1
|
Sollmann N, Dieckmeyer M, Carballido-Gamio J, Van AT, Karampinos DC, Feuerriegel GC, Foreman SC, Gersing AS, Krug R, Baum T, Kirschke JS. Magnetic Resonance Assessment of Bone Quality in Metabolic Bone Diseases. Semin Musculoskelet Radiol 2024; 28:576-593. [PMID: 39406221 DOI: 10.1055/s-0044-1788693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Metabolic bone diseases (MBDs) are a diverse group of diseases, affecting the mass or structure of bones and leading to reduced bone quality. Parameters representing different aspects of bone health can be obtained from various magnetic resonance imaging (MRI) methods such as proton MR spectroscopy, as well as chemical shift encoding-based water-fat imaging, that have been frequently applied to study bone marrow in particular. Furthermore, T2* mapping and high-resolution trabecular bone imaging have been implemented to study bone microstructure. In addition, quantitative susceptibility mapping and ultrashort echo time imaging are used for trabecular and cortical bone assessment. This review offers an overview of technical aspects, as well as major clinical applications and derived main findings, for MRI-based assessment of bone quality in MBDs. It focuses on osteoporosis as the most common MBD.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Diagnostic, Interventional, and Pediatric Radiology, Inselspital, University of Bern, Bern, Switzerland
| | - Julio Carballido-Gamio
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anh Tu Van
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Georg C Feuerriegel
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Radiology, Balgrist University Hospital, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Sarah C Foreman
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Alexandra S Gersing
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Neuroradiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Roland Krug
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan S Kirschke
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
2
|
Li W, Wang W, Zhang M, Chen Q, Li S. Associations of marrow fat fraction with MR imaging based trabecular bone microarchitecture in first-time diagnosed type 1 diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1287591. [PMID: 38774224 PMCID: PMC11106440 DOI: 10.3389/fendo.2024.1287591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 04/24/2024] [Indexed: 05/24/2024] Open
Abstract
Purpose To determine whether there are alterations in marrow fat content in individuals first-time diagnosed with type 1 diabetes mellitus (T1DM) and to explore the associations between marrow fat fraction and MRI-based findings in trabecular bone microarchitecture. Method A case-control study was conducted, involving adults with first-time diagnosed T1DM (n=35) and age- and sex-matched healthy adults (n=46). Dual-energy X-ray absorptiometry and 3 Tesla-MRI of the proximal tibia were performed to assess trabecular microarchitecture and vertebral marrow fat fraction. Multiple linear regression analysis was used to test the associations of marrow fat fraction with trabecular microarchitecture and bone density while adjusting for potential confounding factors. Results In individuals first-time diagnosed with T1DM, the marrow fat fraction was significantly higher (p < 0.001) compared to healthy controls. T1DM patients also exhibited higher trabecular separation [median (IQR): 2.19 (1.70, 2.68) vs 1.81 (1.62, 2.10), p < 0.001], lower trabecular volume [0.45 (0.30, 0.56) vs 0.53 (0.38, 0.60), p = 0.013], and lower trabecular number [0.37 (0.26, 0.44) vs 0.41 (0.32, 0.47), p = 0.020] compared to controls. However, bone density was similar between the two groups (p = 0.815). In individuals with T1DM, there was an inverse association between marrow fat fraction and trabecular volume (r = -0.69, p < 0.001) as well as trabecular number (r = -0.55, p < 0.001), and a positive association with trabecular separation (r = 0.75, p < 0.001). Marrow fat fraction was independently associated with total trabecular volume (standardized β = -0.21), trabecular number (β = -0.12), and trabecular separation (β = 0.57) of the proximal tibia after adjusting for various factors including age, gender, body mass index, physical activity, smoking status, alcohol consumption, blood glucose, plasma glycated hemoglobin, lipid profile, and bone turnover biomarkers. Conclusions Individuals first-time diagnosed with T1DM experience expansion of marrow adiposity, and elevated marrow fat content is associated with MRI-based trabecular microstructure.
Collapse
Affiliation(s)
- Wei Li
- Department of Radiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Wei Wang
- Department of Radiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Minlan Zhang
- Department of Laboratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Qi Chen
- Department of Radiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Shaojun Li
- Department of Radiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
3
|
Patel M, Razzouk J, Shin D, Cabrera AJ, Nguyen K, Bouterse A, Mbumbgwa P, Brandt Z, Cheng W, Danisa O, Ramos O. Association Between Vertebral Bone Quality Score and Dual-Energy X-ray Absorptiometry for the Assessment of Bone Mineral Density in Adolescent Patients. Cureus 2024; 16:e53402. [PMID: 38440006 PMCID: PMC10911640 DOI: 10.7759/cureus.53402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND The MRI-based vertebral bone quality (VBQ) score is an assessment tool for bone mineral density (BMD) that has been validated in adults against the clinical standard of dual-energy X-ray absorptiometry (DEXA). However, VBQ has yet to be validated against DEXA for use in adolescents. This study evaluated the associations between adolescent VBQ scores, DEXA Z-scores, and BMD values. METHODS The radiographic records of 63 consecutive patients between the ages of 11 and 21 who underwent MRI of the abdomen and pelvis and DEXA of the spine and hip were retrieved. The collected radiographic data consisted of the MRI-based VBQ score, DEXA Z-score, and BMD values of the femoral neck, L1-4 vertebrae, and total body. The VBQ score was calculated by taking the median signal intensity (MSI) from L1-L4 and the SI of the L3 cerebrospinal fluid (CSF). The VBQ score was derived as the quotient of MSIL1-L4 divided by SICSF. RESULTS A mean VBQ score of 2.41 ± 0.29 was observed. Strong correlations of -0.749 (p<0.0001) and -0.780 (p<0.0001) were detected between the VBQ score and DEXA femoral neck and spine Z-scores, respectively. Correlations between VBQ score and DEXA femoral neck, spine, and total body BMD scores were -0.559 (p<0.0001), -0.611 (p<0.0001), and -0.516 (p<.0001), respectively. No significant correlations were found between the VBQ score and age, BMI, weight, or height. A mean difference in VBQ score of -0.155 (p=0.035) was observed between sexes. VBQ demonstrated moderate predictive ability for DEXA-derived Z-scores and BMD scores. CONCLUSIONS VBQ scores were strongly correlated with DEXA Z-scores and moderately correlated with BMD values. The VBQ score can also be used by adolescent patients as an accessory tool to assess bone health.
Collapse
Affiliation(s)
- Meghna Patel
- School of Medicine, University of California, Riverside, Riverside, USA
| | - Jacob Razzouk
- School of Medicine, Loma Linda University, Loma Linda, USA
| | - David Shin
- School of Medicine, Loma Linda University, Loma Linda, USA
| | | | - Kai Nguyen
- School of Medicine, Loma Linda University, Loma Linda, USA
| | - Alex Bouterse
- School of Medicine, Loma Linda University, Loma Linda, USA
| | | | - Zachary Brandt
- School of Medicine, Loma Linda University, Loma Linda, USA
| | - Wayne Cheng
- Department of Orthopedic Surgery, Jerry L. Pettis Veterans Affairs (VA) Medical Center, Loma Linda, USA
| | - Olumide Danisa
- Department of Orthopedic Surgery, Loma Linda University, Loma Linda, USA
| | - Omar Ramos
- Department of Spine Surgery, Twin Cities Spine Center, Minneapolis, USA
| |
Collapse
|
4
|
De-Levie TK, Schiffenbauer YS, Druckmann I, Rouach V, Stern N, Binderman I, Nevo U. Quantitative MR Analysis of Changes in the Radius Bone Marrow in Osteoporosis. J Osteoporos 2023; 2023:7861495. [PMID: 38179189 PMCID: PMC10764646 DOI: 10.1155/2023/7861495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
Purpose This pilot study aimed to explore the feasibility of scanning the human distal radius bone marrow in vivo to detect osteoporosis-related changes using magnetic resonance and evaluate whether the radius may serve as an accessible probing site for osteoporosis. This may lead in the future to the use of affordable means such as low-field MRI scanners for the monitoring of disease progression. Methods A clinical trial was performed using a 3T MR scanner, including 26 women assigned into three study groups: healthy-premenopausal (n = 7; mean age 48.6 ± 3.5 years), healthy-postmenopausal (n = 10; mean age 54.5 ± 5.6 years), and osteoporotic-postmenopausal (n = 9; mean age 61.3 ± 5.6 years). Marrow fat composition was evaluated using T2 maps, a two-compartment model of T1, and a Dixon pulse sequence. Results The osteoporotic group exhibited higher fat content than the other two groups and lower T2 values than the healthy-premenopausal group. Conclusions Osteoporosis-related changes in the composition of the distal radius bone marrow may be detected in vivo using MRI protocols. The scanning protocols chosen here can later be repeated using low-field MRI scanners, thus offering the potential for early detection and treatment monitoring, using an accessible, affordable means that may be applied in small clinics. This trial is registered with MOH_2018-05-23_002247, NCT03742362.
Collapse
Affiliation(s)
- Tamar K. De-Levie
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Ido Druckmann
- Skeletal Imaging Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Vanessa Rouach
- Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Naftali Stern
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- The Sagol Center for Epigenetics, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Itzhak Binderman
- Department of Oral Biology, School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Uri Nevo
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Gao X, Din RU, Cheng X, Yang H. Biomechanical MRI detects reduced bone strength in subjects with vertebral fractures. Bone 2023; 173:116810. [PMID: 37207989 DOI: 10.1016/j.bone.2023.116810] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Vertebral fracture is one of the most serious consequences of osteoporosis. Estimation of vertebral strength from magnetic resonance imaging (MRI) scans may provide a new approach for the prediction of vertebral fractures. To that end, we sought to establish a biomechanical MRI (BMRI) method to compute vertebral strength and test its ability to distinguish fracture from non-fracture subjects. This case-control study included 30 subjects without vertebral fractures and 15 subjects with vertebral fractures. All subjects underwent MRI with a mDIXON-Quant sequence and quantitative computed tomography (QCT), from which proton fat fraction-based bone marrow adipose tissue (BMAT) content and volumetric bone mineral density (vBMD) were measured, respectively. Nonlinear finite element analysis was applied to MRI and QCT scans of L2 vertebrae to compute vertebral strength (BMRI- and BCT-strength). The differences in BMAT content, vBMD, BMRI-strength and BCT-strength between the two groups were examined by t-tests. Receiver operating characteristic (ROC) analysis was performed to assess the ability of each measured parameter to distinguish fracture from non-fracture subjects. Results showed that the fracture group had 23 % lower BMRI-strength (P < .001) and 19 % higher BMAT content (P < .001) than the non-fracture group, whereas no significant difference in vBMD was detected between the two groups. A poor correlation was found between vBMD and BMRI-strength (R2 = 0.33). Compared to vBMD and BMAT content, BMRI- and BCT-strength had the larger area under the curve (0.82 and 0.84, respectively) and provided better sensitivity and specificity in separating fracture from non-fracture subjects. In conclusion, BMRI is capable of detecting reduced bone strength in patients with vertebral fracture, and may serve as a new approach for risk assessment of vertebral fracture.
Collapse
Affiliation(s)
- Xing Gao
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Rahman Ud Din
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Xiaoguang Cheng
- Department of Radiology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Haisheng Yang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
6
|
Jung M, Rospleszcz S, Löffler MT, Walter SS, Maurer E, Jungmann PM, Peters A, Nattenmüller J, Schlett CL, Bamberg F, Kiefer LS, Diallo TD. Association of lumbar vertebral bone marrow and paraspinal muscle fat composition with intervertebral disc degeneration: 3T quantitative MRI findings from the population-based KORA study. Eur Radiol 2023; 33:1501-1512. [PMID: 36241920 PMCID: PMC9935727 DOI: 10.1007/s00330-022-09140-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To assess the association of lumbar bone marrow adipose tissue fat fraction (BMAT-FF) and paraspinal muscle proton density fat fraction (PDFF) and their interplay with intervertebral disc degeneration (IVDD). METHODS In this retrospective cross-sectional study based on a prospective population-based cohort, BMAT-FF and PDFF of asymptomatic individuals were calculated based on 3T-MRI dual-echo and multi-echo Dixon VIBE sequences. IVDD was assessed at motion segments L1 to L5 and dichotomized based on Pfirrmann grade ≥ 4 and/or presence of other severe degenerative changes or spinal abnormalities at least at one segment. Pearson's correlation coefficients were calculated for BMAT-FF and PDFF. Univariable and multivariable logistic regression models for IVDD were calculated. RESULTS Among 335 participants (mean age: 56.2 ± 9.0 years, 43.3% female), the average BMI was 27.7 ± 4.5 kg/m2 and the prevalence of IVDD was high (69.9%). BMAT-FF and PDFF were significantly correlated (r = 0.31-0.34; p < 0.001). The risk for IVDD increased with higher PDFF (OR = 1.45; CI 1.03, 2.04) and BMAT-FF (OR = 1.56; CI 1.16, 2.11). Pairwise combinations of PDFF and BMAT-FF quartiles revealed a lower risk for IVDD in individuals in the lowest BMAT-FF and PDFF quartile (OR = 0.21; CI 0.1, 0.48). Individuals in the highest BMAT-FF and PDFF quartile showed an increased risk for IVDD (OR = 5.12; CI 1.17, 22.34) CONCLUSION: Lumbar BMAT-FF and paraspinal muscle PDFF are correlated and represent both independent and additive risk factors for IVDD. Quantitative MRI measurements of paraspinal myosteatosis and vertebral bone marrow fatty infiltration may serve as imaging biomarkers to assess the individual risk for IVDD. KEY POINTS • Fat composition of the lumbar vertebral bone marrow is positively correlated with paraspinal skeletal muscle fat. • Higher fat-fractions of lumbar vertebral bone marrow and paraspinal muscle are both independent as well as additive risk factors for intervertebral disc degeneration. • Quantitative magnetic resonance imaging measurements of bone marrow and paraspinal muscle may serve as imaging biomarkers for intervertebral disc degeneration.
Collapse
Affiliation(s)
- Matthias Jung
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany.
| | - Susanne Rospleszcz
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Oberschleißheim, Germany
- Department of Epidemiology, Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-University München, Munich, Germany
| | - Maximilian T Löffler
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
| | - Sven S Walter
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University of Tuebingen, Tuebingen, Germany
- Division of Musculoskeletal Radiology, Department of Radiology, NYU Grossman School of Medicine, 660 1st Ave, New York, NY, 10016, USA
| | - Elke Maurer
- Department of Trauma and Reconstructive Surgery, BG Unfallklinik, Schnarrenbergstraße 95, 72070, Tuebingen, Germany
| | - Pia M Jungmann
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Oberschleißheim, Germany
- Department of Epidemiology, Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-University München, Munich, Germany
| | - Johanna Nattenmüller
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Christopher L Schlett
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Lena S Kiefer
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Thierno D Diallo
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| |
Collapse
|
7
|
Mattioli D, Vinicola V, Aragona M, Montuori M, Tarantino U, Capuani S. Behavior during aging of bone-marrow fatty-acids profile in women's calcaneus to search for early potential osteoporotic biomarkers: a 1H-MR Spectroscopy study. Bone 2022; 164:116514. [PMID: 35952974 DOI: 10.1016/j.bone.2022.116514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022]
Abstract
AIM Identify new potential biomarkers of osteoporosis at an early stage, by magnetic resonance spectroscopy (MRS), studying early changes in the metabolic profile of bone-marrow fatty acids in women's calcanei during healthy aging and osteoporosis status. METHODS Single voxel MRS was performed by using a point resolved spectroscopy (PRESS) sequence at 3T. Thirty-four Caucasian women (age range: 22-59 years) were recruited to investigate calcaneus bone marrow. The cohort was constituted of four groups according to age, menopausal status, and T-score evaluated after a DXA examination on the femoral neck. Women were classified in young control (n = 11, mean age = 26.5 ± 3.8 y, age range: 22-34 years), perimenopausal groups (n = 11, mean age = 42.0 ± 3.6 y, age range: 37-47 years), postmenopausal group (n = 9, mean age = 55.4 ± 2.9 y, age range: 50-59 years, mean T-score = -1.70 ± 0.50) and osteoporotic group (n = 6, mean age = 53.0 ± 2.8 y, age range: 50-58 years, mean T-score = -2.54 ± 0.10). The total lipid content (TL), the Unsaturation Index (UI), and the fraction of unsaturated/polyunsaturated fatty acid (fUFA and fPUFA) were calculated. RESULTS TL was significantly correlated with age (r = 0.73, p < 0.001). TL increases linearly with age in the young + perimenopausal population (r = 0.92, p < 0.001) but this trend is not significant in the postmenopausal subject (r = 0.48, p = 0.07). No significant correlation was found between T-Score and TL in postmenopausal and osteoporotic women, whereas a significant correlation was found between TL and time interval (tp) between the age at menopause and the age of the subject at the MRS examination. Conversely, no correlation was found between T-score and tp. The unsaturation index (UI) does not significantly discriminate between osteoporotic, peri- and postmenopausal women. On the other hand, fUFA is significantly different in peri-menopausal and osteoporotic subjects (p = 0.02), while fPUFA is significantly different both between peri- and postmenopausal women (p = 0.05) and postmenopausal and osteoporotic subjects (p = 0.03). Both fUFA and fPUFA did not correlate with subjects' age. CONCLUSION In the female calcaneus, fUFA and fPUFA are promising measurable quantities for the characterization of bone marrow's composition potentially correlated with the development of osteoporosis, whereas UI does not differentiate between subjects of varying osteoporotic status. The fact that the TL in the calcaneus is correlated with tp, indicates that active metabolic changes are still occurring in these subjects, giving complementary information to the DXA about the changes in bone marrow's composition which may affect the whole bone health.
Collapse
Affiliation(s)
| | - Vincenzo Vinicola
- Center for Prevention, Diagnosis and Treatment of Osteoporosis, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Michele Aragona
- National Research Council, Institute for Complex Systems CNR-ISC, Rome, Italy
| | - Marco Montuori
- National Research Council, Institute for Complex Systems CNR-ISC, Rome, Italy
| | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy; Department of Orthopaedics and Traumatology, "Policlinico Tor Vergata" Foundation, Viale Oxford 81, 00133 Rome, Italy
| | - Silvia Capuani
- National Research Council, Institute for Complex Systems CNR-ISC, Rome, Italy; Santa Lucia Foundation, IRCCS, Rome, Italy.
| |
Collapse
|
8
|
Gordon RJ, Pappa HM, Vajapeyam S, Mulkern R, Ecklund K, Snapper SB, Gordon CM. Bone marrow adiposity in pediatric Crohn's disease. Bone 2022; 162:116453. [PMID: 35667602 DOI: 10.1016/j.bone.2022.116453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/02/2022] [Accepted: 05/31/2022] [Indexed: 11/02/2022]
Abstract
Patients with Crohn's disease often have low bone mineral density and an increased risk of osteoporosis. Although decreased bone formation can be seen at diagnosis, the underlying pathophysiology of suboptimal bone accrual remains poorly understood. We sought to evaluate a novel mechanism affecting osteogenesis in patients with Crohn's disease. In this case series, we evaluated bone marrow composition at the distal femur and proximal tibia of the left knee measured via magnetic resonance (MR) spectroscopy and relaxometry in five adolescents with the diagnosis of Crohn's disease. The subjects were enrolled prospectively between 2011 and 2013 at Boston Children's Hospital. Additional clinical information, including DXA scans to evaluate bone mineral density and body composition, and Crohn's disease history, such as glucocorticoid use and disease duration, were assessed. Healthy adolescents have persistent hematopoietic marrow with only 40 to 50 % fat in the long bone metaphyses. The current participants with Crohn's disease had increased marrow adiposity, with a mean fat fraction of 67.8 %. There appeared to be a trend towards higher fat fraction with shorter disease duration, while participants with the longest disease duration had the lowest fat fraction. Participants also had decreased bone density, increased fat mass, and lower lean mass, as assessed by DXA and compared to pediatric reference data. Our MRI results demonstrate increased marrow adiposity in children with Crohn's disease, especially early in the course of the disease. DXA may better demonstrate longer-term effects on bone. Additional studies are needed to evaluate bone marrow composition in these patients and to elucidate further the inverse relationship between marrow adipocytes and osteogenesis, as well as the relationship between bone marrow adiposity and body composition.
Collapse
Affiliation(s)
- Rebecca J Gordon
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States of America.
| | - Helen M Pappa
- Division of Pediatric Gastroenterology, Cardinal Glennon Children's Hospital, Saint Louis University School of Medicine, Saint Louis, MO, United States of America
| | - Sridhar Vajapeyam
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Robert Mulkern
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Kirsten Ecklund
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Catherine M Gordon
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States of America
| |
Collapse
|
9
|
Greater bone marrow fat and myosteatosis are associated with lower vBMD but not asymptomatic vertebral fracture. Eur Radiol 2022; 33:578-586. [PMID: 35932305 DOI: 10.1007/s00330-022-08979-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Organ fat may affect bone metabolism and be associated with vertebral fracture (VF). This study aimed to explore relationships between VF, adiposity indexes measured by MRI, and volumetric BMD (vBMD) measured by quantitative CT (QCT). METHODS Four hundred volunteers, ranging in age from 22 to 83 years, were recruited and underwent same-day abdominal QCT and chemical shift-encoded (CSE) MRI. We used MRI to quantify the fat content of bone marrow (BMF), psoas major and paraspinal muscles, and the liver. Abdominal fat, VF, and vBMD of the lumbar spine were measured by QCT. For VF discrimination analysis, we examined both the whole cohort (60 VF cases in 30 men and 30 women) and a restricted subgroup of those aged over 50 years (50 VF cases in 23 men and 27 women). RESULTS Amongst the men, a 1 SD increase in BMF was associated with a 27.67 (95% CI, -32.71 to -22.62) mg/cm3 decrease in vBMD after adjusting for age and BMI. Amongst women, all adiposity indexes except for liver fat were significantly associated with vBMD, with BMF having the strongest association (β, -24.00; 95% CI, -28.54 to -19.46 mg/cm3). Similar findings were also observed in participants aged over 50 years. The associations of adiposity indexes with vertebral fracture were not significant after adjusting for age in both sexes aged over 50 years. CONCLUSIONS In both sexes, higher bone marrow fat was associated with lower vBMD at the spine. However, marrow fat and other adipose tissues were not associated with radiographic-based prevalent vertebral fractures. KEY POINTS • In both sexes, higher bone marrow fat was associated with lower vBMD at the spine. • Among women, all adiposity indexes except for liver fat content were significantly associated with vBMD, with bone marrow fat having the strongest association. • Marrow fat and other adipose tissues were not associated with radiographic-based asymptomatic vertebral fractures.
Collapse
|
10
|
Wan T, Zhu Y, Han Q, Liu L. Changes in Vertebral Marrow Fat Fraction Using 3D Fat Analysis & Calculation Technique Imaging Sequence in Aromatase Inhibitor-Treated Breast Cancer Women. Front Endocrinol (Lausanne) 2022; 13:931231. [PMID: 35813643 PMCID: PMC9259863 DOI: 10.3389/fendo.2022.931231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Aromatase inhibitor (AI) is a cornerstone drug for postmenopausal women with estrogen receptor-positive early-stage breast cancer. Fat-bone interactions within the bone marrow milieu are growing areas of scientific interest. Although AI treatment could lead to deterioration of the skeleton, the association between AI medication and subsequent marrow adiposity remains elusive. A total of 40 postmenopausal, early-staged, and hormone receptor-positive breast cancer patients who underwent treatment with adjuvant AIs and 40 matched controls were included. Marrow proton density fat fraction (PDFF) at the L1-L4 vertebral bodies using 3D Fat Analysis & Calculation Technique imaging (FACT) sequence at 3.0T, bone mineral density (BMD) by dual-energy X-ray absorptiometry, and serum bone turnover biomarkers were determined at baseline and at 6 and 12 months. We found that, in comparison to baseline, an increase of type I collagen cross-linked telopeptide was detected at 12 months (P <0.05). From baseline to 12 months, the PDFF measured using FACT was greatly increased. At 12 months, the median percent change of PDFF (4.9% vs. 0.9%, P <0.05) was significantly different between the AI treatments and controls. The same trend was observed for the marrow PDFF at 6 months relative to the respective values at baseline. Although BMD values were significantly reduced after 12 months in AI-treated women, changes in BMD vs. baseline condition were not significantly different between the AI-treated and control groups [Δ BMD -1.6% to -1.8% vs. -0.3% to -0.6%, respectively, P > 0.05]. In the AI-treated group, Δ PDFF was associated with Δ BMD at the lumbar spine (r = -0.585, P < 0.001), but not in the controls. Taken together, over a 12-month period, spinal marrow fat content assessed with FACT sequence significantly increased in postmenopausal women with hormone-receptor-positive breast cancer receiving AI treatment.
Collapse
Affiliation(s)
- Taihu Wan
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuhang Zhu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qinghe Han
- Radiology of Department, The Second Hospital of Jilin University, Changchun, China
| | - Lin Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Sollmann N, Kirschke JS, Kronthaler S, Boehm C, Dieckmeyer M, Vogele D, Kloth C, Lisson CG, Carballido-Gamio J, Link TM, Karampinos DC, Karupppasamy S, Beer M, Krug R, Baum T. Imaging of the Osteoporotic Spine - Quantitative Approaches in Diagnostics and for the Prediction of the Individual Fracture Risk. ROFO-FORTSCHR RONTG 2022; 194:1088-1099. [PMID: 35545103 DOI: 10.1055/a-1770-4626] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Osteoporosis is a highly prevalent systemic skeletal disease that is characterized by low bone mass and microarchitectural bone deterioration. It predisposes to fragility fractures that can occur at various sites of the skeleton, but vertebral fractures (VFs) have been shown to be particularly common. Prevention strategies and timely intervention depend on reliable diagnosis and prediction of the individual fracture risk, and dual-energy X-ray absorptiometry (DXA) has been the reference standard for decades. Yet, DXA has its inherent limitations, and other techniques have shown potential as viable add-on or even stand-alone options. Specifically, three-dimensional (3 D) imaging modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI), are playing an increasing role. For CT, recent advances in medical image analysis now allow automatic vertebral segmentation and value extraction from single vertebral bodies using a deep-learning-based architecture that can be implemented in clinical practice. Regarding MRI, a variety of methods have been developed over recent years, including magnetic resonance spectroscopy (MRS) and chemical shift encoding-based water-fat MRI (CSE-MRI) that enable the extraction of a vertebral body's proton density fat fraction (PDFF) as a promising surrogate biomarker of bone health. Yet, imaging data from CT or MRI may be more efficiently used when combined with advanced analysis techniques such as texture analysis (TA; to provide spatially resolved assessments of vertebral body composition) or finite element analysis (FEA; to provide estimates of bone strength) to further improve fracture prediction. However, distinct and experimentally validated diagnostic criteria for osteoporosis based on CT- and MRI-derived measures have not yet been achieved, limiting broad transfer to clinical practice for these novel approaches. KEY POINTS:: · DXA is the reference standard for diagnosis and fracture prediction in osteoporosis, but it has important limitations.. · CT- and MRI-based methods are increasingly used as (opportunistic) approaches.. · For CT, particularly deep-learning-based automatic vertebral segmentation and value extraction seem promising.. · For MRI, multiple techniques including spectroscopy and chemical shift imaging are available to extract fat fractions.. · Texture and finite element analyses can provide additional measures for vertebral body composition and bone strength.. CITATION FORMAT: · Sollmann N, Kirschke JS, Kronthaler S et al. Imaging of the Osteoporotic Spine - Quantitative Approaches in Diagnostics and for the Prediction of the Individual Fracture Risk. Fortschr Röntgenstr 2022; DOI: 10.1055/a-1770-4626.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany.,Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States.,Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan Stefan Kirschke
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sophia Kronthaler
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christof Boehm
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Daniel Vogele
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Christopher Kloth
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | | | - Julio Carballido-Gamio
- Department of Radiology, University of Colorado - Anschutz Medical Campus, Aurora, CO, United States
| | - Thomas Marc Link
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Dimitrios Charalampos Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Subburaj Karupppasamy
- Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design, Singapore.,Sobey School of Business, Saint Mary's University, Halifax, NS, Canada
| | - Meinrad Beer
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Roland Krug
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
12
|
Hung C, Muñoz M, Shibli-Rahhal A. Anorexia Nervosa and Osteoporosis. Calcif Tissue Int 2022; 110:562-575. [PMID: 33666707 DOI: 10.1007/s00223-021-00826-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/14/2021] [Indexed: 12/12/2022]
Abstract
Patients with anorexia nervosa (AN) often experience low bone mineral density (BMD) and increased fracture risk, with low body weight and decreased gonadal function being the strongest predictors of the observed bone mineral deficit and fractures. Other metabolic disturbances have also been linked to bone loss in this group of patients, including growth hormone resistance, low insulin-like growth factor-1 (IGF-1) concentrations, low leptin concentrations, and hypercortisolemia. However, these correlations lack definitive evidence of causality. Weight restoration and resumption of menstrual function have the strongest impact on increasing BMD. Other potential treatment options include bisphosphonates and teriparatide, supported by data from small clinical trials, but these agents are not approved for the treatment of low BMD in adolescents or premenopausal women with AN.
Collapse
Affiliation(s)
- Chermaine Hung
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Marcus Muñoz
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Amal Shibli-Rahhal
- Division of Endocrinology, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
13
|
Kadri A, Binkley N, Hernando D, Anderson PA. Opportunistic Use of Lumbar Magnetic Resonance Imaging for Osteoporosis Screening. Osteoporos Int 2022; 33:861-869. [PMID: 34773484 DOI: 10.1007/s00198-021-06129-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/20/2021] [Indexed: 12/21/2022]
Abstract
UNLABELLED Magnetic resonance imaging (MRI) is a routine assessment before spine surgery. We found that the opportunistic use of MRI with the vertebral bone quality (VBQ) score has good diagnostic ability, with a threshold value of VBQ > 3.0, in recognizing patients who may need further osteoporosis evaluation. INTRODUCTION The purpose of this study was to determine whether the opportunistic use of magnetic resonance imaging (MRI) is useful for identifying spine surgical patients who need further osteoporosis evaluation. METHODS This retrospective study evaluated 83 thoracolumbar spine surgery patients age ≥ 50 who received T1-weighted MRI. Opportunistic MRI was evaluated with the vertebral bone quality (VBQ) score, VBQ (fat) score, and signal-to-noise ratio (SNR). Each uses the median L1-L4 vertebral body signal intensities (SI) divided by either the L3 cerebrospinal fluid (CSF) SI, average SI of the L1 and S1 dorsal fat, or standard deviation (SD) of the background SI dorsal to the skin. Single-level VBQ was calculated as the ratio of the L1 vertebral body and L1 CSF SIs. Receiver-operator curve analysis was performed to determine diagnostic ability. RESULTS The mean age was 70.10, 80% were female, and 96% were Caucasian. The mean ± SD VBQ, single-level VBQ, VBQ (fat), and SNR were 3.39 ± 0.68, 3.56 ± 0.81, 3.95 ± 1.89, and 113.18 ± 77.26, respectively. Using area under the curve, the diagnostic ability of VBQ, single-level VBQ, VBQ (fat), and SNR for clinical osteoporosis were 0.806, 0.779, 0.608, and 0.586, respectively. Diagnostic threshold values identified with optimal sensitivity and specificity were VBQ of 2.95 and single-level VBQ of 3.06. CONCLUSION Opportunistic use of MRI is a simple, effective tool that may help recognize patients who are at risk for complications related to bone disease. A VBQ > 3.0 can identify patients who need additional diagnostic evaluation.
Collapse
Affiliation(s)
- A Kadri
- Department of Orthopedics & Rehabilitation, University of Wisconsin School of Medicine and Public Health, UW Medical Foundation Centennial Building, 1685 Highland Avenue, 6th Floor, Madison, WI, 53705, USA
| | - N Binkley
- Osteoporosis Clinical Research Program, University of Wisconsin, School of Medicine and Public Health, 2870 University Ave, Suite 100, Madison, WI, 53705, USA
| | - D Hernando
- Departments of Radiology and Medical Physics, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53705, USA
| | - P A Anderson
- Department of Orthopedics & Rehabilitation, University of Wisconsin School of Medicine and Public Health, UW Medical Foundation Centennial Building, 1685 Highland Avenue, 6th Floor, Madison, WI, 53705, USA.
| |
Collapse
|
14
|
Gassert FT, Kufner A, Gassert FG, Leonhardt Y, Kronthaler S, Schwaiger BJ, Boehm C, Makowski MR, Kirschke JS, Baum T, Karampinos DC, Gersing AS. MR-based proton density fat fraction (PDFF) of the vertebral bone marrow differentiates between patients with and without osteoporotic vertebral fractures. Osteoporos Int 2022; 33:487-496. [PMID: 34537863 PMCID: PMC8813693 DOI: 10.1007/s00198-021-06147-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/03/2021] [Indexed: 12/20/2022]
Abstract
UNLABELLED The bone marrow proton density fat fraction (PDFF) assessed with MRI enables the differentiation between osteoporotic/osteopenic patients with and without vertebral fractures. Therefore, PDFF may be a potentially useful biomarker for bone fragility assessment. INTRODUCTION To evaluate whether magnetic resonance imaging (MRI)-based proton density fat fraction (PDFF) of vertebral bone marrow can differentiate between osteoporotic/osteopenic patients with and without vertebral fractures. METHODS Of the 52 study patients, 32 presented with vertebral fractures of the lumbar spine (66.4 ± 14.4 years, 62.5% women; acute low-energy osteoporotic/osteopenic vertebral fractures, N = 25; acute high-energy traumatic vertebral fractures, N = 7). These patients were frequency matched for age and sex to patients without vertebral fractures (N = 20, 69.3 ± 10.1 years, 70.0% women). Trabecular bone mineral density (BMD) values were derived from quantitative computed tomography. Chemical shift encoding-based water-fat MRI of the lumbar spine was performed, and PDFF maps were calculated. Associations between fracture status and PDFF were assessed using multivariable linear regression models. RESULTS Over all patients, mean PDFF and trabecular BMD correlated significantly (r = - 0.51, P < 0.001). In the osteoporotic/osteopenic group, those patients with osteoporotic/osteopenic fractures had a significantly higher PDFF than those without osteoporotic fractures after adjusting for age, sex, weight, height, and trabecular BMD (adjusted mean difference [95% confidence interval], 20.8% [10.4%, 30.7%]; P < 0.001), although trabecular BMD values showed no significant difference between the subgroups (P = 0.63). For the differentiation of patients with and without vertebral fractures in the osteoporotic/osteopenic subgroup using mean PDFF, an area under the receiver operating characteristic (ROC) curve (AUC) of 0.88 (P = 0.006) was assessed. When evaluating all patients with vertebral fractures, those with high-energy traumatic fractures had a significantly lower PDFF than those with low-energy osteoporotic/osteopenic vertebral fractures (P < 0.001). CONCLUSION MR-based PDFF enables the differentiation between osteoporotic/osteopenic patients with and without vertebral fractures, suggesting the use of PDFF as a potential biomarker for bone fragility.
Collapse
Affiliation(s)
- F T Gassert
- Department of Radiology, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Ismaningerstr. 22, 81675, Munich, Germany.
| | - A Kufner
- Department of Radiology, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Ismaningerstr. 22, 81675, Munich, Germany
| | - F G Gassert
- Department of Radiology, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Ismaningerstr. 22, 81675, Munich, Germany
| | - Y Leonhardt
- Department of Radiology, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Ismaningerstr. 22, 81675, Munich, Germany
| | - S Kronthaler
- Department of Radiology, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Ismaningerstr. 22, 81675, Munich, Germany
| | - B J Schwaiger
- Department of Radiology, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Ismaningerstr. 22, 81675, Munich, Germany
- Department of Neuroradiology, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - C Boehm
- Department of Radiology, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Ismaningerstr. 22, 81675, Munich, Germany
| | - M R Makowski
- Department of Radiology, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Ismaningerstr. 22, 81675, Munich, Germany
| | - J S Kirschke
- Department of Neuroradiology, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - T Baum
- Department of Neuroradiology, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - D C Karampinos
- Department of Radiology, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Ismaningerstr. 22, 81675, Munich, Germany
| | - A S Gersing
- Department of Radiology, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Ismaningerstr. 22, 81675, Munich, Germany
| |
Collapse
|
15
|
Leonhardt Y, Ketschau J, Ruschke S, Gassert FT, Glanz L, Feuerriegel GC, Gassert FG, Baum T, Kirschke JS, Braren RF, Schwaiger BJ, Makowski MR, Karampinos DC, Gersing AS. Associations of incidental vertebral fractures and longitudinal changes of MR-based proton density fat fraction and T2* measurements of vertebral bone marrow. Front Endocrinol (Lausanne) 2022; 13:1046547. [PMID: 36465625 PMCID: PMC9713243 DOI: 10.3389/fendo.2022.1046547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Quantitative magnetic resonance imaging (MRI) techniques such as chemical shift encoding-based water-fat separation techniques (CSE-MRI) are increasingly applied as noninvasive biomarkers to assess the biochemical composition of vertebrae. This study aims to investigate the longitudinal change of proton density fat fraction (PDFF) and T2* derived from CSE-MRI of the thoracolumbar vertebral bone marrow in patients that develop incidental vertebral compression fractures (VCFs), and whether PDFF and T2* enable the prediction of an incidental VCF. METHODS In this study we included 48 patients with CT-derived bone mineral density (BMD) measurements at baseline. Patients that presented an incidental VCF at follow up (N=12, mean age 70.5 ± 7.4 years, 5 female) were compared to controls without incidental VCF at follow up (N=36, mean age 71.1 ± 8.6 years, 15 females). All patients underwent 3T MRI, containing a significant part of the thoracolumbar spine (Th11-L4), at baseline, 6-month and 12 month follow up, including a gradient echo sequence for chemical shift encoding-based water-fat separation, from which PDFF and T2* maps were obtained. Associations between changes in PDFF, T2* and BMD measurements over 12 months and the group (incidental VCF vs. no VCF) were assessed using multivariable regression models. Mixed-effect regression models were used to test if there is a difference in the rate of change in PDFF, T2* and BMD between patients with and without incidental VCF. RESULTS Prior to the occurrence of an incidental VCF, PDFF in vertebrae increased in the VCF group (ΔPDFF=6.3 ± 3.1%) and was significantly higher than the change of PDFF in the group without VCF (ΔPDFF=2.1 ± 2.5%, P=0.03). There was no significant change in T2* (ΔT2*=1.7 ± 1.1ms vs. ΔT2*=1.1 ± 1.3ms, P=0.31) and BMD (ΔBMD=-1.2 ± 11.3mg/cm3 vs. ΔBMD=-11.4 ± 24.1mg/cm3, P= 0.37) between the two groups over 12 months. At baseline, no significant differences were detected in the average PDFF, T2* and BMD of all measured vertebrae (Th11-L4) between the VCF group and the group without VCF (P=0.66, P=0.35 and P= 0.21, respectively). When assessing the differences in rates of change, there was a significant change in slope for PDFF (2.32 per 6 months, 95% confidence interval (CI) 0.31-4.32; P=0.03) but not for T2* (0.02 per 6 months, CI -0.98-0.95; P=0.90) or BMD (-4.84 per 6 months, CI -23.4-13.7; P=0.60). CONCLUSIONS In our study population, the average change of PDFF over 12 months is significantly higher in patients that develop incidental fractures at 12-month follow up compared to patients without incidental VCF, while T2* and BMD show no significant changes prior to the occurrence of the incidental vertebral fractures. Therefore, a longitudinal increase in bone marrow PDFF may be predictive for vertebral compression fractures.
Collapse
Affiliation(s)
- Yannik Leonhardt
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- *Correspondence: Yannik Leonhardt,
| | - Jannik Ketschau
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Stefan Ruschke
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Florian T. Gassert
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Leander Glanz
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Georg C. Feuerriegel
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Felix G. Gassert
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department on Neuroradiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jan S. Kirschke
- Department on Neuroradiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Rickmer F. Braren
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Benedikt J. Schwaiger
- Department on Neuroradiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marcus R. Makowski
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dimitrios C. Karampinos
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Alexandra S. Gersing
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Neuroradiology, University Hospital of Munich (LMU), Munich, Germany
| |
Collapse
|
16
|
Rinonapoli G, Pace V, Ruggiero C, Ceccarini P, Bisaccia M, Meccariello L, Caraffa A. Obesity and Bone: A Complex Relationship. Int J Mol Sci 2021; 22:13662. [PMID: 34948466 PMCID: PMC8706946 DOI: 10.3390/ijms222413662] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/29/2022] Open
Abstract
There is a large literature on the relationship between obesity and bone. What we can conclude from this review is that the increase in body weight causes an increase in BMD, both for a mechanical effect and for the greater amount of estrogens present in the adipose tissue. Nevertheless, despite an apparent strengthening of the bone witnessed by the increased BMD, the risk of fracture is higher. The greater risk of fracture in the obese subject is due to various factors, which are carefully analyzed by the Authors. These factors can be divided into metabolic factors and increased risk of falls. Fractures have an atypical distribution in the obese, with a lower incidence of typical osteoporotic fractures, such as those of hip, spine and wrist, and an increase in fractures of the ankle, upper leg, and humerus. In children, the distribution is different, but it is not the same in obese and normal-weight children. Specifically, the fractures of the lower limb are much more frequent in obese children. Sarcopenic obesity plays an important role. The authors also review the available literature regarding the effects of high-fat diet, weight loss and bariatric surgery.
Collapse
Affiliation(s)
- Giuseppe Rinonapoli
- Orthopaedic and Traumatology Unit, Department of Medicine, University of Perugia, 06156 Perugia, Italy; (V.P.); (P.C.); (A.C.)
| | - Valerio Pace
- Orthopaedic and Traumatology Unit, Department of Medicine, University of Perugia, 06156 Perugia, Italy; (V.P.); (P.C.); (A.C.)
| | - Carmelinda Ruggiero
- Orthogeriatric Service, Geriatric Unit, Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, 06156 Perugia, Italy;
| | - Paolo Ceccarini
- Orthopaedic and Traumatology Unit, Department of Medicine, University of Perugia, 06156 Perugia, Italy; (V.P.); (P.C.); (A.C.)
| | - Michele Bisaccia
- Department of Orthopaedics and Traumatology, AORN San Pio “Gaetano Rummo Hospital”, Via R.Delcogliano, 82100 Benevento, Italy; (M.B.); (L.M.)
| | - Luigi Meccariello
- Department of Orthopaedics and Traumatology, AORN San Pio “Gaetano Rummo Hospital”, Via R.Delcogliano, 82100 Benevento, Italy; (M.B.); (L.M.)
| | - Auro Caraffa
- Orthopaedic and Traumatology Unit, Department of Medicine, University of Perugia, 06156 Perugia, Italy; (V.P.); (P.C.); (A.C.)
| |
Collapse
|
17
|
Abstract
INTRODUCTION The prevalence of metabolic syndrome has been reported to extremely vary depending on the gender, age, and ethnicity studied. Approximately, 25% of the worldwide adult population is affected by metabolic syndrome, indicating it as a significantly important public health challenge. Likewise, fragility fracture represents an important public health issue too, and the lifetime residual risk of its occurrence has been established in 50% in women and 30% in men over 50 years of age, respectively. Dysmobility syndrome summarizes a cluster of co-existing conditions such as osteoporosis, sarcopenia, obesity. Currently, clinical research focuses essentially on the cardiovascular risks associated with metabolic syndrome. Today, it is conceivable to incorporate all these conditions under a generic "disorder of energy metabolism." EVIDENCE ACQUISITION Animal and human studies suggest metabolic and dysmobility syndromes negatively impact on the risk for fragility fracture, contributing to increase the associated mortality rate. EVIDENCE SYNTHESIS In recent years, strong correlation between type 2 diabetes, a frequent constitutive part of metabolic syndrome and fragility fracture risk has been reported, but the possible molecular mechanisms by which it can occur are still to be defined. CONCLUSIONS Only very few human clinical studies faced these aspects, but they lack adequate endpoints for a good clinical practice in these subjects. Much more still needs to be done before appropriate therapeutic diagnostic pathways will be available for these patients at risk of bone and even generalized fragility. Suggestions for a future overall approach by generating global risk score for these conditions are given.
Collapse
Affiliation(s)
- Roberta Cosso
- Section of Bone and Mineral Diseases, San Giuseppe Hospital, Piancavallo, Verbania, Italy
| | - Alberto Falchetti
- Section of Bone and Mineral Diseases, San Giuseppe Hospital, Piancavallo, Verbania, Italy - .,Unit for Bone Metabolism Diseases and Diabetes, Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| |
Collapse
|
18
|
Li Z, MacDougald OA. Preclinical models for investigating how bone marrow adipocytes influence bone and hematopoietic cellularity. Best Pract Res Clin Endocrinol Metab 2021; 35:101547. [PMID: 34016532 PMCID: PMC8458229 DOI: 10.1016/j.beem.2021.101547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Laboratory mice are a crucial preclinical model system for investigating bone marrow adipocyte (BMAd)-bone and BMAd-hematopoiesis interactions. In this review, we evaluate the suitability of mice to model common human diseases related to osteopenia or hematopoietic disorders, point out consistencies and discrepancies among different studies, and provide insights into model selection. Species, age, sex, skeletal site, and treatment protocol should all be considered when designing future studies.
Collapse
Affiliation(s)
- Ziru Li
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ormond A MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
19
|
Ning Q, Fan T, Tang J, Han S, Wang W, Ren H, Wang H, Ye H. Preliminary analysis of interaction of the fat fraction in the sacroiliac joint among sex, age, and body mass index in a normal Chinese population. J Int Med Res 2021; 48:300060520931281. [PMID: 32723110 PMCID: PMC7391443 DOI: 10.1177/0300060520931281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Objective Iterative decomposition of water and fat with echo asymmetry and least-squares estimation-iron quantification (IDEAL-IQ) is a noninvasive and objective method used to quantitatively measure fat content. Although this technique has been used in the entire abdomen, IDEAL-IQ findings in the sacroiliac joint (SIJ) have rarely been reported. This preclinical study was performed to quantify the amount of fat in the SIJ in healthy volunteers by IDEAL-IQ. Methods From April to November 2017, 60 healthy volunteers with low back pain were included in this retrospective study. The participants were allocated into groups by age (15–30, 31–50, and ≥51 years), sex (male and female), and body mass index (BMI) (<18.5, 18.5–23.9, and ≥24.0 kg/m2). The iliac-side (Fi) and sacral-side (Fs) fat fractions were obtained in all groups. Two- and three-factor multivariate analyses were performed to analyze the effects of sex, age, and BMI on the Fi and Fs. Results The interaction among sex, age, and BMI had no statistically significant effect on the dependent variable. Both Fi and Fs were significantly influenced by age. Fs was significantly influenced by sex. Conclusion The IDEAL-IQ sequence can be used to quantitatively assess the SIJ fat content in healthy volunteers.
Collapse
Affiliation(s)
- Qiuping Ning
- Medical School of Chinese PLA, Beijing, China.,Department of Radiology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China.,Department of Radiology, China Academy of Chinese Medical Sciences Xiyuan Hospital, Beijing, Chinas
| | - Tiebing Fan
- Postdoctoral Management Office, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Jinyang Tang
- Department of Rheumatology, China Academy of Chinese Medical Sciences Xiyuan Hospital, Beijing, China
| | - Shuhua Han
- Department of Rheumatology, China Academy of Chinese Medical Sciences Xiyuan Hospital, Beijing, China
| | - Wensheng Wang
- Department of Radiology, China Academy of Chinese Medical Sciences Xiyuan Hospital, Beijing, Chinas
| | - Hua Ren
- Department of Radiology, China Academy of Chinese Medical Sciences Xiyuan Hospital, Beijing, Chinas
| | - Haiyi Wang
- Department of Radiology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Huiyi Ye
- Department of Radiology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
20
|
Soldati E, Rossi F, Vicente J, Guenoun D, Pithioux M, Iotti S, Malucelli E, Bendahan D. Survey of MRI Usefulness for the Clinical Assessment of Bone Microstructure. Int J Mol Sci 2021; 22:2509. [PMID: 33801539 PMCID: PMC7958958 DOI: 10.3390/ijms22052509] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Bone microarchitecture has been shown to provide useful information regarding the evaluation of skeleton quality with an added value to areal bone mineral density, which can be used for the diagnosis of several bone diseases. Bone mineral density estimated from dual-energy X-ray absorptiometry (DXA) has shown to be a limited tool to identify patients' risk stratification and therapy delivery. Magnetic resonance imaging (MRI) has been proposed as another technique to assess bone quality and fracture risk by evaluating the bone structure and microarchitecture. To date, MRI is the only completely non-invasive and non-ionizing imaging modality that can assess both cortical and trabecular bone in vivo. In this review article, we reported a survey regarding the clinically relevant information MRI could provide for the assessment of the inner trabecular morphology of different bone segments. The last section will be devoted to the upcoming MRI applications (MR spectroscopy and chemical shift encoding MRI, solid state MRI and quantitative susceptibility mapping), which could provide additional biomarkers for the assessment of bone microarchitecture.
Collapse
Affiliation(s)
- Enrico Soldati
- CRMBM, CNRS, Aix Marseille University, 13385 Marseille, France;
- IUSTI, CNRS, Aix Marseille University, 13013 Marseille, France;
- ISM, CNRS, Aix Marseille University, 13288 Marseille, France; (D.G.); (M.P.)
| | - Francesca Rossi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.R.); (S.I.); (E.M.)
| | - Jerome Vicente
- IUSTI, CNRS, Aix Marseille University, 13013 Marseille, France;
| | - Daphne Guenoun
- ISM, CNRS, Aix Marseille University, 13288 Marseille, France; (D.G.); (M.P.)
- Department of Radiology, Institute for Locomotion, Saint-Marguerite Hospital, ISM, CNRS, APHM, Aix Marseille University, 13274 Marseille, France
| | - Martine Pithioux
- ISM, CNRS, Aix Marseille University, 13288 Marseille, France; (D.G.); (M.P.)
- Department of Orthopedics and Traumatology, Institute for Locomotion, Saint-Marguerite Hospital, ISM, CNRS, APHM, Aix Marseille University, 13274 Marseille, France
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.R.); (S.I.); (E.M.)
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| | - Emil Malucelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.R.); (S.I.); (E.M.)
| | - David Bendahan
- CRMBM, CNRS, Aix Marseille University, 13385 Marseille, France;
| |
Collapse
|
21
|
Bao J, Zhuang Y, Chen Z, Cheng J, Zhong J. Detection of fatty acid composition of trabecular bone marrow by localized iDQC MRS at 3 T: A pilot study in healthy volunteers. Magn Reson Imaging 2020; 77:28-35. [PMID: 32926992 DOI: 10.1016/j.mri.2020.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Although a growing body of research shows that the bone marrow adipose tissue (BMAT) may play an essential role in bone inflammation and energy metabolism, available noninvasive methods for distinguishing different fatty acids in BMAT are still limited, in spite of their potential to provide novel biomarkers for bone related diseases. PURPOSE To assess the ability of a localized intermolecular double quantum coherence (iDQC) spectroscopy sequence to resolve more fatty acid peaks than conventional MR spectroscopy (MRS), like polyunsaturated fatty acids (PUFA), from the human BMAT in the presence of trabecular bone; To preliminarily investigate whether the fatty acids composition is different between different regions and groups. RESULTS Compared with conventional MRS results, additional four fatty acids peaks were well resolved using the proposed method in human BMAT in the presence of trabecular bone. In addition, a different fat composition was found between distal femur and proximal tibia: fat was more unsaturated (vinyl, *p < 0.01; diallylic, *p < 0.01) in distal femur bone marrow than in proximal tibia, and this higher unsaturation level was caused by PUFA (r = 0.67, diallylic, *p < 0.01). No significant difference in fatty acid composition were found either between left and right legs, or between female and male in the healthy young subjects studied. CONCLUSION This study demonstrated that the unsaturated fatty acids information of human BMAT in the presence of trabecular bone can be clearly identified with the localized iDQC at 3 T. The resolved peaks, especially PUFA, may serve as additional diagnostic biomarkers for BMAT related diseases in the future.
Collapse
Affiliation(s)
- Jianfeng Bao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China
| | - Yuchuan Zhuang
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester 14627, USA
| | - Zhong Chen
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, Xiamen University, Xiamen 361000, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China.
| | - Jianhui Zhong
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester 14627, USA.
| |
Collapse
|
22
|
Sollmann N, Löffler MT, Kronthaler S, Böhm C, Dieckmeyer M, Ruschke S, Kirschke JS, Carballido-Gamio J, Karampinos DC, Krug R, Baum T. MRI-Based Quantitative Osteoporosis Imaging at the Spine and Femur. J Magn Reson Imaging 2020; 54:12-35. [PMID: 32584496 DOI: 10.1002/jmri.27260] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022] Open
Abstract
Osteoporosis is a systemic skeletal disease with a high prevalence worldwide, characterized by low bone mass and microarchitectural deterioration, predisposing an individual to fragility fractures. Dual-energy X-ray absorptiometry (DXA) has been the clinical reference standard for diagnosing osteoporosis and for assessing fracture risk for decades. However, other imaging modalities are of increasing importance to investigate the etiology, treatment, and fracture risk. The purpose of this work is to review the available literature on quantitative magnetic resonance imaging (MRI) methods and related findings in osteoporosis at the spine and proximal femur as the clinically most important fracture sites. Trabecular bone microstructure analysis at the proximal femur based on high-resolution MRI allows for a better prediction of osteoporotic fracture risk than DXA-based bone mineral density (BMD) alone. In the 1990s, T2 * mapping was shown to correlate with the density and orientation of the trabecular bone. Recently, quantitative susceptibility mapping (QSM), which overcomes some of the limitations of T2 * mapping, has been applied for trabecular bone quantifications at the spine, whereas ultrashort echo time (UTE) imaging provides valuable surrogate markers of cortical bone quantity and quality. Magnetic resonance spectroscopy (MRS) and chemical shift encoding-based water-fat MRI (CSE-MRI) enable the quantitative assessment of the nonmineralized bone compartment through extraction of the bone marrow fat fraction (BMFF). Furthermore, CSE-MRI allows for the differentiation of osteoporotic vs. pathologic fractures, which is of high clinical relevance. Lastly, advanced postprocessing and image analysis tools, particularly considering statistical parametric mapping and region-specific BMFF distributions, have high potential to further improve MRI-based fracture risk assessments at the spine and hip. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Maximilian T Löffler
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sophia Kronthaler
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christof Böhm
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jan S Kirschke
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Julio Carballido-Gamio
- Department of Radiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Roland Krug
- Department of Radiology and Biomedical Imaging, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
23
|
Ehresman J, Schilling A, Pennington Z, Gui C, Chen X, Lubelski D, Ahmed AK, Cottrill E, Khan M, Redmond KJ, Sciubba DM. A novel MRI-based score assessing trabecular bone quality to predict vertebral compression fractures in patients with spinal metastasis. J Neurosurg Spine 2020; 32:499-506. [PMID: 31860825 DOI: 10.3171/2019.9.spine19954] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/30/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Vertebral compression fractures (VCFs) in patients with spinal metastasis can lead to destabilization and often carry a high risk profile. It is therefore important to have tools that enable providers to predict the occurrence of new VCFs. The most widely used tool for bone quality assessment, dual-energy x-ray absorptiometry (DXA), is not often available at a patient's initial presentation and has limited sensitivity. While the Spinal Instability Neoplastic Score (SINS) has been associated with VCFs, it does not take patients' baseline bone quality into consideration. To address this, the authors sought to develop an MRI-based scoring system to estimate trabecular vertebral bone quality (VBQ) and to assess this system's ability to predict the occurrence of new VCFs in patients with spinal metastasis. METHODS Cases of adult patients with a diagnosis of spinal metastasis, who had undergone stereotactic body radiation therapy (SBRT) to the spine or neurosurgical intervention at a single institution between 2012 and 2019, were retrospectively reviewed. The novel VBQ score was calculated for each patient by dividing the median signal intensity of the L1-4 vertebral bodies by the signal intensity of cerebrospinal fluid (CSF). Multivariable logistic regression analysis was used to identify associations of demographic, clinical, and radiological data with new VCFs. RESULTS Among the 105 patients included in this study, 56 patients received a diagnosis of a new VCF and 49 did not. On univariable analysis, the factors associated with new VCFs were smoking status, steroid use longer than 3 months, the SINS, and the novel scoring system-the VBQ score. On multivariable analysis, only the SINS and VBQ score were significant predictors of new VCFs and, when combined, had a predictive accuracy of 89%. CONCLUSIONS As a measure of bone quality, the novel VBQ score significantly predicted the occurrence of new VCFs in patients with spinal metastases independent of the SINS. This suggests that baseline bone quality is a crucial factor that requires assessment when evaluating these patients' conditions and that the VBQ score is a novel and simple MRI-based measure to accomplish this.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Majid Khan
- 3Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | |
Collapse
|
24
|
Tratwal J, Labella R, Bravenboer N, Kerckhofs G, Douni E, Scheller EL, Badr S, Karampinos DC, Beck-Cormier S, Palmisano B, Poloni A, Moreno-Aliaga MJ, Fretz J, Rodeheffer MS, Boroumand P, Rosen CJ, Horowitz MC, van der Eerden BCJ, Veldhuis-Vlug AG, Naveiras O. Reporting Guidelines, Review of Methodological Standards, and Challenges Toward Harmonization in Bone Marrow Adiposity Research. Report of the Methodologies Working Group of the International Bone Marrow Adiposity Society. Front Endocrinol (Lausanne) 2020; 11:65. [PMID: 32180758 PMCID: PMC7059536 DOI: 10.3389/fendo.2020.00065] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/31/2020] [Indexed: 12/14/2022] Open
Abstract
The interest in bone marrow adiposity (BMA) has increased over the last decade due to its association with, and potential role, in a range of diseases (osteoporosis, diabetes, anorexia, cancer) as well as treatments (corticosteroid, radiation, chemotherapy, thiazolidinediones). However, to advance the field of BMA research, standardization of methods is desirable to increase comparability of study outcomes and foster collaboration. Therefore, at the 2017 annual BMA meeting, the International Bone Marrow Adiposity Society (BMAS) founded a working group to evaluate methodologies in BMA research. All BMAS members could volunteer to participate. The working group members, who are all active preclinical or clinical BMA researchers, searched the literature for articles investigating BMA and discussed the results during personal and telephone conferences. According to the consensus opinion, both based on the review of the literature and on expert opinion, we describe existing methodologies and discuss the challenges and future directions for (1) histomorphometry of bone marrow adipocytes, (2) ex vivo BMA imaging, (3) in vivo BMA imaging, (4) cell isolation, culture, differentiation and in vitro modulation of primary bone marrow adipocytes and bone marrow stromal cell precursors, (5) lineage tracing and in vivo BMA modulation, and (6) BMA biobanking. We identify as accepted standards in BMA research: manual histomorphometry and osmium tetroxide 3D contrast-enhanced μCT for ex vivo quantification, specific MRI sequences (WFI and H-MRS) for in vivo studies, and RT-qPCR with a minimal four gene panel or lipid-based assays for in vitro quantification of bone marrow adipogenesis. Emerging techniques are described which may soon come to complement or substitute these gold standards. Known confounding factors and minimal reporting standards are presented, and their use is encouraged to facilitate comparison across studies. In conclusion, specific BMA methodologies have been developed. However, important challenges remain. In particular, we advocate for the harmonization of methodologies, the precise reporting of known confounding factors, and the identification of methods to modulate BMA independently from other tissues. Wider use of existing animal models with impaired BMA production (e.g., Pfrt-/-, KitW/W-v) and development of specific BMA deletion models would be highly desirable for this purpose.
Collapse
Affiliation(s)
- Josefine Tratwal
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Swiss Institute for Experimental Cancer Research, Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rossella Labella
- Tissue and Tumour Microenvironments Lab, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Section of Endocrinology, Department of Internal Medicine, Center for Bone Quality, Leiden University Medical Center, Leiden, Netherlands
| | - Greet Kerckhofs
- Biomechanics Lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Department Materials Engineering, KU Leuven, Leuven, Belgium
| | - Eleni Douni
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
- Institute for Bioinnovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, MO, United States
| | - Sammy Badr
- Univ. Lille, EA 4490 - PMOI - Physiopathologie des Maladies Osseuses Inflammatoires, Lille, France
- CHU Lille, Service de Radiologie et Imagerie Musculosquelettique, Lille, France
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Sarah Beck-Cormier
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Université de Nantes, UFR Odontologie, Nantes, France
| | - Biagio Palmisano
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, United States
| | - Antonella Poloni
- Hematology, Department of Clinic and Molecular Science, Università Politecnica Marche-AOU Ospedali Riuniti, Ancona, Italy
| | - Maria J. Moreno-Aliaga
- Centre for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra's Health Research Institute, Pamplona, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain
| | - Jackie Fretz
- Department of Orthopaedics and Rehabilitation, Cellular and Developmental Biology, Yale University School of Medicine, New Haven, CT, United States
| | - Matthew S. Rodeheffer
- Department of Comparative Medicine and Molecular, Cellular and Developmental Biology, Yale University School of Medicine, New Haven, CT, United States
| | - Parastoo Boroumand
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Clifford J. Rosen
- Maine Medical Center Research Institute, Center for Clinical and Translational Research, Scarborough, ME, United States
| | - Mark C. Horowitz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, United States
| | - Bram C. J. van der Eerden
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Annegreet G. Veldhuis-Vlug
- Section of Endocrinology, Department of Internal Medicine, Center for Bone Quality, Leiden University Medical Center, Leiden, Netherlands
- Maine Medical Center Research Institute, Center for Clinical and Translational Research, Scarborough, ME, United States
- Jan van Goyen Medical Center/OLVG Hospital, Department of Internal Medicine, Amsterdam, Netherlands
- *Correspondence: Annegreet G. Veldhuis-Vlug
| | - Olaia Naveiras
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Swiss Institute for Experimental Cancer Research, Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Hematology Service, Departments of Oncology and Laboratory Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Olaia Naveiras ;
| |
Collapse
|
25
|
Dieckmeyer M, Junker D, Ruschke S, Mookiah MRK, Subburaj K, Burian E, Sollmann N, Kirschke JS, Karampinos DC, Baum T. Vertebral Bone Marrow Heterogeneity Using Texture Analysis of Chemical Shift Encoding-Based MRI: Variations in Age, Sex, and Anatomical Location. Front Endocrinol (Lausanne) 2020; 11:555931. [PMID: 33178134 PMCID: PMC7593641 DOI: 10.3389/fendo.2020.555931] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022] Open
Abstract
Objective: Vertebral bone marrow composition has been extensively studied in the past and shown potential as imaging biomarker for osteoporosis, hematopoietic, and metabolic disorders. However, beyond quantitative assessment of bone marrow fat, little is known about its heterogeneity. Therefore, we investigated bone marrow heterogeneity of the lumbar spine using texture analysis of chemical-shift-encoding (CSE-MRI) based proton density fat fraction (PDFF) maps and its association with age, sex, and anatomical location. Methods: One hundred and fifty-six healthy subjects were scanned (age range: 20-29 years, 12/30 males/females; 30-39, 15/9; 40-49, 5/13; 50-59, 9/27; ≥60: 9/27). A sagittal 8-echo 3D spoiled-gradient-echo sequence at 3T was used for CSE-MRI-based water-fat separation at the lumbar spine. Manual segmentation of vertebral bodies L1-4 was performed. Mean PDFF and texture features (global: variance, skewness, kurtosis; second-order: energy, entropy, contrast, homogeneity, correlation, sum-average, variance, dissimilarity) were extracted at each vertebral level and compared between age groups, sex, and anatomical location. Results: Mean PDFF significantly increased from L1 to L4 (35.89 ± 11.66 to 39.52 ± 11.18%, p = 0.017) and with age (females: 27.19 ± 6.01 to 49.34 ± 7.75%, p < 0.001; males: 31.97 ± 7.96 to 41.83 ± 7.03 %, p = 0.025), but showed no difference between females and males after adjustment for age and BMI (37.13 ± 11.63 vs. 37.17 ± 8.67%; p = 0.199). Bone marrow heterogeneity assessed by texture analysis, in contrast to PDFF, was significantly higher in females compared to males after adjustment for age and BMI (namely contrast and dissimilarity; p < 0.031), demonstrated age-dependent differences, in particular in females (p < 0.05), but showed no statistically significant dependence on vertebral location. Conclusion: Vertebral bone marrow heterogeneity, assessed by texture analysis of PDFF maps, is primarily dependent on sex and age but not on anatomical location. Future studies are needed to investigate bone marrow heterogeneity with regard to aging and disease.
Collapse
Affiliation(s)
- Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- *Correspondence: Michael Dieckmeyer
| | - Daniela Junker
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Muthu Rama Krishnan Mookiah
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, Singapore
| | - Karupppasamy Subburaj
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, Singapore
| | - Egon Burian
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan S. Kirschke
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
26
|
Hu HH, Branca RT, Hernando D, Karampinos DC, Machann J, McKenzie CA, Wu HH, Yokoo T, Velan SS. Magnetic resonance imaging of obesity and metabolic disorders: Summary from the 2019 ISMRM Workshop. Magn Reson Med 2019; 83:1565-1576. [PMID: 31782551 DOI: 10.1002/mrm.28103] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023]
Abstract
More than 100 attendees from Australia, Austria, Belgium, Canada, China, Germany, Hong Kong, Indonesia, Japan, Malaysia, the Netherlands, the Philippines, Republic of Korea, Singapore, Sweden, Switzerland, the United Kingdom, and the United States convened in Singapore for the 2019 ISMRM-sponsored workshop on MRI of Obesity and Metabolic Disorders. The scientific program brought together a multidisciplinary group of researchers, trainees, and clinicians and included sessions in diabetes and insulin resistance; an update on recent advances in water-fat MRI acquisition and reconstruction methods; with applications in skeletal muscle, bone marrow, and adipose tissue quantification; a summary of recent findings in brown adipose tissue; new developments in imaging fat in the fetus, placenta, and neonates; the utility of liver elastography in obesity studies; and the emerging role of radiomics in population-based "big data" studies. The workshop featured keynote presentations on nutrition, epidemiology, genetics, and exercise physiology. Forty-four proffered scientific abstracts were also presented, covering the topics of brown adipose tissue, quantitative liver analysis from multiparametric data, disease prevalence and population health, technical and methodological developments in data acquisition and reconstruction, newfound applications of machine learning and neural networks, standardization of proton density fat fraction measurements, and X-nuclei applications. The purpose of this article is to summarize the scientific highlights from the workshop and identify future directions of work.
Collapse
Affiliation(s)
- Houchun H Hu
- Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio
| | - Rosa Tamara Branca
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Diego Hernando
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jürgen Machann
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research, Tübingen, Germany.,Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Charles A McKenzie
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Holden H Wu
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, California
| | - Takeshi Yokoo
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - S Sendhil Velan
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore.,Singapore BioImaging Consortium, Agency for Science Technology and Research, Singapore
| |
Collapse
|
27
|
Dieckmeyer M, Ruschke S, Rohrmeier A, Syväri J, Einspieler I, Seifert-Klauss V, Schmidmayr M, Metz S, Kirschke JS, Rummeny EJ, Zimmer C, Karampinos DC, Baum T. Vertebral bone marrow fat fraction changes in postmenopausal women with breast cancer receiving combined aromatase inhibitor and bisphosphonate therapy. BMC Musculoskelet Disord 2019; 20:515. [PMID: 31694630 PMCID: PMC6836649 DOI: 10.1186/s12891-019-2916-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/25/2019] [Indexed: 01/02/2023] Open
Abstract
Background Quantification of vertebral bone marrow (VBM) water–fat composition has been proposed as advanced imaging biomarker for osteoporosis. Estrogen deficiency is the primary reason for trabecular bone loss in postmenopausal women. By reducing estrogen levels aromatase inhibitors (AI) as part of breast cancer therapy promote bone loss. Bisphosphonates (BP) are recommended to counteract this adverse drug effect. The purpose of our study was to quantify VBM proton density fat fraction (PDFF) changes at the lumbar spine using chemical shift encoding-based water-fat MRI (CSE-MRI) and bone mineral density (BMD) changes using dual energy X-ray absorptiometry (DXA) related to AI and BP treatment over a 12-month period. Methods Twenty seven postmenopausal breast cancer patients receiving AI therapy were recruited for this study. 22 subjects completed the 12-month study. 14 subjects received AI and BP (AI+BP), 8 subjects received AI without BP (AI-BP). All subjects underwent 3 T MRI. An eight-echo 3D spoiled gradient-echo sequence was used for CSE-based water-fat separation at the lumbar spine to generate PDFF maps. After manual segmentation of the vertebral bodies L1-L5 PDFF values were extracted for each vertebra and averaged for each subject. All subjects underwent DXA of the lumbar spine measuring the average BMD of L1-L4. Results Baseline age, PDFF and BMD showed no significant difference between the two groups (p > 0.05). There was a relative longitudinal increase in mean PDFF (∆relPDFF) in both groups (AI+BP: 5.93%; AI-BP: 3.11%) which was only significant (p = 0.006) in the AI+BP group. ∆relPDFF showed no significant difference between the two groups (p > 0.05). There was no significant longitudinal change in BMD (p > 0.05). Conclusions Over a 12-month period, VBM PDFF assessed with CSE-MRI significantly increased in subjects receiving AI and BP. The present results contradict previous results regarding the effect of only BP therapy on bone marrow fat content quantified by magnetic resonance spectroscopy and bone biopsies. Future longer-term follow-up studies are needed to further characterize the effects of combined AI and BP therapy.
Collapse
Affiliation(s)
- Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroadiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
| | - Stefan Ruschke
- Department of Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Alexander Rohrmeier
- Department of Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jan Syväri
- Department of Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Ingo Einspieler
- Department of Radiology, University Medical Center Regensburg, Regensburg, Germany
| | - Vanadin Seifert-Klauss
- Department of Gynecology and Obstetrics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Monika Schmidmayr
- Department of Gynecology and Obstetrics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stephan Metz
- Department of Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jan S Kirschke
- Department of Diagnostic and Interventional Neuroadiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Ernst J Rummeny
- Department of Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroadiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroadiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
28
|
Badr S, Legroux-Gérot I, Vignau J, Chauveau C, Ruschke S, Karampinos DC, Budzik JF, Cortet B, Cotten A. Comparison of regional bone marrow adiposity characteristics at the hip of underweight and weight-recovered women with anorexia nervosa using magnetic resonance spectroscopy. Bone 2019; 127:135-145. [PMID: 31146035 DOI: 10.1016/j.bone.2019.05.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/17/2019] [Accepted: 05/26/2019] [Indexed: 10/26/2022]
Abstract
Bone marrow adiposity (BMA) is an underestimated tissue, with properties that may alter bone strength especially in diseases that fragilize bone such as anorexia nervosa. In the present study, we investigated the regional characteristics of BMA at the hip of 40 underweight and 36 weight-recovered anorexic women, along with 10 healthy women, using magnetic resonance spectroscopy at multiple anatomical subregions (acetabulum, femoral neck, proximal femoral diaphysis and greater trochanter) to measure bone marrow fat fraction (BMFF) and apparent lipid unsaturation levels (aLUL). Correlations between BMFF, aLUL, body fat percentage (BF), and bone mineral density (BMD) at the femoral neck and total hip, both measured using dual-energy X-ray absorptiometry, were assessed in anorexic patients. Whereas BMFF was significantly higher and aLUL significantly lower at the femoral neck of underweight and weight-recovered patients compared to controls (BMFF: 90.1 ± 6.7% and 90.3 ± 7.5% respectively versus 81.3 ± 8.1%; aLUL: 7.6 ± 1.4% and 7.3 ± 1.3% versus 9.2 ± 1.5%), BMFF and aLUL were not significantly different between the 2 subgroups of patients. Besides, three noteworthy features were observed between BMA and the other measured parameters in anorexic patients. First, synergic alterations of BMA were observed at all sites, with an inverse relationship between BMFF and aLUL (ρ = -0.88). Second, bone mineral compartment and BMA were associated, as a negative correlation between total hip BMD and BMFF was observed at all sites except the greater trochanter (ρ = [-0.32;-0.29]), as well as a positive correlation with aLUL at all sites except the proximal femoral diaphysis (ρ = [0.25;0.37]). Finally, we found a positive correlation between BF and BMFF at the femoral neck (ρ = 0.35), and a negative correlation between BF and aLUL at this same subregion (ρ = -0.33), which suggest a complex relationship between BMA and BF. Overall, BMA possesses regional specificities which may impair bone health, even after weight recovering.
Collapse
Affiliation(s)
- Sammy Badr
- CHU Lille, Service de radiologie et imagerie musculosquelettique, F-59000 Lille, France; Univ. Lille, EA 4490 - PMOI - Physiopathologie des Maladies Osseuses Inflammatoires, F-59000 Lille, France.
| | - Isabelle Legroux-Gérot
- Univ. Lille, EA 4490 - PMOI - Physiopathologie des Maladies Osseuses Inflammatoires, F-59000 Lille, France; CHU Lille, Service de rhumatologie, F-59000 Lille, France
| | - Jean Vignau
- Univ. Lille, EA 4490 - PMOI - Physiopathologie des Maladies Osseuses Inflammatoires, F-59000 Lille, France; CHU Lille, Service d'addictologie, F-59000 Lille, France
| | - Christophe Chauveau
- Univ. Littoral Côte d'Opale, EA 4490 - PMOI - Physiopathologie des Maladies Osseuses Inflammatoires, F-62200 Boulogne-sur-Mer, France
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Jean-François Budzik
- Univ. Lille, EA 4490 - PMOI - Physiopathologie des Maladies Osseuses Inflammatoires, F-59000 Lille, France; Service d'Imagerie Médicale, Groupe Hospitalier de l'Institut Catholique de Lille / Université Catholique de Lille, F-59000 Lille, France
| | - Bernard Cortet
- Univ. Lille, EA 4490 - PMOI - Physiopathologie des Maladies Osseuses Inflammatoires, F-59000 Lille, France; CHU Lille, Service de rhumatologie, F-59000 Lille, France
| | - Anne Cotten
- CHU Lille, Service de radiologie et imagerie musculosquelettique, F-59000 Lille, France; Univ. Lille, EA 4490 - PMOI - Physiopathologie des Maladies Osseuses Inflammatoires, F-59000 Lille, France
| |
Collapse
|
29
|
Baum T, Rohrmeier A, Syväri J, Diefenbach MN, Franz D, Dieckmeyer M, Scharr A, Hauner H, Ruschke S, Kirschke JS, Karampinos DC. Anatomical Variation of Age-Related Changes in Vertebral Bone Marrow Composition Using Chemical Shift Encoding-Based Water-Fat Magnetic Resonance Imaging. Front Endocrinol (Lausanne) 2018; 9:141. [PMID: 29670577 PMCID: PMC5893948 DOI: 10.3389/fendo.2018.00141] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/16/2018] [Indexed: 12/20/2022] Open
Abstract
Assessment of vertebral bone marrow composition has been proposed as imaging biomarker for osteoporosis, hematopoietic, and metabolic disorders. We investigated the anatomical variation of age-related changes of vertebral proton density fat fraction (PDFF) using chemical shift encoding-based water-fat magnetic resonance imaging (MRI). 156 healthy subjects were recruited (age range 20-29 years: 12/30 males/females; 30-39: 15/9; 40-49: 4/14; 50-59: 9/27; 60-69: 5/19; 70-79: 4/8). An eight-echo 3D spoiled gradient-echo sequence at 3T MRI was used for chemical shift-encoding based water-fat separation at the lumbar spine. Vertebral bodies of L1-L4 were manually segmented to extract PDFF values at each vertebral level. PDFF averaged over L1-L4 was significantly (p < 0.05) higher in males than females in the twenties (32.0 ± 8.0 vs. 27.2 ± 6.0%) and thirties (35.3 ± 6.7 vs. 27.3 ± 6.2%). With increasing age, females showed an accelerated fatty conversion of the bone marrow compared to men with no significant (p > 0.05) mean PDFF differences in the forties (32.4 ± 8.4 vs. 34.5 ± 6.8%) and fifties (42.0 ± 6.1 vs. 40.5 ± 9.7%). The accelerated conversion process continued resulting in greater mean PDFF values in females than males in the sixties (40.2 ± 6.9 vs. 48.8 ± 7.7%; p = 0.033) and seventies (43.9 ± 7.6 vs. 50.5 ± 8.2%; p = 0.208), though the latter did not reach statistical significance. Relative age-related PDFF change from the twenties to the seventies increased from 16.7% (L1) to 51.4% (L4) in males and 76.8% (L1) to 85.7% (L4) in females. An accelerated fatty conversion of bone marrow was observed in females with increasing age particularly evident after menopause. Relative age-related PDFF changes showed an anatomical variation with most pronounced changes at lower lumbar vertebral levels in both sexes.
Collapse
Affiliation(s)
- Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- *Correspondence: Thomas Baum,
| | - Alexander Rohrmeier
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan Syväri
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian N. Diefenbach
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Daniela Franz
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Andreas Scharr
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hans Hauner
- Department of Nutritional Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan S. Kirschke
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
30
|
Karampinos DC, Ruschke S, Dieckmeyer M, Diefenbach M, Franz D, Gersing AS, Krug R, Baum T. Quantitative MRI and spectroscopy of bone marrow. J Magn Reson Imaging 2017; 47:332-353. [PMID: 28570033 PMCID: PMC5811907 DOI: 10.1002/jmri.25769] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/05/2017] [Indexed: 12/13/2022] Open
Abstract
Bone marrow is one of the largest organs in the human body, enclosing adipocytes, hematopoietic stem cells, which are responsible for blood cell production, and mesenchymal stem cells, which are responsible for the production of adipocytes and bone cells. Magnetic resonance imaging (MRI) is the ideal imaging modality to monitor bone marrow changes in healthy and pathological states, thanks to its inherent rich soft‐tissue contrast. Quantitative bone marrow MRI and magnetic resonance spectroscopy (MRS) techniques have been also developed in order to quantify changes in bone marrow water–fat composition, cellularity and perfusion in different pathologies, and to assist in understanding the role of bone marrow in the pathophysiology of systemic diseases (e.g. osteoporosis). The present review summarizes a large selection of studies published until March 2017 in proton‐based quantitative MRI and MRS of bone marrow. Some basic knowledge about bone marrow anatomy and physiology is first reviewed. The most important technical aspects of quantitative MR methods measuring bone marrow water–fat composition, fatty acid composition, perfusion, and diffusion are then described. Finally, previous MR studies are reviewed on the application of quantitative MR techniques in both healthy aging and diseased bone marrow affected by osteoporosis, fractures, metabolic diseases, multiple myeloma, and bone metastases. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:332–353.
Collapse
Affiliation(s)
- Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Maximilian Diefenbach
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Daniela Franz
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Alexandra S Gersing
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Roland Krug
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Thomas Baum
- Section for Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany
| |
Collapse
|
31
|
Measurement of vertebral bone marrow proton density fat fraction in children using quantitative water-fat MRI. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 30:449-460. [PMID: 28382554 DOI: 10.1007/s10334-017-0617-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To investigate the feasibility of employing a 3D time-interleaved multi-echo gradient-echo (TIMGRE) sequence to measure the proton density fat fraction (PDFF) in the vertebral bone marrow (VBM) of children and to examine cross-sectional changes with age and intra-individual variations from the lumbar to the cervical region in the first two decades of life. MATERIALS AND METHODS Quantitative water-fat imaging of the spine was performed in 93 patients (49 girls; 44 boys; age median 4.5 years; range 0.1-17.6 years). For data acquisition, a six-echo 3D TIMGRE sequence was used with phase correction and complex-based water-fat separation. Additionally, single-voxel MR spectroscopy (MRS) was performed in the L4 vertebrae of 37 patients. VBM was manually segmented in the midsagittal slice of each vertebra. Univariable and multivariable linear regression models were calculated between averaged lumbar, thoracic and cervical bone marrow PDFF and age with adjustments for sex, height, weight, and body mass index percentile. RESULTS Measured VBM PDFF correlated strongly between imaging and MRS (R 2 = 0.92, slope = 0.94, intercept = -0.72%). Lumbar, thoracic and cervical VBM PDFF correlated significantly (all p < 0.001) with the natural logarithm of age. Differences between female and male patients were not significant (p > 0.05). CONCLUSION VBM development in children showed a sex-independent cross-sectional increase of PDFF correlating with the natural logarithm of age and an intra-individual decrease of PDFF from the lumbar to the cervical region in all age groups. The present results demonstrate the feasibility of using a 3D TIMGRE sequence for PDFF assessment in VBM of children.
Collapse
|
32
|
Li G, Xu Z, Gu H, Li X, Yuan W, Chang S, Fan J, Calimente H, Hu J. Comparison of chemical shift-encoded water-fat MRI and MR spectroscopy in quantification of marrow fat in postmenopausal females. J Magn Reson Imaging 2016; 45:66-73. [PMID: 27341545 DOI: 10.1002/jmri.25351] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 06/06/2016] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To validate a chemical shift-encoded (CSE) water-fat imaging for quantifying marrow fat fraction (FF), using proton magnetic resonance spectroscopy (MRS) as reference. MATERIALS AND METHODS Multiecho T2 -corrected MRS and CSE imaging with eight-echo gradient-echo acquisitions at 3T were performed to calculate marrow FF in 83 subjects, including 41 with normal bone mineral density (BMD), 26 with osteopenia, and 16 with osteoporosis (based on DXA). Eight participants were scanned three times with repositioning to assess the repeatability of CSE FF map measurements. Pearson correlation coefficient, Bland-Altman 95% limit of agreement, and Lin's concordance correlation coefficient were calculated. RESULTS The Pearson correlation coefficient was 0.979 and Lin's concordance correlation coefficient was 0.962 between CSE-based FF and MRS-based FF. All data points, calculated using the Bland-Altman method, were within the limits of agreement. The intra- and interrater agreement for average CSE-based FF was excellent (intrarater, intraclass correlation coefficient [ICC] = 0.993; interrater, ICC = 0.976-0.982 for different BMD groups). In the subgroups of varying BMD, inverse correlations were observed to be very similar between BMD (r = -0.560 to -0.710), T-score (r = -0.526 to -0.747), and CSE-based FF, and between BMD (r = -0.539 to -0.706), T-score (r = -0.501 to -0.742), and MRS-based FF even controlling for age, years since menopause, and body mass index. The repeatability for CSE FF map measurements expressed as absolute precision error was 1.45%. CONCLUSION CSE imaging is equally accurate in characterizing marrow fat content as MRS. Given its excellent correlation and concordance with MRS, the CSE sequence could be used as a potential replacement technique for marrow fat quantification. LEVEL OF EVIDENCE 1 J. Magn. Reson. Imaging 2017;45:66-73.
Collapse
Affiliation(s)
- Guanwu Li
- Department of Radiology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Radiology, Wayne State University, Detroit, Michigan, USA
| | - Zheng Xu
- Xin-Zhuang Community Health Center, Shanghai, China
| | - Hao Gu
- Xin-Zhuang Community Health Center, Shanghai, China
| | - Xuefeng Li
- Department of Radiology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Yuan
- Department of Spinal Disease Unit, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shixin Chang
- Department of Radiology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingzheng Fan
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Horea Calimente
- Department of Radiology, Wayne State University, Detroit, Michigan, USA
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
33
|
Cordes C, Baum T, Dieckmeyer M, Ruschke S, Diefenbach MN, Hauner H, Kirschke JS, Karampinos DC. MR-Based Assessment of Bone Marrow Fat in Osteoporosis, Diabetes, and Obesity. Front Endocrinol (Lausanne) 2016; 7:74. [PMID: 27445977 PMCID: PMC4921741 DOI: 10.3389/fendo.2016.00074] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/14/2016] [Indexed: 12/11/2022] Open
Abstract
Bone consists of the mineralized component (i.e., cortex and trabeculae) and the non-mineralized component (i.e., bone marrow). Most of the routine clinical bone imaging uses X-ray-based techniques and focuses on the mineralized component. However, bone marrow adiposity has been also shown to have a strong linkage with bone health. Specifically, multiple previous studies have demonstrated a negative association between bone marrow fat fraction (BMFF) and bone mineral density. Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) are ideal imaging techniques for non-invasively investigating the properties of bone marrow fat. In the present work, we first review the most important MRI and MRS methods for assessing properties of bone marrow fat, including methodologies for measuring BMFF and bone marrow fatty acid composition parameters. Previous MRI and MRS studies measuring BMFF and fat unsaturation in the context of osteoporosis are then reviewed. Finally, previous studies investigating the relationship between bone marrow fat, other fat depots, and bone health in patients with obesity and type 2 diabetes are presented. In summary, MRI and MRS are powerful non-invasive techniques for measuring properties of bone marrow fat in osteoporosis, obesity, and type 2 diabetes and can assist in future studies investigating the pathophysiology of bone changes in the above clinical scenarios.
Collapse
Affiliation(s)
- Christian Cordes
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- *Correspondence: Christian Cordes,
| | - Thomas Baum
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Maximilian N. Diefenbach
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Hans Hauner
- Else Kröner Fresenius Center for Nutritional Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jan S. Kirschke
- Section of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|