1
|
Mittal P, Singla M, Smriti, Kapoor R, Kumar D, Gupta S, Gupta G, Bhattacharya T. Paclitaxel loaded Capmul MCM and tristearin based nanostructured lipid carriers (NLCs) for glioblastoma treatment: screening of formulation components by quality by design (QbD) approach. DISCOVER NANO 2024; 19:175. [PMID: 39500785 PMCID: PMC11538113 DOI: 10.1186/s11671-024-04132-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Paclitaxel (PTX), a naturally occurring diterpenoid isolated from Taxus brevifolia, is a first-line drug for the treatment of glioblastoma; however, it suffers from the disadvantages of poor water solubility and nonspecific biodistribution, which cause serious side effects in the human body. The marketed formulation suffers from serious side effects, such as allergic reactions, neutropenia, and neuropathy, which require safe and effective formulations of PTX. In the present study, PTX was entrapped in a solid-liquid lipid mixture with the aid of a surfactant using a modified solvent evaporation technique. Higher entrapment of the impressive stability of the formulation was achieved by employing quality design-based strategies. Optimized levels by employing a numerical optimization technique for each factor, that is, surfactant concentration (X1), lipid concentration (X2), and amount of organic solvent (X3) were 0.3%, 0.76% & 8.3 ml respectively. The resultant formulation exhibited a particle size of 121.44 nm, entrapment efficiency of 94.27%, and zeta potential of -20.21 mV with unimodal size distribution. A reduction in the % crystalline index from 48 to 3.4% ensured the amorphous form of the entrapped drug inside the formulation, which precludes the fear of leakage and instability of the formulation. Cell line studies conducted on U87MG Cell lines also suggested that the NLC of paclitaxel are more effective than those of pure PTX. In summary, PTXNLC seem to be a superior alternative carrier system for the formulation industry to obtain higher entrapment with excellent stability.
Collapse
Affiliation(s)
- Pooja Mittal
- GITAM School of Pharmacy, GITAM (Deemed to Be) University, Rudraram, Patancheru, Hyderabad, India
| | - Madhav Singla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Smriti
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | | | - Dileep Kumar
- Department of Pharm. Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Saurabh Gupta
- Department of Pharmacology, Chameli Devi Institute of Pharmacy, Near Toll Booth, Khandwa Road, Village Umrikheda, Indore, Madhya Pradesh, 452020, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, UAE
| | - Tanima Bhattacharya
- Faculty of Applied Science, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
2
|
Gautam AK, Kumar P, Kumar V, Singh A, Mahata T, Maity B, Yadav S, Kumar D, Singh S, Saha S, Vijayakumar MR. Preclinical evaluation of dalbergin loaded PLGA-galactose-modified nanoparticles against hepatocellular carcinoma via inhibition of the AKT/NF-κB signaling pathway. Int Immunopharmacol 2024; 140:112813. [PMID: 39088916 DOI: 10.1016/j.intimp.2024.112813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 08/03/2024]
Abstract
Prior research has shown the effectiveness of dalbergin (DL), dalbergin nanoformulation (DLF), and dalbergin-loaded PLGA-galactose-modified nanoparticles (DLMF) in treating hepatocellular carcinoma (HCC) cells. The present investigation constructs upon our previous research and delves into the molecular mechanisms contributing to the anticancer effects of DLF and DLMF. This study examined the anti-cancer effects of DL, DLF, and DLMF by diethyl nitrosamine (DEN)-induced HCC model in albino Wistar rats. In addition, we performed biochemical, antioxidant, lipid profile tests, and histological studies of liver tissue. The anticancer efficacy of DLMF is equivalent to that of 5-fluorouracil, a commercially available therapy for HCC. Immunoblotting studies revealed a reduction in the expression of many apoptotic markers, such as p53, BAX, and Cyt-C, in HCC. Conversely, the expression of Bcl-2, TNF-α, NFκB, p-AKT, and STAT-3 was elevated. Nevertheless, the administration of DL, DLF, and DLMF effectively controlled the levels of these apoptotic markers, resulting in a considerable decrease in the expression of Bcl-2, TNF-α, NFκB, p-AKT, and STAT-3. Specifically, the activation of TNF-alpha and STAT-3 triggers the signalling pathways that include the Bcl-2 family of proteins, Cyt-C, caspase 3, and 9. This ultimately leads to apoptosis and the suppression of cell growth. Furthermore, metabolomic analysis using 1H NMR indicated that the metabolites of animals reverted to normal levels after the treatment.
Collapse
Affiliation(s)
- Anurag Kumar Gautam
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rai Bareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Pranesh Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rai Bareli Road, Lucknow 226025, Uttar Pradesh, India; Department of Pharmacology, Institute of Pharmaceutical Sciences, University of Lucknow, Lucknow 226031, Uttar Pradesh, India
| | - Vipin Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rai Bareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Amita Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rai Bareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Tarun Mahata
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Biswanath Maity
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Sachin Yadav
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Sanjay Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rai Bareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rai Bareli Road, Lucknow 226025, Uttar Pradesh, India
| | - M R Vijayakumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rai Bareli Road, Lucknow 226025, Uttar Pradesh, India.
| |
Collapse
|
3
|
Le LT, Nguyen HT, Bui HTT, Tran HQ, Nguyen TTT. Drug release system based on a composite polycaprolactone nanofiber membrane with dual functionality of shape memory effect and antibacterial ability. RSC Adv 2024; 14:26884-26895. [PMID: 39193296 PMCID: PMC11347979 DOI: 10.1039/d4ra05618c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
In this study, a multifunctional composite membrane based on polycaprolactone nanofibers having controlled drug release, shape memory effect, and antibacterial ability was successfully prepared by the electrospinning technique. The addition of graphene oxide (GO), zinc oxide nanoparticles (ZnO NPs), polyethylene glycol (PEG), and berberine (BBR) strongly affected the morphology, crystalline degree, melting temperature, and shape memory performance of the composite membrane, thanks to the physical crosslinking network formed by the hydrogen bonding or van der Waals interactions between the components. As a result, the recovery ratio of the composite membrane reached a higher value (76.3% ± 0.7%) than that of the PCL fiber membrane (22.8% ± 0.7%). The additional components significantly improved the wettability of the composite membrane, leading to a high amount of BBR released (42.7 wt%) during 40 hours, as well as effective antibacterial ability. Besides, the BBR release can be feasibly controlled by modulating the deformation ratio of the composite membrane, whereby the higher deformation ratio resulted in a higher BBR release. Therefore, it is suggested that the prepared composite nanofiber membrane is a potential smart material used in biomedical applications, such as wound dressing and drug release systems.
Collapse
Affiliation(s)
- Le Thi Le
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam +84924926886
| | - Hue Thi Nguyen
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam +84924926886
| | - Ha Thi Thu Bui
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam +84924926886
| | - Huy Quang Tran
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam +84924926886
- Faculty of Biomedical Sciences, Phenikaa University Hanoi 12116 Vietnam
| | - Thuy Thi Thu Nguyen
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam +84924926886
| |
Collapse
|
4
|
Metwally AA, Ganguly S, Biomi N, Yao M, Elbayoumi T. Cationic Vitamin E-TPGS Mixed Micelles of Berberine to Neutralize Doxorubicin-Induced Cardiotoxicity via Amelioration of Mitochondrial Dysfunction and Impeding Apoptosis. Molecules 2024; 29:1155. [PMID: 38474668 DOI: 10.3390/molecules29051155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Anthracycline antibiotics, namely, doxorubicin (DOX) and daunorubicin, are among the most widely used anticancer therapies, yet are notoriously associated with severe myocardial damage due to oxidative stress and mitochondrial damage. Studies have indicated the strong pharmacological properties of Berberine (Brb) alkaloid, predominantly mediated via mitochondrial functions and nuclear networks. Despite the recent emphasis on Brb in clinical cardioprotective studies, pharmaceutical limitations hamper its clinical use. A nanoformulation for Brb was developed (mMic), incorporating a cationic lipid, oleylamine (OA), into the TPGS-mixed corona of PEGylated-phosphatidylethanolamine (PEG-PE) micelles. Cationic TPGS/PEG-PE mMic with superior Brb loading and stability markedly enhanced both intracellular and mitochondria-tropic Brb activities in cardiovascular muscle cells. Sub-lethal doses of Brb via cationic OA/TPGS mMic, as a DOX co-treatment, resulted in significant mitochondrial apoptosis suppression. In combination with an intense DOX challenge (up to ~50 µM), mitochondria-protective Brb-OA/TPGS mMic showed a significant 24 h recovery of cell viability (p ≤ 0.05-0.01). Mechanistically, the significant relative reduction in apoptotic caspase-9 and elevation of antiapoptotic Bcl-2 seem to mediate the cardioprotective role of Brb-OA/TPGS mMic against DOX. Our report aims to demonstrate the great potential of cationic OA/TPGS-mMic to selectively enhance the protective mitohormetic effect of Brb to mitigate DOX cardiotoxicity.
Collapse
Affiliation(s)
- Abdelkader A Metwally
- Department of Pharmaceutics, College of Pharmacy, Health Science Center (HSC), Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbasseya, Cairo 11566, Egypt
| | - Samayita Ganguly
- Parkinson's Disease Research Unit, Department of Neurobiology, Barrow Neurological Institute, Dignity Health/St. Joseph's Hospital and Medical Center, 350 W. Thomas Rd., Phoenix, AZ 85013, USA
| | - Nora Biomi
- Pharmacology and Toxicology Program, New College of Interdisciplinary Arts and Sciences, West Valley Campus, Arizona State University, N. 47th Ave & University Way, Glendale, AZ 85306, USA
| | - Mingyi Yao
- Department of Pharmaceutical Sciences, Glendale Campus (CPG), College of Pharmacy, Midwestern University, 218-Cholla Hall, 19555 N. 59th Ave., Glendale, AZ 85308, USA
- College of Graduate Studies, Midwestern University, Dr. Arthur G. Dobbelaere Science Hall 350D, 19555 N. 59th Ave., Glendale, AZ 85308, USA
| | - Tamer Elbayoumi
- Department of Pharmaceutical Sciences, Glendale Campus (CPG), College of Pharmacy, Midwestern University, 218-Cholla Hall, 19555 N. 59th Ave., Glendale, AZ 85308, USA
- College of Graduate Studies, Midwestern University, Dr. Arthur G. Dobbelaere Science Hall 350D, 19555 N. 59th Ave., Glendale, AZ 85308, USA
| |
Collapse
|
5
|
Gouda A, Sakr OS, Nasr M, Sammour OA. Developing a rapid analytical method for simultaneous determination of apigenin and gallic acid: validation and application in a nanoliposomal formulation. Drug Dev Ind Pharm 2024; 50:274-283. [PMID: 38374658 DOI: 10.1080/03639045.2024.2318386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/08/2024] [Indexed: 02/21/2024]
Abstract
OBJECTIVE Apigenin and gallic acid are natural compounds that are useful as antioxidant, anti-inflammatory and anticancer agents, especially when used together in combination. Therefore, the development and validation of a simultaneous method of analysis for both compounds in pure form and when encapsulated in an advanced delivery system such as liposomes would be useful. METHODS Analysis was performed using C18 column under isocratic conditions. The mobile phase was acetonitrile: water containing 0.2% orthophosphoric acid at a ratio of 67:33, flow rate 1 ml/min, and detection wavelength 334 nm for apigenin and 271 nm for gallic acid. RESULTS The assay method was linear at the concentration range (5-600 µg/mL) with R2 of 1 for both drugs. The method was also shown to be precise and robust with RSD less than 2% with LOD (0.12, 0.1 µg/mL) and LOQ (4.14, 3.58 µg/mL) for apigenin and gallic acid respectively. The method was also applicable for the determination of the entrapment efficiency of both drugs when co-loaded in a nanoliposomal formulation. CONCLUSION The described HPLC method was shown to be suitable, sensitive, and reproducible for the simultaneous identification and quantification of apigenin and gallic acid. The analytical results were accurate and precise, with good recovery, low limit of detection, and the chromatographic assay was accomplished in less than 3 min, suggesting the suitability of the method for routine analysis of both drugs in pharmaceutical formulations.
Collapse
Affiliation(s)
- Ahmed Gouda
- Pharmaceutical research department, Nawah Scientific, Cairo, Egypt
| | - Omar S Sakr
- Pharmaceutical research department, Nawah Scientific, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Ain Shams University, Cairo, Egypt
| | - Omaima A Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
6
|
Logigan CL, Delaite C, Popa M, Băcăiță ES, Tiron CE, Peptu C, Peptu CA. Poly(ethylene glycol) Methyl Ether Acrylate-Grafted Chitosan-Based Micro- and Nanoparticles as a Drug Delivery System for Antibiotics. Polymers (Basel) 2024; 16:144. [PMID: 38201809 PMCID: PMC10781092 DOI: 10.3390/polym16010144] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Nanotechnology is the science of creating materials at the nanoscale by using various devices, structures, and systems that are often inspired by nature. Micro- and nanoparticles (MPs, NPs) are examples of such materials that have unique properties and can be used as carriers for delivering drugs for different biomedical applications. Chitosan (CS) is a natural polysaccharide that has been widely studied, but it has a problem with low water solubility at neutral or basic pH, which limits its processability. The goal of this work was to use a chemically modified CS with poly(ethylene glycol) methyl ether acrylate (PEGA) to prepare CS micronic and submicronic particles (MPs/NPs) that can deliver different types of antibiotics, respectively, levofloxacin (LEV) and Ciprofloxacin (CIP). The particle preparation procedure employed a double crosslinking method, ionic followed by a covalent, in a water/oil emulsion. The studied process parameters were the precursor concentration, stirring speeds, and amount of ionic crosslinking agent. MPs/NPs were characterized by FT-IR, SEM, light scattering granulometry, and Zeta potential. MPs/NPs were also tested for their water uptake capacity in acidic and neutral pH conditions, and the results showed that they had a pH-dependent behavior. The MPs/NPs were then used to encapsulate two separate drugs, LEV and CIP, and they showed excellent drug loading and release capacity. The MPs/NPs were also found to be safe for cells and blood, which demonstrated their potential as suitable drug delivery systems for biomedical applications.
Collapse
Affiliation(s)
- Corina-Lenuța Logigan
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University of Iasi, Bld. Prof. Dr. Doc. Dimitrie Mangeron Street, No. 73, 700050 Iasi, Romania; (C.-L.L.); (M.P.)
| | - Christelle Delaite
- Laboratory of Photochemistry and Macromolecular Engineering, Institute J.B. Donnet, University of Haute Alsace, 68100 Mulhouse, France;
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University of Iasi, Bld. Prof. Dr. Doc. Dimitrie Mangeron Street, No. 73, 700050 Iasi, Romania; (C.-L.L.); (M.P.)
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, Pacurari Street, 11, Iasi 6600, Romania Muzicii Street, No. 2, 700511 Iasi, Romania
- Academy of Romanian Scientists, Ilfov Street, No. 3, Sector 5, 050094 Bucharest, Romania
| | - Elena Simona Băcăiță
- Department of Physics, Faculty of Machine Manufacturing and Industrial Management, “Gheorghe Asachi” Technical University of Iasi, Bld. Prof. Dr. Doc. Dimitrie Mangeron Street, No. 73, 700050 Iasi, Romania;
| | - Crina Elena Tiron
- Regional Institute of Oncology, General Henri Mathias Berthelot Street, 2–4, 700483 Iasi, Romania;
| | - Cristian Peptu
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda, 41A, 700487 Iasi, Romania;
| | - Cătălina Anișoara Peptu
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University of Iasi, Bld. Prof. Dr. Doc. Dimitrie Mangeron Street, No. 73, 700050 Iasi, Romania; (C.-L.L.); (M.P.)
| |
Collapse
|
7
|
Seyedi SMR, Asoodeh A, Darroudi M. The human immune cell simulated anti-breast cancer nanorobot: the efficient, traceable, and dirigible anticancer bio-bot. Cancer Nanotechnol 2022; 13:44. [DOI: 10.1186/s12645-022-00150-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Various types of cancer therapy strategies have been investigated and successfully applied so far. There are a few modern strategies for improving drug selectivity and biocompatibility, such as nanoparticle-based drug delivery systems. Herein, we designed the traceable enzyme-conjugated magnetic nanoparticles to target human breast cancer cells by simulating the innate immune cell’s respiratory explosion response.
Methods
The human immune cell simulated anti-breast cancer-nanorobot (hisABC-NB) was produced by conjugating the mouse-derived iNOS and human-originated MPO enzymes on the folate-linked chitosan-coated Fe3O4 nanoparticles. The synthesized nanoparticles were functionalized with folic acid as the breast cancer cell detector. Then, the hisABC-NB’s stability and structural properties were characterized by studying Zeta-potential, XRD, FTIR, VSM, FESEM, and DLS analysis. Next, the selectivity and anti-tumor activity of the hisABC-NB were comparatively analyzed on both normal (MCF-10) and cancerous (MCF-7) human breast cells by analyzing the cells’ survival, apoptotic gene expression profile (P53, BAX, BCL2), and flow cytometry data. Finally, the hisABC-NB’s traceability was detected by T2-weighted MRI imaging on the balb-c breast tumor models.
Results
The hisABC-NB significantly reduced the MCF-7 human breast cancer cells by inducing apoptosis response and arresting the cell cycle at the G2/M phase compared with the normal cell type (MCF-10). Moreover, the hisABC-NB exhibited a proper MRI contrast at the tumor region of treated mice compared with the non-treated type, which approved their appropriate MRI-mediated traceability.
Conclusion
The hisABC-NB’s traceability, dirigibility, and selective cytotoxicity were approved, which are the three main required factors for an efficient anticancer compound. Therefore, it has the potential to be used as an intelligent safe anticancer agent for human breast cancer treatment. However, several in vitro and in vivo studies are required to clarify its selectivity, stability, and safety.
Collapse
|
8
|
Logigan CL, Delaite C, Tiron CE, Peptu C, Popa M, Peptu CA. Chitosan Grafted Poly (Ethylene Glycol) Methyl Ether Acrylate Particulate Hydrogels for Drug Delivery Applications. Gels 2022; 8:gels8080494. [PMID: 36005095 PMCID: PMC9407074 DOI: 10.3390/gels8080494] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Chitosan (CS) crosslinking has been thoroughly investigated, but the chemical reactions leading to submicronic hydrogel formulations pose problems due to various physical/chemical interactions that limit chitosan processability. The current study employs the chemical modification of chitosan by Michael addition of poly (ethylene glycol) methyl ether acrylate (PEGA) to the amine groups to further prepare chitosan particulate hydrogels (CPH). Thus, modified CS is subjected to a double crosslinking, ionic and covalent, in water/oil emulsion. The studied process parameters are polymer concentration, stirring speed, and quantity of ionic crosslinker. The CPH were structurally and morphologically characterized through infrared spectroscopy, scanning electron microscopy, light scattering granulometry, and zeta potential, showing that modified CS allows better control of dimensional properties and morphology as compared with neat CS. Swelling properties were studied in acidic and neutral pH conditions, showing that pH-dependent behavior was maintained after grafting and double crosslinking. The applicability of the prepared materials was further tested for drug loading and in vitro delivery of levofloxacin (LEV), showing excellent capacity. CPH were found to be cyto- and hemocompatible demonstrating their potential for effective use as a controlled release system for different biomedical applications.
Collapse
Affiliation(s)
- Corina-Lenuța Logigan
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University of Iași, 700483 Iași, Romania
| | - Christelle Delaite
- Laboratory of Photochemistry and Macromolecular Engineering, Institute J.B. Donnet, University of Haute Alsace, Mulhouse, Street des Frères Lumière, F-68093 Mulhouse, France
| | - Crina-Elena Tiron
- Regional Institute of Oncology, General Henri Mathias Berthelot Street, 2–4, 700483 Iași, Romania
| | - Cristian Peptu
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda, 41A, 700487 Iași, Romania
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University of Iași, 700483 Iași, Romania
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, Pacurari Street, 11, Iasi 6600, Romania Muzicii Street, No. 2, 700511 Iași, Romania
- Academy of Romanian Scientists, Splaiul Independentei Street, No 54, 050094 Bucharest, Romania
| | - Cătălina Anișoara Peptu
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University of Iași, 700483 Iași, Romania
- Correspondence:
| |
Collapse
|
9
|
Maurya L, Singh S, Shah K, Dewangan HK. Dual Vinorelbine bitartrate and Resveratrol Loaded Polymeric Aqueous core Nanocapsules for Synergistic Efficacy in Breast Cancer. J Microencapsul 2022; 39:299-313. [PMID: 35470755 DOI: 10.1080/02652048.2022.2070679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIM The current study focused on the development and evaluation of aqueous core nanocapsules (ACNs) as an effective carrier to deliver an optimal synergistic combination of a highly water soluble Vinorelbine bitartrate (VRL) and a poorly water-soluble Resveratrol (RES) for treatment of breast cancer. METHODS Various molar ratios of VRL to RES were screened against MCF-7 cell lines to determine the synergistic effects using Chou-Talalay method. Synergistic ratio of therapeutic agents was then incorporated into aqueous core nanocapsules utilizing a double emulsion solvent evaporation technique to yield dual drug loaded nanocapsules (dd-ACNs). The dd-ACNs were optimized using Box-Behnken design and characterized for physicochemical parameters such as particle size, zeta potential, polydispersity index, total drug content and encapsulation efficiency, surface morphology, drug excipient compatibility by FTIR and DSC, release kinetics, toxicity studies and anticancer efficacy (in-vitro and in-vivo). RESULTS Results demonstrated that the combination exhibited maximum synergy when higher doses of VRL were combined with smaller doses of RES (1:1, 5:1, and 10:1). The dual drug loaded ACNs were found to be stable and depicted a core-shell structure, narrow size range (150.2 ± 3.2 nm) with enhanced encapsulation (80% for VRL and 99% for RES). Moreover, the dd-ACNs were 5 times more efficacious in-vitro than a combination of free drugs, while reducing systemic toxicity. Also, pre-clinical evaluation of dd-ACNs also depicted drastic reduction of tumor volume as compared tp pristine VRL and physical combination of drugs. CONCLUSION The developed dd-ACNs can be applied as potential carrier for delivery of combination of chemotherapeutics at a synergistic ratio at tumor site.
Collapse
Affiliation(s)
- Lakshmi Maurya
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Meerut Road (NH-58), Ghaziabad-201206, India
| | - Sanjay Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi- 221005, India
| | - Kamal Shah
- Institute of Pharmaceutical Research (IPR), GLA University, Mathura, NH-2 Mathura Delhi Road, PO- Chamuhan, Mathura, Uttar Pradesh-281406, India
| | - Hitesh Kumar Dewangan
- University Institute of Pharma Sciences (UIPS), Chandigarh University NH-95, Chandigarh Ludhiana Highway, Mohali- 160101, Punjab, India
| |
Collapse
|
10
|
Tian Y, Tang G, Gao Y, Chen X, Zhou Z, Li Y, Li X, Wang H, Yu X, Luo L, Cao Y. Carrier-Free Small Molecular Self-Assembly Based on Berberine and Curcumin Incorporated in Submicron Particles for Improving Antimicrobial Activity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10055-10067. [PMID: 35175042 DOI: 10.1021/acsami.1c22900] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanocarrier-based pesticide formulations have been severely restricted in agriculture practices due to their high-cost preparation process, poor loading capacity, and toxicity issues. To overcome these issues, carrier-free small molecular self-assembled submicron particles (SMPs) with an improved photoactivated antimicrobial activity based on two natural microbicides berberine hydrochloride (BBR) and curcumin (CM) are constructed by noncovalent interactions through a simple and fast preparation process (solvent exchange method) without using any adjuvant. The results show that the optimized molar ratio of BBR to CM is 2:1 at pH 5 and 25 °C in an aqueous solution for the formation of B-C SMPs. The obtained B-C SMPs exhibit excellent physicochemical properties, such as uniform morphology (407 nm), low polydispersity index (0.283), and strong ζ-potential (+24.4 mV). The antibacterial activities of B-C SMPs against Pseudomonas syringae pv. lachrymans, Clavibater michiganensis subsp. Michiganensis, and Sclerotinia sclerotiorum are 4, 2, and 1.5 times that of B + C MIX, respectively, suggesting a synergistic antimicrobial activity based on BBR and CM incorporation in the submicron particles. The genotoxicity evaluation results show that the self-assembled B-C SMPs are harmless to plant cells. Therefore, due to rational utilization of natural resources (natural microbicides, sunlight, and oxygen), carrier-free small molecular self-assembled B-C SMPs with synergistic photoactivated antimicrobial activity developed by a simple and fast preparation process would have great potential for sustainable plant disease management.
Collapse
Affiliation(s)
- Yuyang Tian
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Gang Tang
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yunhao Gao
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xi Chen
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Zhiyuan Zhou
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yan Li
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xuan Li
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Huachen Wang
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xueyang Yu
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Laixin Luo
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yongsong Cao
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| |
Collapse
|
11
|
Targeted Self-Emulsifying Drug Delivery Systems to Restore Docetaxel Sensitivity in Resistant Tumors. Pharmaceutics 2022; 14:pharmaceutics14020292. [PMID: 35214025 PMCID: PMC8876228 DOI: 10.3390/pharmaceutics14020292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
The use of chemotherapeutic agents such as docetaxel (DTX) in anticancer therapy is often correlated to side effects and the occurrence of drug resistance, which substantially impair the efficacy of the drug. Here, we demonstrate that self-emulsifying drug delivery systems (SEDDS) coated with enoxaparin (Enox) are a promising strategy to deliver DTX in resistant tumors. DTX partition studies between the SEDDS pre-concentrate and the release medium (water) suggest that the drug is well retained within the SEDDS upon dilution in the release medium. All SEDDS formulations show droplets with a mean diameter between 110 and 145 nm following dilution in saline and negligible hemolytic activity; the droplet size remains unchanged upon sterilization. Enox-coated SEDDS containing DTX exhibit an enhanced inhibition of cell growth compared to the control on cells of different solid tumors characterized by high levels of FGFR, which is due to an increased DTX internalization mediated by Enox. Moreover, only Enox-coated SEDDS are able to restore the sensitivity to DTX in resistant cells expressing MRP1 and BCRP by inhibiting the activity of these two main efflux transporters for DTX. The efficacy and safety of these formulations is also confirmed in vivo in resistant non-small cell lung cancer xenografts.
Collapse
|
12
|
Binu NM, Prema D, Prakash J, Balagangadharan K, Balashanmugam P, Selvamurugan N, Venkatasubbu GD. Folic acid decorated pH sensitive polydopamine coated honeycomb structured nickel oxide nanoparticles for targeted delivery of quercetin to triple negative breast cancer cells. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Othman MS, Al-Bagawi AH, Obeidat ST, Fareid MA, Habotta OA, Moneim AEA. Antitumor activity of zinc nanoparticles synthesized with berberine on human epithelial colorectal adenocarcinoma (Caco-2) cells through acting on Cox-2/NF-kB and p53 pathways. Anticancer Agents Med Chem 2021; 22:2002-2010. [PMID: 34607550 DOI: 10.2174/1871520621666211004115839] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/11/2021] [Accepted: 08/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Drawbacks and side effects of currently available therapies to colorectal cancer (CRC) devoted the researchers to search for new therapeutic strategies. OBJECTIVE This study was designed to investigate the effects of zinc nanoparticles biosynthesized with berberine (ZnNPs-BER) on Caco-2 cells compared to 5-Fluorouracil (5-FU) and explore the possible underlying pathways. METHODS Caco-2 and Vero cells were treated with 5-FU, BER, or ZnNPs-BER for 24 h. Cell viability was measured by MTT assay. Oxidative stress and apoptotic markers and cell cycle were determined. Additionally, Cox-2 and NF-kB levels were also measured. RESULTS The IC50 of 5-FU, BER, and ZnNPs-BER on Caco-2 cells were 34.65 µM, 19.86 µg/ml and 10.49 µg/ml, respectively by MTT assay. The IC50 value for 5-FU in Vero cells was 21.7 μg/ml, however, BER and BER-ZnNPs treatment showed non-toxic effects to the Vero cells. Further, ZnNPs-BER exerted significant induction of ROS besides exhaustion of the antioxidant capacity of tumor cells indicated by declined GSH and elevated NO and MDA contents. Marked increments in levels of Bax and caspase-3 were detected together with declines in Bcl-2 levels in Caco-2 cells submitted to BER-ZnNPs therapy. On the molecular basis, upregulation in mRNA levels of pro-apoptotic genes (Bax, caspase-3, and tumor suppressor gene p53) with downregulation in the antiapoptotic gene (Bcl-2) were observed in ZnNPs-BER treated Caco-2 cells. Furthermore, ZnNPs-BER showed more pronounced effects on apoptosis increased cell percentage in the S and subG1 phases. In addition, green synthesis of ZnNPs with BER showed notable induction of Cox2 and NF-kB in Caco-2 cells. CONCLUSION Therefore, the antitumor potential of ZnNPs-BER in colon cancer cells may be endorsed for induction of oxidative stress, inflammation, and apoptotic changes in tumor cells. Our study documents the new therapeutic potential of Zn nanoparticles conjugated with BER, as a new option for combined chemotherapy.
Collapse
Affiliation(s)
- Mohamed S Othman
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail. Saudi Arabia
| | - Amal H Al-Bagawi
- Chemistry Department, Faculty of Science, University of Ha'il, Hail. Saudi Arabia
| | - Sofian T Obeidat
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail. Saudi Arabia
| | - Mohamed A Fareid
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail. Saudi Arabia
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura. Egypt
| | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo. Egypt
| |
Collapse
|
14
|
Rajalingam K, Krishnaswami V, Alagarsamy S, Kandasamy R. Solubility Enhancement of Methotrexate by Solid Nanodispersion Approach for the Improved Treatment of Small Cell Lung Carcinoma. Curr Top Med Chem 2021; 21:140-150. [PMID: 32888268 DOI: 10.2174/1568026620999200904120241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 11/22/2022]
Abstract
AIMS The present work aimed to develop MT loaded solid Nano dispersion by improving its solubility, half-life and bioavailability in biological system thereby this formulation may be afforded economically. BACKGROUND Small cell lung carcinoma is a type of malignant tumor characterized by uncontrolled cell growth at lung tissues. The potent anti-cancer drug methotrexate (MT) chosen for the present work is poorly soluble in water (BCS type IV class) with short half-life and hepatotoxic effect. OBJECTIVE With the concept of polymeric surfactant to improve the solubility along with wettability of drugs, the present work has been hypothesized to improve its solubility using polyvinyl pyrollidone (PVP K30) polymer and α- tocopheryl polyethylene glycol 1000 succinate (TPGS) surfactant, thereby the bioavailability is expected to get enhanced. By varying the PVP K30 and TPGS ratios different formulations were developed using emulsification process. METHODS The developed MT loaded solid nanodispersion was further characterized for its particle size, charge, morphology, encapsulation efficiency and in-vitro release behavior etc. Results: The results of FT-IR spectrometric analysis indicated the compatibility nature of MTX, PVPK30 and TPGS. The developed formulations showed spherical morphology, particle size ranging from 59.28±24.2 nm to 169.33±10.85 nm with a surface charge ranging from -10.33 ± 2.81mV to -9.57 ± 1.2 mV. The in vitro release studies as performed by dialysis bag method showed a sustained release pattern as checked by UV Spectrophotometer. Residual solvent analysis for MTXNDs performed by HPLC indicates there is no residual DMSO in the formulation. Transmission electron microscopic image of MTXNDs revealed that the particles are spherical shaped with a solid core structure. Haemolytic assay indicates that the developed formulation is safe for intravenous administration. Cell culture studies in A549 cells indicates the enhanced cytotoxic effect for the developed formulation. CONCLUSION This proof of study indicates that the developed formulation may have anticancer potential for SCLC treatment.
Collapse
Affiliation(s)
- Karthikeyan Rajalingam
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, India
| | - Venkateshwaran Krishnaswami
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, India
| | - Shanmugarathinam Alagarsamy
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, India
| | - Ruckmani Kandasamy
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, India
| |
Collapse
|
15
|
Malhotra B, Kulkarni GT, Dhiman N, Joshi D, Chander S, Kharkwal A, Sharma AK, Kharkwal H. Recent advances on Berberis aristata emphasizing berberine alkaloid including phytochemistry, pharmacology and drug delivery system. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Sharma PK, Chauhan MK. Optimization and Characterization of Brimonidine Tartrate Nanoparticles-loaded In Situ Gel for the Treatment of Glaucoma. Curr Eye Res 2021; 46:1703-1716. [PMID: 33844617 DOI: 10.1080/02713683.2021.1916037] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Purposes: The present study aimed to develop brimonidine tartrate loaded poly(lactic-co-glycolic acid) acid vitamin E-tocopheryl polyethylene glycol 1000 succinate (BRT-PLGA-TPGS) nanoparticles in thermosensitivein situ gel to improve mucoadhensive properties and drug holding capacity for the better management of glaucoma.Methods: Nanoparticles was optimized by means of Box-Behnken Design (BBD). The formulations were prepared using various concentration of PLGA (0.1-0.4% w/v) and TPGS (0.3-0.5% w/v). The analytical data of fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) depicted the drug excipients compatibility and confirmed the nanoparticles. Nanoparticles incorporated gel was evaluated for transcorneal permeability, gelation time, gelling temperature, and rheological studies. In addition, in vitro, transcorneal permeation drug release studies and intraocular pressure (IOP) for optimized gel was also performed. Biocompatibility of formulations was investigated in rabbit model.Results: The drug loaded nanoparticles exhibited 115.72 ± 4.18 nm, 0.190 ± 0.02, -11.80 ± 2.24 mV and 74.85 ± 6.54% of mean size, polydispersity index (PDI), zeta potential and entrapment efficiency (% EE), respectively. As compared to marketed eye drop, the sustained and continuous release BRT release from Poloxamer-based in situ gel was 85.31 ± 3.51% till 24 h. The transcorneal steady-state flux (136.32 μg cm-2 h-1) of optimized in situ gel was approximately 3.5 times higher than marketed formulation (38.60 μg cm-2 h-1) flux at 4 h. The optimized formulation produces 3 fold greater influences on percentage reduction of IOP (34.46 ± 4.21%) than the marketed formulation (12.24 ± 2.90%) till 8 h.Conclusion: The incorporation of optimized BRT-PLGA-TPGS nanoparticles into a thermosensitivein situ gel matrix to improve precorneal residence time without causing eye irritation and also serve the sustained release of BRT through cornea for effective management of glaucoma.
Collapse
Affiliation(s)
- Pankaj Kumar Sharma
- NDDS Research Laboratory, Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, DPSR-University, New Delhi, India
| | - Meenakshi Kanwar Chauhan
- NDDS Research Laboratory, Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, DPSR-University, New Delhi, India
| |
Collapse
|
17
|
Zhang L, Li M, Zhang G, Gao C, Wang S, Zhang T, Ma C, Wang L, Zhu Q. Micro- and Nanoencapsulated Hybrid Delivery System (MNEHDS): A Novel Approach for Colon-Targeted Oral Delivery of Berberine. Mol Pharm 2021; 18:1573-1581. [PMID: 33629860 DOI: 10.1021/acs.molpharmaceut.0c00970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Berberine (BBR) is currently explored in the oral treatment of many disorders, especially in those involving inflammatory processes. Nanotechnology-based drug delivery systems are emerging as an effective approach for improving the poor oral absorption/bioavailability of BBR. To optimize the BBR immunoregulatory effects on a specific part of the gastrointestinal tract, here we describe a micro- and nanoencapsulated hybrid delivery system (MNEHDS) for colon-targeted oral delivery of BBR and test its therapeutic efficacy in a murine colitis model. The MNEHDS is formed by encapsulation of BBR-loaded poly(lactic-co-glycolic acid) nanoparticles into a pH-sensitive, BBR-pre-entrapped Eudragit FS30D matrix to form a hybrid microparticle composed of the BBR and BBR nanoparticles. Once in the colonic environment, the microencapsulated BBR is almost completely released for immediate action, while BBR nanoparticles can provide sustained release of BBR subsequent to their intestinal absorption. One dose of oral MNEHDS/BBR treatment results in significant attenuation of acute colitis induced by dextran sulfate sodium. The MNEHDS/BBR also proves to be effective during chronically induced colitis with two doses given 1 week apart. The improved efficacy is accompanied by decreased production of colon inflammation. Comparatively, oral treatment with one or two 7-day courses of free BBR has less effect on ameliorating either acute or chronic colitis. Thus, MNEHDS represents a novel delivery system for BBR, and potentially other therapeutic agents, to treat inflammatory bowel disease.
Collapse
Affiliation(s)
- Lingzhi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Materia Medica, Beijing 100050, China
| | - Mingyan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Materia Medica, Beijing 100050, China
| | - Guiqiu Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Materia Medica, Beijing 100050, China
| | - Changxing Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Materia Medica, Beijing 100050, China
| | - Shengfang Wang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China.,College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Tingting Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Materia Medica, Beijing 100050, China
| | - Chen Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Materia Medica, Beijing 100050, China
| | - Lianyan Wang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Qing Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Materia Medica, Beijing 100050, China
| |
Collapse
|
18
|
Campani V, Zappavigna S, Scotti L, Abate M, Porru M, Leonetti C, Caraglia M, De Rosa G. Hybrid lipid self-assembling nanoparticles for brain delivery of microRNA. Int J Pharm 2020; 588:119693. [PMID: 32755686 DOI: 10.1016/j.ijpharm.2020.119693] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
Abstract
Hybrid self-assembling nanoparticles (SANPs) have been previously designed as novel drug delivery system that overcomes stability issues following long-term storage and with an easy scale-up. This system has been successfully used to deliver anionic-charged agents, e.g. bisphosphonates, in different types of tumors, such glioblastoma (GBM). Here, SANPs were tested and optimized for the delivery of nucleic acids, in particular of a specific microRNA, e.g. miR603, used for its potential role in controlling the chemoresistance in different forms of cancer, e.g. (GBM). To this aim, SANPs with different lipids were prepared and characterized, in terms of size, polydispersity index, zeta potential, miRNA encapsulation, stability in BSA, serum and hemolytic activity. Then, SANPs were tested in vitro on two different cell lines of GBM. Finally, miRNA biodistribution was tested in vivo in an orthotopic model of GBM. The majority of the formulations showed good technological characteristics and were stable in BSA and serum with a low hemolytic activity. The intracellular uptake studies on GBM cell lines showed that SANPs allow to achieve a higher miRNA delivery compared to others transfection agents, e.g. lipofectamine. Finally, in vivo biodistribution studies in an orthotopic of GBM demonstrated that the optimized SANP formulations, were able to deliver miRNA in different organs, e.g. the brain.
Collapse
Affiliation(s)
- Virginia Campani
- Department of Pharmacy, University Federico II of Naples, Via Domenico Montesano, 49, 80131 Naples, Italy.
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Santa Maria di Costantinopoli, 16, 80138 Naples, Italy.
| | - Lorena Scotti
- Department of Pharmacy, University Federico II of Naples, Via Domenico Montesano, 49, 80131 Naples, Italy.
| | - Marianna Abate
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Santa Maria di Costantinopoli, 16, 80138 Naples, Italy.
| | - Manuela Porru
- Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144 Rome, Italy.
| | - Carlo Leonetti
- Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144 Rome, Italy.
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Santa Maria di Costantinopoli, 16, 80138 Naples, Italy; Biogem Scarl, Institute of Genetic Research, Laboratory of Molecular and Precision Oncology, 83031 Ariano Irpino, Italy.
| | - Giuseppe De Rosa
- Department of Pharmacy, University Federico II of Naples, Via Domenico Montesano, 49, 80131 Naples, Italy.
| |
Collapse
|
19
|
Samadian H, Zamiri S, Ehterami A, Farzamfar S, Vaez A, Khastar H, Alam M, Ai A, Derakhshankhah H, Allahyari Z, Goodarzi A, Salehi M. Electrospun cellulose acetate/gelatin nanofibrous wound dressing containing berberine for diabetic foot ulcer healing: in vitro and in vivo studies. Sci Rep 2020; 10:8312. [PMID: 32433566 PMCID: PMC7239895 DOI: 10.1038/s41598-020-65268-7] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/27/2020] [Indexed: 01/18/2023] Open
Abstract
Functional wound dressing with tailored physicochemical and biological properties is vital for diabetic foot ulcer (DFU) treatment. Our main objective in the current study was to fabricate Cellulose Acetate/Gelatin (CA/Gel) electrospun mat loaded with berberine (Beri) as the DFU-specific wound dressing. The wound healing efficacy of the fabricated dressings was evaluated in streptozotocin-induced diabetic rats. The results demonstrated an average nanofiber diameter of 502 ± 150 nm, and the tensile strength, contact angle, porosity, water vapor permeability and water uptake ratio of CA/Gel nanofibers were around 2.83 ± 0.08 MPa, 58.07 ± 2.35°, 78.17 ± 1.04%, 11.23 ± 1.05 mg/cm2/hr, and 12.78 ± 0.32%, respectively, while these values for CA/Gel/Beri nanofibers were 2.69 ± 0.05 MPa, 56.93 ± 1°, 76.17 ± 0.76%, 10.17 ± 0.21 mg/cm2/hr, and 14.37 ± 0.42%, respectively. The antibacterial evaluations demonstrated that the dressings exhibited potent antibacterial activity. The collagen density of 88.8 ± 6.7% and the angiogenesis score of 19.8 ± 3.8 obtained in the animal studies indicate a proper wound healing. These findings implied that the incorporation of berberine did not compromise the physical properties of dressing, while improving the biological activities. In conclusion, our results indicated that the prepared mat is a proper wound dressing for DFU management and treatment.
Collapse
Affiliation(s)
- Hadi Samadian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sina Zamiri
- Department of Kinesiology and Health Science, York University, Ontario, Canada
| | - Arian Ehterami
- Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Saeed Farzamfar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Khastar
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, Dental School, Shahid Beheshti University of Medical sciences, Tehran, Iran
| | - Armin Ai
- Dental student of scientific research center, faculty of dentistry, Tehran university of medical sciences, Tehran, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Allahyari
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, USA
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Arash Goodarzi
- Department of Tissue Engineering, School of Advanced Technologies, Fasa University of Medical Sciences, Fasa, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
- Tissue Engineering and stem cells research center, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
20
|
Kost B, Brzeziński M, Cieślak M, Królewska-Golińska K, Makowski T, Socka M, Biela T. Stereocomplexed micelles based on polylactides with β-cyclodextrin core as anti-cancer drug carriers. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
21
|
Cadinoiu AN, Rata DM, Atanase LI, Daraba OM, Gherghel D, Vochita G, Popa M. Aptamer-Functionalized Liposomes as a Potential Treatment for Basal Cell Carcinoma. Polymers (Basel) 2019; 11:E1515. [PMID: 31540426 PMCID: PMC6780726 DOI: 10.3390/polym11091515] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 01/10/2023] Open
Abstract
More than one out of every three new cancers is a skin cancer, and the large majority are basal cell carcinomas (BCC). Targeted therapy targets the cancer's specific genes, proteins, or tissue environment that contributes to cancer growth and survival and blocks the growth as well as the spread of cancer cells while limiting damage to healthy cells. Therefore, in the present study AS1411 aptamer-functionalized liposomes for the treatment of BCC were obtained and characterized. Aptamer conjugation increased liposome size, suggesting that the presence of an additional hydrophilic molecule on the liposomal surface increased the hydrodynamic diameter. As expected, the negatively charged DNA aptamer reduced the surface potential of the liposomes. Vertical Franz diffusion cells with artificial membranes were used to evaluate the in vitro release of 5-fluorouracil (5-FU). The aptamer moieties increase the stability of the liposomes and act as a supplementary steric barrier leading to a lower cumulative amount of the released 5-FU. The in vitro cell viability, targeting capability and apoptotic effects of liposomes on the human dermal fibroblasts and on the basal cell carcinoma TE 354.T cell lines were also evaluated. The results indicate that the functionalized liposomes are more efficient as nanocarriers than the non-functionalized ones.
Collapse
Affiliation(s)
- Anca N Cadinoiu
- "Apollonia" University of Iasi, Faculty of Medical Dentistry, Department of Biomaterials, Pacurari Street, No. 11, Iasi 700511, Romania.
| | - Delia M Rata
- "Apollonia" University of Iasi, Faculty of Medical Dentistry, Department of Biomaterials, Pacurari Street, No. 11, Iasi 700511, Romania.
| | - Leonard I Atanase
- "Apollonia" University of Iasi, Faculty of Medical Dentistry, Department of Biomaterials, Pacurari Street, No. 11, Iasi 700511, Romania.
| | - Oana M Daraba
- "Apollonia" University of Iasi, Faculty of Medical Dentistry, Department of Biomaterials, Pacurari Street, No. 11, Iasi 700511, Romania.
| | - Daniela Gherghel
- NIRDBS - Institute of Biological Research Iasi, Department of Experimental and Applied Biology, Lascar Catargi 47, Iasi 700107, Romania.
| | - Gabriela Vochita
- NIRDBS - Institute of Biological Research Iasi, Department of Experimental and Applied Biology, Lascar Catargi 47, Iasi 700107, Romania.
| | - Marcel Popa
- "Apollonia" University of Iasi, Faculty of Medical Dentistry, Department of Biomaterials, Pacurari Street, No. 11, Iasi 700511, Romania.
- Academy of Romanian Scientists, Splaiul Independentei Street, No. 54, Bucharest 050094, Romania.
| |
Collapse
|
22
|
Zhu D, Long Q, Xu Y, Xing J. Evaluating Nanoparticles in Preclinical Research Using Microfluidic Systems. MICROMACHINES 2019; 10:mi10060414. [PMID: 31234335 PMCID: PMC6631852 DOI: 10.3390/mi10060414] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
Nanoparticles (NPs) have found a wide range of applications in clinical therapeutic and diagnostic fields. However, currently most NPs are still in the preclinical evaluation phase with few approved for clinical use. Microfluidic systems can simulate dynamic fluid flows, chemical gradients, partitioning of multi-organs as well as local microenvironment controls, offering an efficient and cost-effective opportunity to fast screen NPs in physiologically relevant conditions. Here, in this review, we are focusing on summarizing key microfluidic platforms promising to mimic in vivo situations and test the performance of fabricated nanoparticles. Firstly, we summarize the key evaluation parameters of NPs which can affect their delivery efficacy, followed by highlighting the importance of microfluidic-based NP evaluation. Next, we will summarize main microfluidic systems effective in evaluating NP haemocompatibility, transport, uptake and toxicity, targeted accumulation and general efficacy respectively, and discuss the future directions for NP evaluation in microfluidic systems. The combination of nanoparticles and microfluidic technologies could greatly facilitate the development of drug delivery strategies and provide novel treatments and diagnostic techniques for clinically challenging diseases.
Collapse
Affiliation(s)
- Derui Zhu
- Research Center of Basic Medical Sciences, Medical College, Qinghai University, Xining 810016, China.
| | - Qifu Long
- Research Center of Basic Medical Sciences, Medical College, Qinghai University, Xining 810016, China.
| | - Yuzhen Xu
- Department of Basic Medical Sciences, Medical College, Qinghai University, Xining 810016, China.
| | - Jiangwa Xing
- Research Center of Basic Medical Sciences, Medical College, Qinghai University, Xining 810016, China.
| |
Collapse
|
23
|
Guo HH, Feng CL, Zhang WX, Luo ZG, Zhang HJ, Zhang TT, Ma C, Zhan Y, Li R, Wu S, Abliz Z, Li C, Li XL, Ma XL, Wang LL, Zheng WS, Han YX, Jiang JD. Liver-target nanotechnology facilitates berberine to ameliorate cardio-metabolic diseases. Nat Commun 2019; 10:1981. [PMID: 31040273 PMCID: PMC6491597 DOI: 10.1038/s41467-019-09852-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular and metabolic disease (CMD) remains a main cause of premature death worldwide. Berberine (BBR), a lipid-lowering botanic compound with diversified potency against metabolic disorders, is a promising candidate for ameliorating CMD. The liver is the target of BBR so that liver-site accumulation could be important for fulfilling its therapeutic effect. In this study a rational designed micelle (CTA-Mic) consisting of α-tocopheryl hydrophobic core and on-site detachable polyethylene glycol-thiol shell is developed for effective liver deposition of BBR. The bio-distribution analysis proves that the accumulation of BBR in liver is increased by 248.8% assisted by micelles. Up-regulation of a range of energy-related genes is detectable in the HepG2 cells and in vivo. In the high fat diet-fed mice, BBR-CTA-Mic intervention remarkably improves metabolic profiles and reduces the formation of aortic arch plaque. Our results provide proof-of-concept for a liver-targeting strategy to ameliorate CMD using natural medicines facilitated by Nano-technology.
Collapse
Affiliation(s)
- Hui-Hui Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Chen-Lin Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wen-Xuan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhi-Gang Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hong-Juan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ting-Ting Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Chen Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yun Zhan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Rui Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Cong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiao-Lin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiao-Lei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lu-Lu Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Wen-Sheng Zheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yan-Xing Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
24
|
Mittal P, Vrdhan H, Ajmal G, Bonde G, Kapoor R, Mishra B. Formulation and Characterization of Genistein-loaded Nanostructured Lipid Carriers: Pharmacokinetic, Biodistribution and In vitro Cytotoxicity Studies. Curr Drug Deliv 2019; 16:215-225. [DOI: 10.2174/1567201816666181120170137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/16/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022]
Abstract
Background:Genistein (Gen) is a naturally occurring soy isoflavonoid, possessing anticancer, antiproliferation & antioxidant-like properties. The disadvantage of poor solubility and less oral bioavailability restrict its use as a potential anticancer agent.Objectives:The current work was focused on the formulation and characterization of the genistein loaded nanostructured lipid carriers that can entrap enough quantity of the drug which will provide sustained release of the drug for the treatment of ovarian cancer.Methods:The nanostructure lipid carriers of genistein were developed with the aid of solvent emulsification and evaporation technique by employing TPGS as a surfactant. The resultant formulation was characterized by various physicochemical properties. Pharmacokinetics and biodistribution studies were carried out to estimate the mean plasma concentrations of the drug. Percentage cytotoxicity was evaluated by using PA-1 ovarian cancer cell lines.Results:The resultant formulation exhibited a particle size of 130.23 nm, and entrapment efficiency of 94.27 %, & zeta potential of -20.21 mV with unimodal size distribution. Pharmacokinetics and biodistribution studies revealed that the formulation was able to provide sufficient plasma drug concentration for the longer period of time and the drug was more distributed in ovarian cancer tissues. Results of MTT assay concluded that GenNLC were more effective in comparison to pristine Gen.Conclusion:In a nutshell, GenNLC seems to be a superior alternative carrier system for the formulation industry to obtain the higher entrapment with excellent stability of the formulation.
Collapse
Affiliation(s)
- Pooja Mittal
- Indian Institute of Technology (Banaras Hindu University), Department of Pharmaceutical Engineering & Technology, Varanasi -221005 (U.P.), India
| | - Harsh Vrdhan
- Indian Institute of Technology (Banaras Hindu University), Department of Pharmaceutical Engineering & Technology, Varanasi -221005 (U.P.), India
| | - Gufran Ajmal
- Indian Institute of Technology (Banaras Hindu University), Department of Pharmaceutical Engineering & Technology, Varanasi -221005 (U.P.), India
| | - Gunjan Bonde
- Indian Institute of Technology (Banaras Hindu University), Department of Pharmaceutical Engineering & Technology, Varanasi -221005 (U.P.), India
| | - Ramit Kapoor
- Amity Institute of Pharmacy, Amity University, Noida, India
| | - Brahmeshwar Mishra
- Indian Institute of Technology (Banaras Hindu University), Department of Pharmaceutical Engineering & Technology, Varanasi -221005 (U.P.), India
| |
Collapse
|
25
|
Mittal P, Vardhan H, Ajmal G, Bonde GV, Kapoor R, Mittal A, Mishra B. Formulation, optimization, hemocompatibility and pharmacokinetic evaluation of PLGA nanoparticles containing paclitaxel. Drug Dev Ind Pharm 2018; 45:365-378. [DOI: 10.1080/03639045.2018.1542706] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Pooja Mittal
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (IIT) BHU, Varanasi, India
| | - Harsh Vardhan
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (IIT) BHU, Varanasi, India
| | - Gufran Ajmal
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (IIT) BHU, Varanasi, India
| | - Gunjan Vasant Bonde
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (IIT) BHU, Varanasi, India
| | - Ramit Kapoor
- Amity Institute of Pharmacy, Amity University, Noida, India
| | - Ashu Mittal
- Canberra Institute of Technology (CIT), Canberra (ACT), Australia
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (IIT) BHU, Varanasi, India
| |
Collapse
|
26
|
Mirhadi E, Rezaee M, Malaekeh-Nikouei B. Nano strategies for berberine delivery, a natural alkaloid of Berberis. Biomed Pharmacother 2018; 104:465-473. [DOI: 10.1016/j.biopha.2018.05.067] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 01/31/2023] Open
|
27
|
Kim S, Lee SY, Cho HJ. Berberine and zinc oxide-based nanoparticles for the chemo-photothermal therapy of lung adenocarcinoma. Biochem Biophys Res Commun 2018; 501:765-770. [PMID: 29758197 DOI: 10.1016/j.bbrc.2018.05.063] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/10/2018] [Indexed: 12/22/2022]
Abstract
Organic/inorganic hydrid nanoparticles (NPs) composed of berberine (BER) and zinc oxide (ZnO) were developed for the therapy of lung cancers. Without the use of pharmaceutical excipients, NPs were fabricated with only dual anticancer agents (BER and ZnO) by facile blending method. The mean weight ratio between BER and ZnO in BER-ZnO NPs was 39:61 in this study. BER-ZnO NPs dispersed in water exhibited 200-300 nm hydrodynamic size under 5 mg/mL concentration. The exposure of both BER and ZnO in the outer layers of BER-ZnO NPs was identified by X-ray photoelectron spectroscopy analysis. The amorphization of BER and the maintenance of ZnO structure were observed in the results of X-ray powder diffractometer analysis. Improved antiproliferation efficacy, based on the chemo-photothermal therapeutic efficacy, of BER-ZnO NPs in A549 (human lung adenocarcinoma) cells was presented. According to the blood tests in rats after intravenous administration, BER-ZnO NPs did not induce severe hepatotoxicity, renal toxicity, and hemotoxicity. Developed BER-ZnO NPs can be used efficiently and safely for the chemo-photothermal therapy of lung cancers.
Collapse
Affiliation(s)
- Sungyun Kim
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Song Yi Lee
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyun-Jong Cho
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| |
Collapse
|
28
|
Elnaggar YSR, Elsheikh MA, Abdallah OY. Phytochylomicron as a dual nanocarrier for liver cancer targeting of luteolin: in vitro appraisal and pharmacodynamics. Nanomedicine (Lond) 2018; 13:209-232. [DOI: 10.2217/nnm-2017-0220] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Aim: A novel luteolin (LUT) loaded dual bionanocarrier ‘phytochylomicron’ was elaborated to allow LUT injectable delivery and liver cancer targeting. Methods: LUT–phospholipid complex was prepared and loaded into chylomicron nanocarrier. Then phytochylomicron underwent physicochemical characterization, cell culture and pharmacodynamics studies on a new liver-tumor model. Results: Phytochylomicron showed sustained release pattern with minimum drug leakage until reaching the liver. Cell culture studies showed high growth inhibition of Hep G2 cells with 2.6-fold enhancement in cellular uptake. Pharmacodynamics demonstrated enhanced tumor growth inhibition (sixfold) with a significant tumor size reduction. Finally, cell culture results demonstrated an excellent correlation with pharmacodynamics confirming the obtained findings. Conclusion: A novel phytochylomicron nanosystem was successfully elaborated with promising characteristics that promoted injectable LUT delivery and liver cancer targeting. [Formula: see text]
Collapse
Affiliation(s)
- Yosra SR Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy & Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Manal A Elsheikh
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
29
|
New hybrid magnetic nanoparticles based on chitosan-maltose derivative for antitumor drug delivery. Int J Biol Macromol 2016; 92:561-572. [PMID: 27451027 DOI: 10.1016/j.ijbiomac.2016.07.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/15/2016] [Accepted: 07/17/2016] [Indexed: 11/22/2022]
Abstract
The aim of the present study is to obtain, for the first time, polymer magnetic nanoparticles based on the chitosan-maltose derivative and magnetite. By chemically modifying the chitosan, its solubility in aqueous media was improved, which in turn facilitates the nanoparticles' preparation. Resulting polymers exhibit enhanced hydrophilia, which is an important factor in increasing the retention time of nanoparticles in the blood flow. The preparation of nanoparticles relied on the double crosslinking technique (ionic and covalent) in reverse emulsion which ensures the mechanical stability of the polymer carrier. The characterization of both the chitosan derivative and nanoparticles was accomplished by Fourier Transform Infrared Spectroscopy, Nuclear Magnetic Resonance Spectroscopy, Scanning Electron Microscopy, Transmission Electron Microscopy, Atomic Force Microscopy, Vibrating Sample Magnetometry, and Thermogravimetric Analysis. The evaluation of morphological, dimensional, structural, and magnetical properties, as well as thermal stability and swelling behavior of nanoparticles was made from the point of view of the polymer/magnetite ratio. The study of 5-Fluorouracil loading and release kinetics as well as evaluating the cytotoxicity and hemocompatibility of nanoparticles justify their adequate behavior in their potential use as devices for targeted transport of antitumor drugs.
Collapse
|
30
|
Shen R, Kim JJ, Yao M, Elbayoumi TA. Development and evaluation of vitamin E d-α-tocopheryl polyethylene glycol 1000 succinate-mixed polymeric phospholipid micelles of berberine as an anticancer nanopharmaceutical. Int J Nanomedicine 2016; 11:1687-700. [PMID: 27217747 PMCID: PMC4853014 DOI: 10.2147/ijn.s103332] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Berberine (Brb) is an active alkaloid occurring in various common plant species, with well-recognized potential for cancer therapy. Brb not only augments the efficacy of antineoplastic chemotherapy and radiotherapy but also exhibits direct antimitotic and proapoptotic actions, along with distinct antiangiogenic and antimetastatic activities in a variety of tumors. Despite its low systemic toxicity, several pharmaceutical challenges limit the application of Brb in cancer therapy (ie, extremely low solubility and permeability, very poor pharmacokinetics (PKs), and oral bioavailability). Among lipid-based nanocarriers investigated recently for Brb, stealth amphiphilic micelles of polymeric phospholipid conjugates were studied here as a promising strategy to improve Brb delivery to tumors. Specifically, physicochemically stable micelles made of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-2000] (PEG-PE) mixed with d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) (PEG-succinate ester of vitamin E), in a 3:1 M ratio, increased Brb solubilization by 300%. Our PEG-PE/TPGS-mixed micelles firmly retained the incorporated Brb, displaying extended-release profile in simulated media, with up to 30-fold projected improvement in simulated PKs of Brb. Owing to the markedly better uptake of Brb-containing mixed micelles in vitro, our Brb-mixed micelles nanoformulation significantly amplified apoptosis and overall cytotoxic effectiveness against monolayer and spheroid cultures of human prostate carcinomas (16- to 18-fold lower half-maximal inhibitory concentration values in PC3 and LNPaC, respectively), compared to free Brb. Mixed PEG-PE/TPGS micelles represent a promising delivery platform for the sparingly soluble anticancer agent, Brb, encouraging further pharmaceutical development of this drug for cancer therapy.
Collapse
Affiliation(s)
- Roger Shen
- Department of Family Medicine, Northeastern Health Systems-Tahlequah City Hospital, Tahlequah, OK, USA
| | - Jane J Kim
- Department of Pharmaceutical Sciences, College of Pharmacy-Glendale, Midwestern University, Glendale, AZ, USA
| | - Mingyi Yao
- Department of Pharmaceutical Sciences, College of Pharmacy-Glendale, Midwestern University, Glendale, AZ, USA; Nanomedicine Center of Excellence in Translational Nanomedicine, Midwestern University, Glendale, AZ, USA
| | - Tamer A Elbayoumi
- Department of Pharmaceutical Sciences, College of Pharmacy-Glendale, Midwestern University, Glendale, AZ, USA; Nanomedicine Center of Excellence in Translational Nanomedicine, Midwestern University, Glendale, AZ, USA
| |
Collapse
|
31
|
Kumar N, Chaurasia S, Patel RR, Khan G, Kumar V, Mishra B. Atorvastatin calcium loaded PCL nanoparticles: development, optimization, in vitro and in vivo assessments. RSC Adv 2016. [DOI: 10.1039/c5ra26674b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The aim of the present study was to prepare atorvastatin calcium (ATR) loaded poly(ε-caprolactone) nanoparticles (ALPNs) to enhance the oral bioavailability, efficacy and safety profile of drugs.
Collapse
Affiliation(s)
- Nagendra Kumar
- Department of Pharmaceutics
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221005
- India
| | - Sundeep Chaurasia
- Department of Pharmaceutics
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221005
- India
| | - Ravi R. Patel
- Department of Pharmaceutics
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221005
- India
| | - Gayasuddin Khan
- Department of Pharmaceutics
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221005
- India
| | - Vikas Kumar
- Department of Pharmaceutics
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221005
- India
| | - Brahmeshwar Mishra
- Department of Pharmaceutics
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221005
- India
| |
Collapse
|