlings treated with salt, melatonin, or salt + melatonin. The application of exogenous melatonin increased the salt tolerance of rice plants by decreasing the sodium content to maintain Na+/K+ homeostasis, alleviating membrane lipid oxidation, and enhancing chlorophyll contention. A comparative transcriptome analysis revealed that complex molecular pathways contribute to melatonin-mediated salt tolerance. More specifically, the AP2/EREBP-HB-WRKY transcriptional cascade and phytohormone (e.g., auxin and abscisic acid) signaling pathways were activated by an exogenous melatonin treatment. On the basis of metabolome profiles, 64 metabolites, such as amino acids, organic acids, nucleotides, and secondary metabolites, were identified with increased abundances only in plants treated with salt + melatonin. Several of these metabolites including endogenous melatonin and its intermediates (5-hydroxy-L-tryptophan, N 1-acetyl-N 2-formyl-5-methoxykynuramine), gallic acid, diosmetin, and cyanidin 3-O-galactoside had antioxidant functions, suggesting melatonin activates multiple antioxidant pathways to alleviate the detrimental effects of salt stress. Combined transcriptome and metabolome analyses revealed a few gene-metabolite networks related to various pathways, including linoleic acid metabolism and amino acid metabolism that are important for melatonin-mediated salt tolerance. The data presented herein may be useful for further elucidating the multiple regulatory roles of melatonin in plant responses to abiotic stresses.
Collapse
Affiliation(s)
- Ziyan Xie
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Juan Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wensheng Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yanru Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianlong Xu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhikang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xiuqin Zhao
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Xiuqin Zhao,
| | - Binying Fu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- Binying Fu,
| |
Collapse
|
8
|
Weizman EN, Tannenbaum M, Tarrant AM, Hakim O, Levy O. Chromatin dynamics enable transcriptional rhythms in the cnidarian Nematostella vectensis. PLoS Genet 2019; 15:e1008397. [PMID: 31693674 PMCID: PMC6834241 DOI: 10.1371/journal.pgen.1008397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 09/02/2019] [Indexed: 12/16/2022] Open
Abstract
In animals, circadian rhythms are driven by oscillations in transcription, translation, and proteasomal degradation of highly conserved genes, resulting in diel cycles in the expression of numerous clock-regulated genes. Transcription is largely regulated through the binding of transcription factors to cis-regulatory elements within accessible regions of the chromatin. Chromatin remodeling is linked to circadian regulation in mammals, but it is unknown whether cycles in chromatin accessibility are a general feature of clock-regulated genes throughout evolution. To assess this, we applied an ATAC-seq approach using Nematostella vectensis, grown under two separate light regimes (light:dark (LD) and constant darkness (DD)). Based on previously identified N. vectensis circadian genes, our results show the coupling of chromatin accessibility and circadian transcription rhythmicity under LD conditions. Out of 180 known circadian genes, we were able to list 139 gene promoters that were highly accessible compared to common promoters. Furthermore, under LD conditions, we identified 259 active enhancers as opposed to 333 active enhancers under DD conditions, with 171 enhancers shared between the two treatments. The development of a highly reproducible ATAC-seq protocol integrated with published RNA-seq and ChIP-seq databases revealed the enrichment of transcription factor binding sites (such as C/EBP, homeobox, and MYB), which have not been previously associated with circadian signaling in cnidarians. These results provide new insight into the regulation of cnidarian circadian machinery. Broadly speaking, this supports the notion that the association between chromatin remodeling and circadian regulation arose early in animal evolution as reflected in this non-bilaterian lineage.
Collapse
Affiliation(s)
- Eviatar N. Weizman
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- * E-mail: (ENW); (OL)
| | - Miriam Tannenbaum
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Ann M. Tarrant
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Ofir Hakim
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Oren Levy
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- * E-mail: (ENW); (OL)
| |
Collapse
|
9
|
Saha S, Singh KM, Gupta BBP. Melatonin synthesis and clock gene regulation in the pineal organ of teleost fish compared to mammals: Similarities and differences. Gen Comp Endocrinol 2019; 279:27-34. [PMID: 30026020 DOI: 10.1016/j.ygcen.2018.07.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/12/2018] [Accepted: 07/15/2018] [Indexed: 02/07/2023]
Abstract
The pineal organ of all vertebrates synthesizes and secretes melatonin in a rhythmic manner due to the circadian rhythm in the activity of arylalkylamine N-acetyltransferase (AANAT) - the rate-limiting enzyme in melatonin synthesis pathway. Nighttime increase in AANAT activity and melatonin synthesis depends on increased expression of aanat gene (a clock-controlled gene) and/or post-translation modification of AANAT protein. In mammalian and avian species, only one aanat gene is expressed. However, three aanat genes (aanat1a, aanat1b, and aanat2) are reported in fish species. While aanat1a and aanat1b genes are expressed in the fish retina, the nervous system and other peripheral tissues, aanat2 gene is expressed exclusively in the fish pineal organ. Clock genes form molecular components of the clockwork, which regulates clock-controlled genes like aanat gene. All core clock genes (i.e., clock, bmal1, per1, per2, per3, cry1 and cry2) and aanat2 gene (a clock-controlled gene) are expressed in the pineal organ of several fish species. There is a large body of information on regulation of clock genes, aanat gene and melatonin synthesis in the mammalian pineal gland. However, the information available on clock genes, aanat genes and melatonin synthesis in photoreceptive pineal organ of teleosts is fragmentary and not well documented. Therefore, we have reviewed published information on rhythmic expression of clock genes, aanat genes as well as synthesis of melatonin, and their regulation by photoperiod and temperature in teleostean pineal organ as compared to mammalian pineal gland. A critical analysis of the literature suggests that in contrast to the mammalian pineal gland, the pineal organ of teleosts (except salmonids) possesses a well developed indigenous clock composed of clock genes for regulation of rhythmic expression of aanat2 gene and melatonin synthesis. Further, the fish pineal organ also possesses essential molecular components for responding to light and temperature directly. The fish pineal organ seems to act as a potential master biological clock in most of the teleosts.
Collapse
Affiliation(s)
- Saurav Saha
- Environmental Endocrinology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | - Kshetrimayum Manisana Singh
- Environmental Endocrinology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | - Braj Bansh Prasad Gupta
- Environmental Endocrinology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
10
|
Qiu J, Zhang J, Zhou Y, Li X, Li H, Liu J, Gou K, Zhao J, Cui S. MicroRNA-7 inhibits melatonin synthesis by acting as a linking molecule between leptin and norepinephrine signaling pathways in pig pineal gland. J Pineal Res 2019; 66:e12552. [PMID: 30618087 DOI: 10.1111/jpi.12552] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/16/2018] [Accepted: 12/28/2018] [Indexed: 12/21/2022]
Abstract
MicroRNAs, including microRNA-7 (miR-7), are important modulators of numerous gene expressions and the related biological processes. Melatonin is a key hormone regulating daily and seasonal rhythms, in which a variety of positive and negative regulatory factors, such as norepinephrine (NE) and leptin, are involved. However, the interactions among these factors and the mechanisms remain to be elucidated. The aims of the present study were to identify the functions and the related mechanisms of miR-7 in regulating melatonin synthesis and secretion through in vitro and in vivo experiments in pineal gland of pigs, which is an important animal model for agricultural and biomedical studies. Our results firstly show that miR-7 is specifically expressed in porcine pinealocytes and negatively regulates melatonin synthesis. The further functional studies show that the dynamic expression levels of miR-7 are contrary to the melatonin levels throughout the day, and the forced inhibition of endogenous miR-7 in porcine pinealocytes sharply increases arylalkylamine N-acetyltransferase (AANAT) expression by 80.0% (P = 0.0031) and melatonin levels by 81.0% (P = 0.0421), whereas miR-7 over-expression down-regulates AANAT expression by 38.6% (P = 0.0004) and melatonin levels by 37.6% (P = 0.0212). In addition, the miR-7 expression is up-regulated by leptin through the JAK/STAT3 signaling pathway, and the in vivo intracerebroventricular injection of leptin increases miR-7 expression by 80.0% (P = 0.0044) in porcine pineal glands and reduces melatonin levels by 57.1% (P = 0.0060) compared with the controls. This functional inhibition of melatonin synthesis by miR-7 is accomplished by its binding to the 3'-UTR of Raf1. Further, our results demonstrate that the RAF1/MEK/ERK signaling pathway mediates NE-induced AANAT expression, whereas leptin attenuates NE's function through miR-7. Taken together, the results demonstrated that leptin activates the JAK/STAT3 signaling pathway to increase the expression of miR-7, which acts as a negative regulatory molecule inhibiting NE-activated RAF1/MEK/ERK signaling pathway by targeting Raf1, resulting in decreased AANAT expression and melatonin synthesis. These findings suggest that miR-7 is a novel negative regulator of melatonin synthesis and links leptin- and NE-mediated signaling pathways in porcine pineal glands, which will contribute to our understanding in the establishment of the biological rhythms resulting from melatonin.
Collapse
Affiliation(s)
- Jingtao Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jinglin Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yewen Zhou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xin Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hongjiao Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiali Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Kemian Gou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Rohde K, Bering T, Furukawa T, Rath MF. A modulatory role of the Rax
homeobox gene in mature pineal gland function: Investigating the photoneuroendocrine circadian system of a Rax
conditional knockout mouse. J Neurochem 2017; 143:100-111. [DOI: 10.1111/jnc.14120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/09/2017] [Accepted: 06/25/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Kristian Rohde
- Department of Neuroscience; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Tenna Bering
- Department of Neuroscience; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
- Laboratory of Neuropsychiatry; Psychiatric Center Copenhagen; Mental Health Services of the Capital Region of Denmark; Copenhagen Denmark
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology; Institute for Protein Research; Osaka University; Suita Osaka Japan
| | - Martin Fredensborg Rath
- Department of Neuroscience; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
12
|
Subala SPRR, Shivakumar MS. Changes in light and dark periods affect the arylalkylamine N-acetyl transferase, melatonin activities and redox status in the head and hemolymph of nocturnal insectSpodoptera litura. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1325564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Tsao DD, Wang SG, Lynn BD, Nagy JI. Immunofluorescence reveals unusual patterns of labelling for connexin43 localized to calbindin-D28K-positive interstitial cells in the pineal gland. Eur J Neurosci 2017; 45:1553-1569. [PMID: 28394432 DOI: 10.1111/ejn.13578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 01/01/2023]
Abstract
Gap junctions between cells in the pineal gland have been described ultrastructurally, but their connexin constituents have not been fully characterized. We used immunofluorescence in combination with markers of pineal cells to document the cellular localization of connexin43 (Cx43). Immunofluorescence labelling of Cx43 with several different antibodies was widely distributed throughout the pineal, whereas another connexin examined, connexin26, was not found in pineal but only in surrounding leptomeninges. Labelling apparently associated with plasma membranes was visualized either as fine Cx43-puncta (1-2 μm) or as unusually large pools of Cx43 ranging up to 4-7 μm in diameter or length. These puncta and pools were highly concentrated in perivascular spaces, where they were associated with numerous cells devoid of labelling for markers of pinealocytes (e.g. tryptophan hydroxylase and serotonin), and where they were minimally associated with blood vessels and lacked association with resident macrophages. Astrocytes labelled for glial fibrillary acidic protein were largely restricted to the anterior pole of the pineal gland, where they displayed only fine and sparse Cx43-puncta along their processes. Labelling for Cx43 was localized largely though not exclusively to the somata and long processes of a subpopulation of perivascular interstitial cells that were immunopositive for calbindin-D28K. These cells were often located among dense bundles or termination areas of sympathetic fibres labelled for tyrosine hydroxylase or serotonin. The results indicate that interstitial cells form abundant gap junctions composed of Cx43, and suggest that gap junction-mediated intracellular communication by these cells supports the activities of pinealocytes.
Collapse
Affiliation(s)
- D D Tsao
- Department of Physiology and Pathophysiology, Faculty of Medicine, University of Manitoba, 745 Bannatyne Ave, Winnipeg, MB, R3E 0J9, Canada
| | - S G Wang
- Department of Physiology and Pathophysiology, Faculty of Medicine, University of Manitoba, 745 Bannatyne Ave, Winnipeg, MB, R3E 0J9, Canada
| | - B D Lynn
- Department of Physiology and Pathophysiology, Faculty of Medicine, University of Manitoba, 745 Bannatyne Ave, Winnipeg, MB, R3E 0J9, Canada
| | - J I Nagy
- Department of Physiology and Pathophysiology, Faculty of Medicine, University of Manitoba, 745 Bannatyne Ave, Winnipeg, MB, R3E 0J9, Canada
| |
Collapse
|