1
|
Verma I, Seshagiri PB. Current Applications of Human Pluripotent Stem Cells in Neuroscience Research and Cell Transplantation Therapy for Neurological Disorders. Stem Cell Rev Rep 2025; 21:964-987. [PMID: 40186708 DOI: 10.1007/s12015-025-10851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2025] [Indexed: 04/07/2025]
Abstract
Many neurological diseases involving tissue damage cannot be treated with drug-based approaches, and the inaccessibility of human brain samples further hampers the study of these diseases. Human pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), provide an excellent model for studying neural development and function. PSCs can be differentiated into various neural cell types, providing a renewal source of functional human brain cells. Therefore, PSC-derived neural cells are increasingly used for multiple applications, including neurodevelopmental and neurotoxicological studies, neurological disease modeling, drug screening, and regenerative medicine. In addition, the neural cells generated from patient iPSCs can be used to study patient-specific disease signatures and progression. With the recent advances in genome editing technologies, it is possible to remove the disease-related mutations in the patient iPSCs to generate corrected iPSCs. The corrected iPSCs can differentiate into neural cells with normal physiological functions, which can be used for autologous transplantation. This review highlights the current progress in using PSCs to understand the fundamental principles of human neurodevelopment and dissect the molecular mechanisms of neurological diseases. This knowledge can be applied to develop better drugs and explore cell therapy options. We also discuss the basic requirements for developing cell transplantation therapies for neurological disorders and the current status of the ongoing clinical trials.
Collapse
Affiliation(s)
- Isha Verma
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India.
- Department of Neurology, University of Michigan, Ann Arbor, 48109, USA.
| | - Polani B Seshagiri
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
2
|
Pranty AI, Shumka S, Adjaye J. Bilirubin-Induced Neurological Damage: Current and Emerging iPSC-Derived Brain Organoid Models. Cells 2022; 11:2647. [PMID: 36078055 PMCID: PMC9454749 DOI: 10.3390/cells11172647] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Bilirubin-induced neurological damage (BIND) has been a subject of studies for decades, yet the molecular mechanisms at the core of this damage remain largely unknown. Throughout the years, many in vivo chronic bilirubin encephalopathy models, such as the Gunn rat and transgenic mice, have further elucidated the molecular basis of bilirubin neurotoxicity as well as the correlations between high levels of unconjugated bilirubin (UCB) and brain damage. Regardless of being invaluable, these models cannot accurately recapitulate the human brain and liver system; therefore, establishing a physiologically recapitulating in vitro model has become a prerequisite to unveil the breadth of complexities that accompany the detrimental effects of UCB on the liver and developing human brain. Stem-cell-derived 3D brain organoid models offer a promising platform as they bear more resemblance to the human brain system compared to existing models. This review provides an explicit picture of the current state of the art, advancements, and challenges faced by the various models as well as the possibilities of using stem-cell-derived 3D organoids as an efficient tool to be included in research, drug screening, and therapeutic strategies for future clinical applications.
Collapse
Affiliation(s)
| | | | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Faculty of Medicine, Heinrich-Heine University, Moorenstrasse 5, 40225 Dusseldorf, Germany
| |
Collapse
|
3
|
Wertenbroek R, Thoma Y, Mor FM, Grassi S, Heuschkel MO, Roux A, Stoppini L. SpikeOnChip : A Custom Embedded Platform for Neuronal Activity Recording and Analysis. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:743-755. [PMID: 34280107 DOI: 10.1109/tbcas.2021.3097833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this paper we present SpikeOnChip, a custom embedded platform for neuronal activity recording and online analysis. The SpikeOnChip platform was developed in the context of automated drug testing and toxicology assessments on neural tissue made from human induced pluripotent stem cells. The system was developed with the following goals: to be small, autonomous and low power, to handle micro-electrode arrays with up to 256 electrodes, to reduce the amount of data generated from the recording, to be able to do computation during acquisition, and to be customizable. This led to the choice of a Field Programmable Gate Array System-On-Chip platform. This paper focuses on the embedded system for acquisition and processing with key features being the ability to record electrophysiological signals from multiple electrodes, detect biological activity on all channels online for recording, and do frequency domain spectral energy analysis online on all channels during acquisition. Development methodologies are also presented. The platform is finally illustrated in a concrete experiment with bicuculline being administered to grown human neural tissue through microfluidics, resulting in measurable effects in the spike recordings and activity. The presented platform provides a valuable new experimental instrument that can be further extended thanks to the programmable hardware and software.
Collapse
|
4
|
Nisin and non-essential amino acids: new perspective in differentiation of neural progenitors from human-induced pluripotent stem cells in vitro. Hum Cell 2021; 34:1142-1152. [PMID: 33899160 DOI: 10.1007/s13577-021-00537-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/16/2021] [Indexed: 12/23/2022]
Abstract
Over the past decades, stem cell therapy has been investigated as a promising approach towards various diseases, including neurodegenerative disorders. Stem cells show the capability to differentiate into neuronal progenitor cells in vitro. In the present study, the differentiation potential of human-induced pluripotent stem cells (hiPSCs) into neural lineages was examined under the efficient induction media containing forskolin and 3-isobutyl-1-methyl-xanthine (IBMX) in the presence of nisin (Ni), non-essential amino acids (NEAA) and combination of those (NEAA-Ni) in vitro. The optimum concentrations of these factors were obtained by MTT assay and acridine orange (AO) staining. The effect of Ni and NEAA on the expression rate of neural-specific markers including NSE, MAP2, and ß-tubulin III was studied via immunocytochemistry (ICC) and real-time RT-PCR analyses. Our results indicated that the induction medium containing Ni or NEAA increased the gene and protein expression of NSE, MAP2, and β-tubulin III on the 14th differentiation day. On the other hand, NEAA-Ni showed a less-differentiated hiPSCs compared to Ni and NEAA alone. In conclusion, the obtained results illustrated that Ni and NEAA could be applied as effective factors for neural differentiation of hiPSCs in the future.
Collapse
|
5
|
Current State-of-the-Art and Unresolved Problems in Using Human Induced Pluripotent Stem Cell-Derived Dopamine Neurons for Parkinson's Disease Drug Development. Int J Mol Sci 2021; 22:ijms22073381. [PMID: 33806103 PMCID: PMC8037675 DOI: 10.3390/ijms22073381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Human induced pluripotent stem (iPS) cells have the potential to give rise to a new era in Parkinson's disease (PD) research. As a unique source of midbrain dopaminergic (DA) neurons, iPS cells provide unparalleled capabilities for investigating the pathogenesis of PD, the development of novel anti-parkinsonian drugs, and personalized therapy design. Significant progress in developmental biology of midbrain DA neurons laid the foundation for their efficient derivation from iPS cells. The introduction of 3D culture methods to mimic the brain microenvironment further expanded the vast opportunities of iPS cell-based research of the neurodegenerative diseases. However, while the benefits for basic and applied studies provided by iPS cells receive widespread coverage in the current literature, the drawbacks of this model in its current state, and in particular, the aspects of differentiation protocols requiring further refinement are commonly overlooked. This review summarizes the recent data on general and subtype-specific features of midbrain DA neurons and their development. Here, we review the current protocols for derivation of DA neurons from human iPS cells and outline their general weak spots. The associated gaps in the contemporary knowledge are considered and the possible directions for future research that may assist in improving the differentiation conditions and increase the efficiency of using iPS cell-derived neurons for PD drug development are discussed.
Collapse
|
6
|
Rosca A, Coronel R, Moreno M, González R, Oniga A, Martín A, López V, González MDC, Liste I. Impact of environmental neurotoxic: current methods and usefulness of human stem cells. Heliyon 2020; 6:e05773. [PMID: 33376823 PMCID: PMC7758368 DOI: 10.1016/j.heliyon.2020.e05773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/10/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
The development of central nervous system is a highly coordinated and complex process. Any alteration of this process can lead to disturbances in the structure and function of the brain, which can cause deficits in neurological development, resulting in neurodevelopmental disorders, including, for example, autism or attention-deficit hyperactivity disorder. Exposure to certain chemicals during the fetal period and childhood is known to cause developmental neurotoxicity and has serious consequences that persist into adult life. For regulatory purposes, determination of the potential for developmental neurotoxicity is performed according the OECD Guideline 426, in which the test substance is administered to animals during gestation and lactation. However, these animal models are expensive, long-time consuming and may not reflect the physiology in humans; that makes it an unsustainable model to test the large amount of existing chemical products, hence alternative models to the use of animals are needed. One of the most promising methods is based on the use of stem cell technology. Stem cells are undifferentiated cells with the ability to self-renew and differentiate into more specialized cell types. Because of these properties, these cells have gained increased attention as possible therapeutic agents or as disease models. Here, we provide an overview of the current models both animal and cellular, available to study developmental neurotoxicity and review in more detail the usefulness of human stem cells, their properties and how they are becoming an alternative to evaluate and study the mechanisms of action of different environmental toxicants.
Collapse
Affiliation(s)
- Andreea Rosca
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
- Toxicología Ambiental, Centro Nacional de Sanidad Ambiental, Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel Coronel
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Miryam Moreno
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa González
- Unidad de Biología Computacional, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Andreea Oniga
- Toxicología Ambiental, Centro Nacional de Sanidad Ambiental, Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Martín
- Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid, Spain
| | - Victoria López
- Unidad de Biología Computacional, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| | - María del Carmen González
- Toxicología Ambiental, Centro Nacional de Sanidad Ambiental, Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Liste
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Increased Neuronal Differentiation Efficiency in High Cell Density-Derived Induced Pluripotent Stem Cells. Stem Cells Int 2019; 2019:2018784. [PMID: 31871463 PMCID: PMC6913159 DOI: 10.1155/2019/2018784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 10/23/2019] [Indexed: 01/30/2023] Open
Abstract
Human pluripotent stem cells (hPSCs), including induced pluripotent stem cells (iPSCs), provide access to hard-to-obtain cells for studies under physiological and disease conditions. For the study of neurodegenerative diseases, especially sporadic cases where the “disease condition” might be restricted towards the neuroectodermal lineage, obtaining the affected neurons is important to help unravel the underlying molecular mechanism leading to the diseases. Although differentiation of iPSCs to neural lineage allows acquisition of cell types of interest, the technology suffers from low efficiency leading to low yield of neurons. Here, we investigated the potential of adult neuroprogenitor cells (aNPCs) for iPSC derivation and possible confounders such as cell density of infected NPCs on their subsequent neuronal differentiation potential from reprogrammed cells under isogenic conditions. Characterized hiPSCs of defined cell densities generated from aNPCs were subjected to neuronal differentiation on PA6 stromal cells. The results showed that hiPSC clones obtained from low seeding density (iPSC-aNPCLow) differentiated less efficiently compared to those from higher density (iPSC-aNPCHigh). Our findings might help to further improve the yield and quality of neurons for in vitro modelling of neurodegenerative diseases.
Collapse
|
8
|
Human Embryonic Stem Cell-Derived Neural Lineages as In Vitro Models for Screening the Neuroprotective Properties of Lignosus rhinocerus (Cooke) Ryvarden. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3126376. [PMID: 33204680 PMCID: PMC7658738 DOI: 10.1155/2019/3126376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/02/2019] [Accepted: 07/11/2019] [Indexed: 11/17/2022]
Abstract
In the biomedical field, there is growing interest in using human stem cell-derived neurons as in vitro models for pharmacological and toxicological screening of bioactive compounds extracted from natural products. Lignosus rhinocerus (Tiger Milk Mushroom) is used by indigenous communities in Malaysia as a traditional medicine to treat various diseases. The sclerotium of L. rhinocerus has been reported to have medicinal properties, including various bioactivities such as neuritogenic, anti-inflammatory, and anticancer effects. This study aims to investigate the neuroprotective activities of L. rhinocerus sclerotial extracts. Human embryonic stem cell (hESC)-derived neural lineages exposed to the synthetic glucocorticoid, dexamethasone (DEX), were used as the in vitro models. Excess glucocorticoids have been shown to adversely affect fetal brain development and impair differentiation of neural progenitor cells. Screening of different L. rhinocerus sclerotial extracts and DEX on the hESC-derived neural lineages was conducted using cell viability and neurite outgrowth assays. The neuroprotective effects of L. rhinocerus sclerotial extracts against DEX were further evaluated using apoptosis assays and Western blot analysis. Hot aqueous and methanol extracts of L. rhinocerus sclerotium promoted neurite outgrowth of hESC-derived neural stem cells (NSCs) with negligible cytotoxicity. Treatment with DEX decreased viability of NSCs by inducing apoptosis. Coincubation of L. rhinocerus methanol extract with DEX attenuated the DEX-induced apoptosis and reduction in phospho-Akt (pAkt) level in NSCs. These results suggest the involvement of Akt signaling in the neuroprotection of L. rhinocerus methanol extract against DEX-induced apoptosis in NSCs. Methanol extract of L. rhinocerus sclerotium exhibited potential neuroprotective activities against DEX-induced toxicity in hESC-derived NSCs. This study thus validates the use of human stem cell-derived neural lineages as potential in vitro models for screening of natural products with neuroprotective properties.
Collapse
|
9
|
Ko EB, Hwang KA, Choi KC. Prenatal toxicity of the environmental pollutants on neuronal and cardiac development derived from embryonic stem cells. Reprod Toxicol 2019; 90:15-23. [PMID: 31425785 DOI: 10.1016/j.reprotox.2019.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/31/2019] [Accepted: 08/09/2019] [Indexed: 12/13/2022]
Abstract
Pesticides, antibiotics, and industrial excipients are widely used in agriculture, medicine, and chemical industry, respectively. They often end up in the environment, not only being not easily decomposed but also being accumulated. Moreover, they may cause serious toxic problems such as reproductive and developmental defects, immunological toxicity, and carcinogenesis. Hence, they are called environmental pollutants. It is known that the environmental pollutants easily enter the body through various channels such as respiration, ingestion of food, and skin contact etc. in everyday life. If they enter the mother through the placenta, they can cause the disturbance in embryo development as well as malfunction of organs after birth because early prenatal developmental process is highly sensitive to toxic chemicals and stress. Embryonic stem cells (ESCs) that consist of inner cell mass of blastocyst differentiate into distinct cell lineages via three germ layers such as the ectoderm, mesoderm, and endoderm due to their pluripotency. The differentiation process initiated from ESCs reflects dynamic nature of embryonic development. Therefore, ESCs have been used as a useful tool to investigate early developmental toxicities of a variety of stress. Based on relatively recent scientific results, this review would address toxicity of a few chemical substances that have been widely used as pesticide, antibiotics, and industrial excipient on ESCs based-prenatal developmental process. This review further suggests how they act on the viability of ESCs and/or early stages of cardiac and neuronal development derived from ESCs as well as on expression of pluripotency and/or differentiation markers through diverse mechanisms.
Collapse
Affiliation(s)
- Eul-Bee Ko
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
10
|
Heng BC, Jiang S, Yi B, Gong T, Lim LW, Zhang C. Small molecules enhance neurogenic differentiation of dental-derived adult stem cells. Arch Oral Biol 2019; 102:26-38. [PMID: 30954806 DOI: 10.1016/j.archoralbio.2019.03.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/21/2019] [Accepted: 03/28/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Dental-derived stem cells originate from the embryonic neural crest, and exhibit high neurogenic potential. This study aimed to investigate whether a cocktail of eight small molecules (Valproic acid, CHIR99021, Repsox, Forskolin, SP600125, GO6983, Y-27632 and Dorsomorphin) can enhance the in vitro neurogenic differentiation of dental pulp stem cells (DPSCs), stem cells from apical papilla (SCAPs) and gingival mesenchymal stem cells (GMSCs), as a preliminary step towards clinical applications. MATERIALS AND METHODS Neural induction was carried out with a small molecule cocktail based two-step culture protocol, over a total duration of 14 days. At the 8 and 14 day timepoints, the cells were analyzed for expression of neural markers with immunocytochemistry, qRT-PCR and Western Blot. The Fluo 4-AM calcium flux assay was also performed after a further 14 days of neural maturation. RESULTS More pronounced morphological changes characteristic of the neural lineage (i.e. neuritogenesis) were observed in all three cell types treated with small molecules, as compared to the untreated controls. This was corroborated by the immunocytochemistry, qRT-PCR and western blot data, which showed upregulated expression of several early and mature neural markers in all three cell types treated with small molecules, versus the corresponding untreated controls. Finally, the Fluo-4 AM calcium flux assay showed consistently higher calcium transient (F/Fo) peaks for the small molecule-treated versus untreated control groups. CONCLUSIONS Small molecules can enhance the neurogenic differentiation of DPSCs, SCAPs and GMSCs, which offer much potential for therapeutic applications.
Collapse
Affiliation(s)
- Boon Chin Heng
- Peking University School of Stomatology, Beijing, China; Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China; HKU-Shenzhen Institute of Research and Innovation, Shenzhen, China; Faculty of Science and Technology, Sunway University, Selangor Darul Ehsan, Malaysia
| | - Shan Jiang
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China; HKU-Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - Baicheng Yi
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ting Gong
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China; HKU-Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - Lee Wei Lim
- Faculty of Science and Technology, Sunway University, Selangor Darul Ehsan, Malaysia; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chengfei Zhang
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China; HKU-Shenzhen Institute of Research and Innovation, Shenzhen, China.
| |
Collapse
|
11
|
Sánchez-Maldonado B, Galicia MDL, Rojo C, González-Gil A, Flor-García M, Picazo RA. Spheroids Spontaneously Generated In Vitro from Sheep Ovarian Cortical Cells Contain Integrating Cells That Exhibit Hallmarks of Neural Stem/Progenitor Cells. Stem Cells Dev 2018; 27:1557-1576. [PMID: 30251912 DOI: 10.1089/scd.2017.0141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cell spheroids are inducible or spontaneously generated cell aggregates produced in vitro that can provide a valuable model for developmental biology, stem cell biology, and cancer therapy research. This investigation aimed to define the cellular identity of spheroids spontaneously generated in vitro from sheep ovarian cortical cells cultured under specific serum-free conditions. Spheroids were characterized during 21 days of culture by morphometric evaluation, detection of alkaline phosphatase (AP) activity, gene expression analyses of stemness transcription factors and several lineage markers, immunolocalization analyses, as well as assessment of self-renewal and differentiation potential. Cell aggregation, evidenced from day 3 of culture onward, resulted in efficient generation of 65-75 spheroids for every 500,000 cells seeded. The spheroids reached maximum diameter (187 ± 15.9 μm) during the second week of culture and exhibited AP activity. Sox2, Oct4, and Nanog were expressed throughout the culture period, with upregulation of Sox2. Neural lineage specification genes (eg, nestin, vimentin, Pax6, and p75NTR) were expressed from day 10 onward at levels above that of Oct4, Nanog and those for endoderm [alpha-fetoprotein (AFP)], and mesoderm (brachyury) specification. Neural stem cell (NSC)/neural progenitor cell (NPC) markers, nestin, Pax6, p75NTR, and vimentin, were extensively localized in cells on day 10, 15 (44.75% ± 5.84%; 93.54% ± 1.35%; 78.90% ± 4.80%; 73.82% ± 3.40%, respectively), and 21 (49.98% ± 5.30%; 91.84% ± 1.9%; 76.74% ± 11.0%; 95.80% ± 3.60%, respectively). Spheroid cell self-renewal was evidenced by cell proliferation and the generation of new spheroids during two consecutive expansion periods. Culture of spheroid cells under differentiation conditions gave rise to cells showing immunolocalization of the neuron-specific antigen NeuN and the astroglial antigen GFAP (glial fibrillary acidic protein). Our results indicate that spheroids spontaneously generated in this culture system were comprised of cells with molecular characteristics of NSC/NPC that can self-renew and differentiate into neurons and glia, supporting the identity of spheroids as neurospheres.
Collapse
Affiliation(s)
- Belén Sánchez-Maldonado
- 1 Departamento de Medicina y Cirugía, Facultad de Veterinaria, Universidad Complutense de Madrid , Madrid, España
| | - María de Lourdes Galicia
- 2 Sección Departamental de Fisiología, Facultad de Veterinaria, Universidad Complutense de Madrid , Madrid, España
| | - Concepción Rojo
- 3 Sección Departamental de Anatomía y Embriología, Facultad de Veterinaria, Universidad Complutense de Madrid , Madrid, España
| | - Alfredo González-Gil
- 2 Sección Departamental de Fisiología, Facultad de Veterinaria, Universidad Complutense de Madrid , Madrid, España
| | - Miguel Flor-García
- 4 Departamento de Neuropatología Molecular, Centro de Biología Molecular "Severo Ochoa" (CBMSO), CSIC-UAM , Madrid, España.,5 Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid , Madrid, España
| | - Rosa A Picazo
- 2 Sección Departamental de Fisiología, Facultad de Veterinaria, Universidad Complutense de Madrid , Madrid, España
| |
Collapse
|
12
|
Directing neuronal cell fate in vitro : Achievements and challenges. Prog Neurobiol 2018; 168:42-68. [DOI: 10.1016/j.pneurobio.2018.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/30/2018] [Accepted: 04/05/2018] [Indexed: 12/22/2022]
|
13
|
Verma I, Seshagiri PB. Directed differentiation of mouse P19 embryonal carcinoma cells to neural cells in a serum- and retinoic acid-free culture medium. In Vitro Cell Dev Biol Anim 2018; 54:567-579. [PMID: 30030768 DOI: 10.1007/s11626-018-0275-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 06/15/2018] [Indexed: 11/25/2022]
Abstract
P19 embryonal carcinoma cells (EC-cells) provide a simple and robust culture system for studying neural development. Most protocols developed so far for directing neural differentiation of P19 cells depend on the use of culture medium supplemented with retinoic acid (RA) and serum, which has an undefined composition. Hence, such protocols are not suitable for many molecular studies. In this study, we achieved neural differentiation of P19 cells in a serum- and RA-free culture medium by employing the knockout serum replacement (KSR) supplement. In the KSR-containing medium, P19 cells underwent predominant differentiation into neural lineage and by day 12 of culture, neural cells were present in 100% of P19-derived embryoid bodies (EBs). This was consistently accompanied by the increased expression of various neural lineage-associated markers during the course of differentiation. P19-derived neural cells comprised of NES+ neural progenitors (~ 46%), TUBB3+ immature neurons (~ 6%), MAP2+ mature neurons (~ 2%), and GFAP+ astrocytes (~ 50%). A heterogeneous neuronal population consisting of glutamatergic, GABAergic, serotonergic, and dopaminergic neurons was generated. Taken together, our study shows that the KSR medium is suitable for the differentiation of P19 cells to neural lineage without requiring additional (serum and RA) supplements. This stem cell differentiation system could be utilized for gaining mechanistic insights into neural differentiation and for identifying potential neuroactive compounds.
Collapse
Affiliation(s)
- Isha Verma
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Sir CV Raman Road, Bangalore, 560012, India
| | - Polani B Seshagiri
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Sir CV Raman Road, Bangalore, 560012, India.
| |
Collapse
|
14
|
Gopurappilly R, Deb BK, Chakraborty P, Hasan G. Stable STIM1 Knockdown in Self-Renewing Human Neural Precursors Promotes Premature Neural Differentiation. Front Mol Neurosci 2018; 11:178. [PMID: 29942250 PMCID: PMC6004407 DOI: 10.3389/fnmol.2018.00178] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 05/09/2018] [Indexed: 12/31/2022] Open
Abstract
Ca2+ signaling plays a significant role in the development of the vertebrate nervous system where it regulates neurite growth as well as synapse and neurotransmitter specification. Elucidating the role of Ca2+ signaling in mammalian neuronal development has been largely restricted to either small animal models or primary cultures. Here we derived human neural precursor cells (NPCs) from human embryonic stem cells to understand the functional significance of a less understood arm of calcium signaling, Store-operated Ca2+ entry or SOCE, in neuronal development. Human NPCs exhibited robust SOCE, which was significantly attenuated by expression of a stable shRNA-miR targeted toward the SOCE molecule, STIM1. Along with the plasma membrane channel Orai, STIM is an essential component of SOCE in many cell types, where it regulates gene expression. Therefore, we measured global gene expression in human NPCs with and without STIM1 knockdown. Interestingly, pathways down-regulated through STIM1 knockdown were related to cell proliferation and DNA replication processes, whereas post-synaptic signaling was identified as an up-regulated process. To understand the functional significance of these gene expression changes we measured the self-renewal capacity of NPCs with STIM1 knockdown. The STIM1 knockdown NPCs demonstrated significantly reduced neurosphere size and number as well as precocious spontaneous differentiation toward the neuronal lineage, as compared to control cells. These findings demonstrate that STIM1 mediated SOCE in human NPCs regulates gene expression changes, that in vivo are likely to physiologically modulate the self-renewal and differentiation of NPCs.
Collapse
Affiliation(s)
- Renjitha Gopurappilly
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Bipan Kumar Deb
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Pragnya Chakraborty
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| |
Collapse
|
15
|
Centeno EGZ, Cimarosti H, Bithell A. 2D versus 3D human induced pluripotent stem cell-derived cultures for neurodegenerative disease modelling. Mol Neurodegener 2018; 13:27. [PMID: 29788997 PMCID: PMC5964712 DOI: 10.1186/s13024-018-0258-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS), affect millions of people every year and so far, there are no therapeutic cures available. Even though animal and histological models have been of great aid in understanding disease mechanisms and identifying possible therapeutic strategies, in order to find disease-modifying solutions there is still a critical need for systems that can provide more predictive and physiologically relevant results. One possible avenue is the development of patient-derived models, e.g. by reprogramming patient somatic cells into human induced pluripotent stem cells (hiPSCs), which can then be differentiated into any cell type for modelling. These systems contain key genetic information from the donors, and therefore have enormous potential as tools in the investigation of pathological mechanisms underlying disease phenotype, and progression, as well as in drug testing platforms. hiPSCs have been widely cultured in 2D systems, but in order to mimic human brain complexity, 3D models have been proposed as a more advanced alternative. This review will focus on the use of patient-derived hiPSCs to model AD, PD, HD and ALS. In brief, we will cover the available stem cells, types of 2D and 3D culture systems, existing models for neurodegenerative diseases, obstacles to model these diseases in vitro, and current perspectives in the field.
Collapse
Affiliation(s)
- Eduarda G Z Centeno
- Department of Biotechnology, Federal University of Pelotas, Campus Capão do Leão, Pelotas, RS, 96160-000, Brazil.,Department of Pharmacology, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Helena Cimarosti
- Department of Pharmacology, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil.
| | - Angela Bithell
- School of Pharmacy, University of Reading, Whiteknights Campus, Reading, RG6 6UB, UK.
| |
Collapse
|
16
|
Heng BC, Gong T, Wang S, Lim LW, Wu W, Zhang C. Decellularized Matrix Derived from Neural Differentiation of Embryonic Stem Cells Enhances the Neurogenic Potential of Dental Follicle Stem Cells. J Endod 2018; 43:409-416. [PMID: 28231979 DOI: 10.1016/j.joen.2016.10.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/07/2016] [Accepted: 10/22/2016] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Dental follicle stem cells (DFSCs) possess neurogenic potential because they originate from the embryonic neural crest. This study investigated whether neural differentiation of DFSCs can be enhanced by culture on decellularized matrix substrata (NSC-DECM) derived from neurogenesis of human embryonic stem cells (hESCs). METHODS The hESCs were differentiated into neural stem cells (NSCs), and NSC-DECM was extracted from confluent monolayers of NSCs through treatment with deionized water. DFSCs seeded on NSC-DECM, Geltrex, and tissue culture polystyrene (TCPS) were subjected to neural induction during a period of 21 days. Expression of early/intermediate (Musashi1, PAX6, NSE, and βIII-tubulin) and mature/late (NGN2, NeuN, NFM, and MASH1) neural markers by DFSCs was analyzed at the 7-, 14-, and 21-day time points with quantitative real-time polymerase chain reaction. Immunocytochemistry for detection of βIII-tubulin, PAX6, and NGN2 expression by DFSCs on day 7 of neural induction was also carried out. RESULTS Quantitative RT-PCR showed that expression of PAX6, Musashi1, βIII-tubulin, NSE, NGN2, and NFM by DFSCs was enhanced on NSC-DECM versus either the Geltrex or TCPS groups. Immunocytochemistry showed that DFSCs in the NSC-DECM group displayed more intense staining for βIII-tubulin, PAX6, and NGN2 expression, together with more neurite outgrowths and elongated morphology, as compared with either Geltrex or TCPS. CONCLUSIONS DECM derived from neurogenesis of hESCs can enhance the neurogenic potential of DFSCs.
Collapse
Affiliation(s)
- Boon Chin Heng
- Endodontology, Faculty of Dentistry, University of Hong Kong, Pokfulam, Hong Kong, China; Department of Biological Sciences, Sunway University, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Ting Gong
- Endodontology, Faculty of Dentistry, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shuai Wang
- ENT Institute of Shenzhen, Shenzhen Longgang ENT Hospital, Shenzhen, China
| | - Lee Wei Lim
- Department of Biological Sciences, Sunway University, Bandar Sunway, Selangor Darul Ehsan, Malaysia; School of Biomedical Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wutian Wu
- School of Biomedical Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chengfei Zhang
- Endodontology, Faculty of Dentistry, University of Hong Kong, Pokfulam, Hong Kong, China; HKU Shenzhen Institute of Research and Innovation, Hong Kong, China.
| |
Collapse
|
17
|
Verma I, Rashid Z, Sikdar SK, Seshagiri PB. Efficient neural differentiation of mouse pluripotent stem cells in a serum-free medium and development of a novel strategy for enrichment of neural cells. Int J Dev Neurosci 2017; 61:112-124. [PMID: 28673682 DOI: 10.1016/j.ijdevneu.2017.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/13/2017] [Accepted: 06/29/2017] [Indexed: 01/26/2023] Open
Abstract
Pluripotent stem cells (PSCs) offer an excellent model to study neural development and function. Although various protocols have been developed to direct the differentiation of PSCs into desired neural cell types, many of them suffer from limitations including low efficiency, long duration of culture, and the use of expensive, labile, and undefined growth supplements. In this study, we achieved efficient differentiation of mouse PSCs to neural lineage, in the absence of exogenous molecules, by employing a serum-free culture medium containing knockout serum replacement (KSR). Embryoid bodies (EBs) cultured in this medium predominantly produced neural cells which included neural progenitors (15-18%), immature neurons (8-24%), mature neurons (10-26%), astrocytes (27-61%), and oligodendrocytes (∼1%). Different neuronal subtypes including glutamatergic, GABAergic, cholinergic, serotonergic, and dopaminergic neurons were generated. Importantly, neurons generated in the KSR medium were electrically active. Further, the EB scooping strategy, involving the removal of the EB core region from the peripheral EB outgrowth, resulted in the enrichment of PSC-derived neural cells. Taken together, this study provides the evidence that the KSR medium is ideal for the rapid and efficient generation of neural cells, including functional neurons, from PSCs without the requirement of any other additional molecule.
Collapse
Affiliation(s)
- Isha Verma
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India.
| | - Zubin Rashid
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Sujit K Sikdar
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India; Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India.
| | - Polani B Seshagiri
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
18
|
Heng BC, Lim LW, Wu W, Zhang C. An Overview of Protocols for the Neural Induction of Dental and Oral Stem Cells In Vitro. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:220-50. [PMID: 26757369 DOI: 10.1089/ten.teb.2015.0488] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To date, various adult stem cells have been identified within the oral cavity, including dental pulp stem cells, dental follicle stem cells, stem cells from apical papilla, stem cells from human exfoliated deciduous teeth, periodontal ligament stem cells, and mesenchymal stem cells from the gingiva. All of these possess neurogenic potential due to their common developmental origin from the embryonic neural crest. Besides the relative ease of isolation of these adult stem cells from readily available biological waste routinely produced during dental treatment, these cells also possess the advantage of immune compatibility in autologous transplantation. In recent years, much interest has been focused on the derivation of neural lineages from these adult stem cells for therapeutic applications in the brain, spinal cord, and peripheral nerve regeneration. In addition, there are also promising nontherapeutic applications of stem cell-derived neurons in pharmacological and toxicological screening of neuroactive drugs, and for in vitro modeling of neurodevelopmental and neurodegenerative diseases. Hence, this review will critically examine the diverse array of in vitro neural induction protocols that have been devised for dental and oral-derived stem cells. These protocols are defined not only by the culture milieu comprising the basal medium plus growth factors, small molecules, and other culture supplements but also by the substrata/surface coatings utilized, the presence of multiple culture stages, the total culture duration, the initial seeding density, and whether the spheroid/neurosphere formation is being utilized to recapitulate the three-dimensional neural differentiation microenvironment that is naturally present physiologically in vivo.
Collapse
Affiliation(s)
- Boon Chin Heng
- 1 Comprehensive Dental Care, Endodonthics, Faculty of Dentistry, The University of Hong Kong , Pokfulam, Hong Kong
| | - Lee Wei Lim
- 2 School of Biomedical Sciences, The University of Hong Kong , Pokfulam, Hong Kong
| | - Wutian Wu
- 2 School of Biomedical Sciences, The University of Hong Kong , Pokfulam, Hong Kong
| | - Chengfei Zhang
- 1 Comprehensive Dental Care, Endodonthics, Faculty of Dentistry, The University of Hong Kong , Pokfulam, Hong Kong
| |
Collapse
|
19
|
Yap MS, Tang YQ, Yeo Y, Lim WL, Lim LW, Tan KO, Richards M, Othman I, Poh CL, Heng BC. Pluripotent Human embryonic stem cell derived neural lineages for in vitro modelling of enterovirus 71 infection and therapy. Virol J 2016; 13:5. [PMID: 26738773 PMCID: PMC4704260 DOI: 10.1186/s12985-015-0454-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/14/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The incidence of neurological complications and fatalities associated with Hand, Foot & Mouth disease has increased over recent years, due to emergence of newly-evolved strains of Enterovirus 71 (EV71). In the search for new antiviral therapeutics against EV71, accurate and sensitive in vitro cellular models for preliminary studies of EV71 pathogenesis is an essential prerequisite, before progressing to expensive and time-consuming live animal studies and clinical trials. METHODS This study thus investigated whether neural lineages derived from pluripotent human embryonic stem cells (hESC) can fulfil this purpose. EV71 infection of hESC-derived neural stem cells (NSC) and mature neurons (MN) was carried out in vitro, in comparison with RD and SH-SY5Y cell lines. RESULTS Upon assessment of post-infection survivability and EV71 production by the various types, it was observed that NSC were significantly more susceptible to EV71 infection compared to MN, RD (rhabdomyosarcoma) and SH-SY5Y cells, which was consistent with previous studies on mice. The SP81 peptide had significantly greater inhibitory effect on EV71 production by NSC and MN compared to the cancer-derived RD and SH-SY5Y cell lines. CONCLUSIONS Hence, this study demonstrates that hESC-derived neural lineages can be utilized as in vitro models for studying EV71 pathogenesis and for screening of antiviral therapeutics.
Collapse
Affiliation(s)
- May Shin Yap
- Department of Biological Sciences, Faculty of Science & Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, , Selangor Darul Ehsan, Malaysia.
| | - Yin Quan Tang
- Department of Biological Sciences, Faculty of Science & Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, , Selangor Darul Ehsan, Malaysia.
| | - Yin Yeo
- Department of Biological Sciences, Faculty of Science & Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, , Selangor Darul Ehsan, Malaysia.
| | - Wei Ling Lim
- Department of Biological Sciences, Faculty of Science & Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, , Selangor Darul Ehsan, Malaysia.
| | - Lee Wei Lim
- Department of Biological Sciences, Faculty of Science & Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, , Selangor Darul Ehsan, Malaysia. .,The University of Hong Kong, Pokfulam, Hong Kong.
| | - Kuan Onn Tan
- Department of Biological Sciences, Faculty of Science & Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, , Selangor Darul Ehsan, Malaysia.
| | - Mark Richards
- School of Chemical & Life Sciences, Nanyang Polytechnic, 180 Ang Mo Kio Avenue 8, Singapore, 569830, Singapore.
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Chit Laa Poh
- Department of Biological Sciences, Faculty of Science & Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, , Selangor Darul Ehsan, Malaysia.
| | - Boon Chin Heng
- Department of Biological Sciences, Faculty of Science & Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, , Selangor Darul Ehsan, Malaysia. .,The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|