1
|
Tao T, Mo X, Zhao L. Identifying novel potential drug targets for endometriosis via plasma proteome screening. Front Endocrinol (Lausanne) 2024; 15:1416978. [PMID: 39036049 PMCID: PMC11257892 DOI: 10.3389/fendo.2024.1416978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
Background Endometriosis (EM) is a chronic painful condition that predominantly affects women of reproductive age. Currently, surgery or medication can only provide limited symptom relief. This study used a comprehensive genetic analytical approach to explore potential drug targets for EM in the plasma proteome. Methods In this study, 2,923 plasma proteins were selected as exposure and EM as outcome for two-sample Mendelian randomization (MR) analyses. The plasma proteomic data were derived from the UK Biobank Pharmaceutical Proteomics Project (UKB-PPP), while the EM dataset from the FinnGen consortium R10 release data. Several sensitivity analyses were performed, including summary-data-based MR (SMR) analyses, heterogeneity in dependent instruments (HEIDI) test, reverse MR analyses, steiger detection test, and bayesian co-localization analyses. Furthermore, proteome-wide association study (PWAS) and single-cell transcriptomic analyses were also conducted to validate the findings. Results Six significant (p < 3.06 × 10-5) plasma protein-EM pairs were identified by MR analyses. These included EPHB4 (OR = 1.40, 95% CI: 1.20 - 1.63), FSHB (OR = 3.91, 95% CI: 3.13 - 4.87), RSPO3 (OR = 1.60, 95% CI: 1.38 - 1.86), SEZ6L2 (OR = 1.44, 95% CI: 1.23 - 1.68) and WASHC3 (OR = 2.00, 95% CI: 1.54 - 2.59) were identified as risk factors, whereas KDR (OR = 0.80, 95% CI: 0.75 - 0.90) was found to be a protective factor. All six plasma proteins passed the SMR test (P < 8.33 × 10-3), but only four plasma proteins passed the HEIDI heterogeneity test (PHEIDI > 0.05), namely FSHB, RSPO3, SEZ6L2 and EPHB4. These four proteins showed strong evidence of co-localization (PPH4 > 0.7). In particular, RSPO3 and EPHB4 were replicated in the validated PWAS. Single-cell analyses revealed high expression of SEZ6L2 and EPHB4 in stromal and epithelial cells within EM lesions, while RSPO3 exhibited elevated expression in stromal cells and fibroblasts. Conclusion Our study identified FSHB, RSPO3, SEZ6L2, and EPHB4 as potential drug targets for EM and highlighted the critical role of stromal and epithelial cells in disease development. These findings provide new insights into the diagnosis and treatment of EM.
Collapse
Affiliation(s)
- Tian Tao
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Mo
- Department of Gynaecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Liangbin Zhao
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Chakraborty C, Sharma AR, Sharma G, Bhattacharya M, Patra BC, Sarkar BK, Banerjee S, Banerjee K, Lee SS. Understanding the molecular evolution of tiger diversity through DNA barcoding marker ND4 and NADH dehydrogenase complex using computational biology. Genes Genomics 2021; 43:759-773. [PMID: 33884571 DOI: 10.1007/s13258-021-01089-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Currently, Tigers (the top predator of an ecosystem) are on the list of endangered species. Thus the need is to understand the tiger's population genomics to design their conservation strategies. OBJECTIVE We analyzed the molecular evolution of tiger diversity using NADH dehydrogenase subunit 4 (ND4), a significant electron transport chain component. METHODS We have analyzed nucleotide composition and distribution pattern of ND genes, molecular evolution, evolutionary conservation pattern and conserved blocks of NADH, phylogenomics of ND4, and estimating species divergence, etc., using different bioinformatics tools and software, and MATLAB programming and computing environment. RESULTS The nucleotide composition and distribution pattern of ND genes in the tiger genome demonstrated an increase in the number of adenine (A) and a lower trend of A+T content in some place of the distribution analysis. However, the observed distributions were not significant (P > 0.05). Evolutionary conservation analysis showed three highly align blocks (186 to 198, 406 to 416, and 527 to 545). On mapping the molecular evolution of ND4 among model species (n = 30), we observed its presence in a broader range of species. ND4 based molecular evolution of tiger diversity and time divergence for a tiger (20 different other species) shows that genus Panthera originated more or less at a similar time. CONCLUSIONS The nucleotide composition and nucleotide distribution pattern of tiger ND genes showed the evolutionary pattern and origin of tiger and Panthera lineage concerning the molecular clock, which will help to understand their adaptive evolution.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Institute For Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, Republic of Korea. .,Department of Biotechnology, Adamas University, North, 24 Parganas, Kolkata, West Bengal, 700126, India.
| | - Ashish Ranjan Sharma
- Institute For Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, Republic of Korea
| | - Garima Sharma
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Manojit Bhattacharya
- Institute For Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, Republic of Korea
| | - Bidhan C Patra
- Department of Zoology, Vidyasagar University, Midnapore, West Bengal, India
| | - Bimal Kumar Sarkar
- Department of Physics, Adamas University, North, 24 Parganas, Kolkata, West Bengal, 700126, India
| | - Saptarshi Banerjee
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Kankana Banerjee
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Sang-Soo Lee
- Institute For Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, Republic of Korea. .,Institute for Skeletal Aging and Orthopedic Surgery, Hallym University Hospital-College of Medicine, Chuncheon-si, Gangwon-do, 24252, Republic of Korea.
| |
Collapse
|
3
|
Lee YH, Sharma AR, Jagga S, Lee SS, Nam JS. Differential Expression Patterns of Rspondin Family and Leucine-Rich Repeat-Containing G-Protein Coupled Receptors in Chondrocytes and Osteoblasts. CELL JOURNAL 2020; 22:437-449. [PMID: 32347037 PMCID: PMC7211279 DOI: 10.22074/cellj.2021.6927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/05/2019] [Indexed: 12/17/2022]
Abstract
Objective Rspondins (RSPOs) are regarded as the significant modulators of WNT signaling pathway and they are expressed dynamically during developmental stages. Since in osteoarthritis (OA) both cartilage and subchondral bone suffer damages and WNT signaling pathway has a crucial role in their maintenance, the objective of the study was to analyze expression profile of RSPO family and its receptors [leucine-rich repeat-containing G-protein coupled receptors (LGRs)] in OA tissue samples as well as in differentiating chondrocytes and osteoblasts. Materials and Methods In this experimental study, human early and advanced stage of OA tissue samples were analyzed for the morphological changes of articular cartilage by hematoxylin and eosin (H and E) staining, safranin-O staining and lubricin immunostaining. RSPOs and LGRs expression were confirmed by immunohistochemistry. Human primary chondrocytes and human osteoblast cell line, SaOS-2, were cultured in differentiation medium till day 14 and they were analyzed in terms of expression of RSPOs, LGRs and specific marker for chondrogenesis and osteogenesis by western blotting and quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results Advanced stage OA tissue samples showed increased expression of RSPO1 and LGR6 in a region close to subchondral bone. While RSPO2 and LGR5 expression were seen overlapping in the deep region of articular cartilage. Differentiating chondrocytes demonstrated elevated expression of RSPO2 and LGR5 from day 7 to day 14, whereas, osteoblasts undergoing differentiation showed enhanced expression of RSPO1 and LGR6 from day 2 to day 14. Under tumor necrosis factor alpha (TNFα) stimulatory conditions, RSPO2 and RSPO1 recovered the suppressed expression of inflammatory, chondrogenic and osteogenic markers, respectively. A recovery in the stability of β-catenin was also noticed in both cases. Conclusion Spatial expression of RSPOs during progression of OA might be dynamically controlled by cartilage and subchondral bone. Interplay amid chondrocytes and osteoblasts, via RSPOs, might provide probable mechanisms for treating inflammatory pathogenic conditions like OA.
Collapse
Affiliation(s)
- Yeon Hee Lee
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Korea. Electronic Address:
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Korea
| | - Supriya Jagga
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Korea
| | - Sang Soo Lee
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Korea
| | - Ju Suk Nam
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Korea
| |
Collapse
|
4
|
Barceló C, Guidi M, Thorball CW, Hammer C, Chaouch A, Scherrer AU, Hasse B, Cavassini M, Furrer H, Calmy A, Haubitz S, Bernasconi E, Buclin T, Fellay J, Tarr PE, Csajka C. Impact of Genetic and Nongenetic Factors on Body Mass Index and Waist-Hip Ratio Change in HIV-Infected Individuals Initiating Antiretroviral Therapy. Open Forum Infect Dis 2020; 7:ofz464. [PMID: 31988971 PMCID: PMC6974740 DOI: 10.1093/ofid/ofz464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/20/2020] [Indexed: 12/17/2022] Open
Abstract
Objective There is limited data on abdominal obesity and the influence of genetics on weight change after antiretroviral therapy (ART) initiation. We assessed body mass index (BMI) and waist hip ration (WHR) change over time in the Swiss HIV Cohort study (SHCS). Methods Mixed-effects models characterizing BMI and WHR change over time in 1090 SHCS participants initiating ART between 2005 and 2015 were developed and used to quantify the influence of demographics, clinical factors, and genetic background. Results Individuals with CD4 nadir <100 cells/µL gained 6.4 times more BMI than individuals with ≥200, and 2.8 times more WHR than individuals with ≥100 (P < .001) during the first 1.5 and 2.5 years after ART initiation, respectively. The risk of being overweight or obese after 1.5 years increased with CD4 nadir <100 cells/µL compared to 100–199 (odds ratio [OR], 2.07; 95% confidence interval [CI], 1.63–2.74) and ≥200 (OR, 1.69; 95% CI, 1.26–2.32), persisting after 10 years of ART. The risk of abdominal obesity after 2.5 years increased with CD4 nadir <100 compared to ≥100 (OR, 1.35; 95% CI, 1.17–1.54 [in men]; OR, 1.36; 95% CI, 1.18–1.57 [in women]), persisting after 10 years of ART. No significant differences were found across antiretroviral drug classes or genetic scores. Conclusions The risk of general and abdominal obesity increased with CD4 nadir <100 cells/µL. Based on our results, including the genetic background would not improve obesity predictions in HIV-infected individuals.
Collapse
Affiliation(s)
- Catalina Barceló
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Lausanne, Lausanne, Switzerland
| | - Monia Guidi
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Lausanne, Lausanne, Switzerland.,Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Christian W Thorball
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Christian Hammer
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA.,Department of Human Genetics, Genentech, South San Francisco, CA, USA
| | - Aziz Chaouch
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Switzerland
| | | | - Barbara Hasse
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Matthias Cavassini
- Service of Infectious Diseases, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Hansjakob Furrer
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Switzerland
| | - Alexandra Calmy
- Division of Infectious Diseases, HIV/AIDS Unit, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sebastian Haubitz
- Department of Infectious Diseases and Hospital Hygiene, Kantonsspital Aarau, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Regional Hospital, Lugano, Switzerland
| | - Thierry Buclin
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philip E Tarr
- University Department of Medicine, Infectious Diseases Service, Kantonsspital Baselland, University of Basel, Switzerland
| | - Chantal Csajka
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Lausanne, Lausanne, Switzerland.,School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
5
|
Emerging role and therapeutic implication of Wnt signaling pathways in liver fibrosis. Gene 2018; 674:57-69. [PMID: 29944952 DOI: 10.1016/j.gene.2018.06.053] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 02/08/2023]
Abstract
Activation of hepatic stellate cells (HSCs) is a pivotal cellular event in liver fibrosis. Therefore, improving our understanding of the molecular pathways that are involved in these processes is essential to generate new therapies for liver fibrosis. Greater knowledge of the role of the Wnt signaling pathway in liver fibrosis could improve understanding of the liver fibrosis pathogenesis. The aim of this review is to describe the present knowledge about the Wnt signaling pathway, which significantly participates in liver fibrosis and HSC activation, and look ahead on new perspectives of Wnt signaling pathway research. Moreover, we will discuss the different interactions with Wnt signaling pathway-regulated liver fibrosis. The Wnt signaling pathway modulates several important aspects of function, including cell proliferation, activation and differentiation. Targeting the Wnt signaling pathway can be a promising direction in liver fibrosis treatment. We discuss new perspectives of Wnt signaling pathway activation in liver fibrosis. For example, antagonist to Wnt and Wnt ligands could inhibit liver fibrosis by regulating Wnt/β-catenin signaling pathway. These findings identify the Wnt signaling pathway as a potentially important for therapeutic targets in liver fibrosis. Future studies are needed in order to find safer and more effective Wnt-based drugs.
Collapse
|
6
|
Piras IS, Krate J, Schrauwen I, Corneveaux JJ, Serrano GE, Sue L, Beach TG, Huentelman MJ. Whole transcriptome profiling of the human hippocampus suggests an involvement of the KIBRA rs17070145 polymorphism in differential activation of the MAPK signaling pathway. Hippocampus 2017; 27:784-793. [PMID: 28380666 DOI: 10.1002/hipo.22731] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 02/26/2017] [Accepted: 03/27/2017] [Indexed: 11/06/2022]
Abstract
The rs17070145-T variant of the WWC1 gene, coding for the KIBRA protein, has been associated with both increased episodic memory performance and lowered risk for late onset Alzheimer's disease, although the mechanism behind this protective effect has not been completely elucidated. To achieve a better understanding of the pathways modulated by rs17070145 and its associated functional variant(s), we used laser capture microdissection (LCM) and RNA-sequencing to investigate the effect of rs17070145 genotypes on whole transcriptome expression in the human hippocampus (HP) of 22 neuropathologically normal individuals, with a specific focus on the dentate gyrus (DG) and at the pyramidal cells (PC) of CA1 and CA3 sub-regions. Differential expression analysis of RNA-seq data within the HP based on the rs17070145 genotype revealed an overexpression of genes involved in the MAPK signaling pathway, potentially driven by the T/T genotype. The most important contribution comes from genes dysregulated within the DG region. Other genes significantly dysregulated, and not involved in the MAPK pathway (Adj P < 0.01 and Fold Change > |1.00|) were: RSPO4 (HP); ARC, DUSP5, DNAJB5, EGR4, PPP1R15A, WBP11P1, EGR1, GADD45B (DG); CH25H, HSPA1A, HSPA1B, TNFSF9, and NPAS4 (PC). Several evidences suggested that the MAPK signaling pathway is linked with memory and learning processes. In non-neuronal cells, the KIBRA protein is phosphorylated by ERK1/2 (involved in the MAPK signaling) in cells as well as in vitro. Several of the other dysregulated genes are involved in memory and learning processes, as well as in Alzheimer's Disease. In conclusion, our results suggest that the effect of the WWC1 rs17070145 polymorphism on memory performance and Alzheimer's disease might be due to a differential regulation of the MAPK signaling, a key pathway involved in memory and learning processes.
Collapse
Affiliation(s)
- Ignazio S Piras
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, 85004
| | - Jonida Krate
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, 85004
| | - Isabelle Schrauwen
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, 85004
| | - Jason J Corneveaux
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, 85004
| | - Geidy E Serrano
- Civin Laboratory of Neuropathology at Banner Sun Health Research Institute, Sun City, Arizona, 85351
| | - Lucia Sue
- Civin Laboratory of Neuropathology at Banner Sun Health Research Institute, Sun City, Arizona, 85351
| | - Thomas G Beach
- Civin Laboratory of Neuropathology at Banner Sun Health Research Institute, Sun City, Arizona, 85351
| | - Matthew J Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, 85004
| |
Collapse
|
7
|
Genetic polymorphism in extracellular regulators of Wnt signaling pathway. BIOMED RESEARCH INTERNATIONAL 2015; 2015:847529. [PMID: 25945348 PMCID: PMC4402192 DOI: 10.1155/2015/847529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/05/2015] [Indexed: 11/18/2022]
Abstract
The Wnt signaling pathway is mediated by a family of secreted glycoproteins through canonical and noncanonical mechanism. The signaling pathways are regulated by various modulators, which are classified into two classes on the basis of their interaction with either Wnt or its receptors. Secreted frizzled-related proteins (sFRPs) are the member of class that binds to Wnt protein and antagonizes Wnt signaling pathway. The other class consists of Dickkopf (DKK) proteins family that binds to Wnt receptor complex. The present review discusses the disease related association of various polymorphisms in Wnt signaling modulators. Furthermore, this review also highlights that some of the sFRPs and DKKs are unable to act as an antagonist for Wnt signaling pathway and thus their function needs to be explored more extensively.
Collapse
|