1
|
Zhu W, Jia Q, Ferreira AC, Jiang H, Zhang J, Li B, Zhang M, Zhuo B, Lyu Y, Chen J, Li L, Tian G, Deng S, Meng Z, Shi X. Acupuncture for ischemic stroke: where are we now? ACUPUNCTURE AND HERBAL MEDICINE 2024; 4:36-55. [DOI: 10.1097/hm9.0000000000000094] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Abstract
Acupuncture is an effective treatment for ischemic stroke (IS) and plays a key role in neurological rehabilitation after IS. Acupuncture can improve the clinical symptoms of various complications after IS, including motor dysfunction, swallowing disorders, speech disorders, cognitive impairment, depression, insomnia, and fatigue. However, the mechanisms underlying the effects of acupuncture in IS remain unclear. Available evidence suggests that acupuncture may exert neuroprotective effects through neuroplasticity (neurogenesis and synaptogenesis), angiogenesis, cell proliferation and apoptosis, and regulation of oxidative stress, inflammation, and immunity. Further studies should be conducted to improve the high-quality evidence-based system of acupuncture intervention for IS, by focusing on the clinical and basic research design, increasing the sample size, standardizing and quantifying the standards of acupuncture operations, using multidisciplinary techniques and methods to systematically explore the key targets of acupuncture intervention for IS, and reveal the efficacy and mechanism of acupuncture in the treatment of IS.
Collapse
Affiliation(s)
- Weiming Zhu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qingqing Jia
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | | | - Hailun Jiang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jieying Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Boxuan Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Menglong Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Bifang Zhuo
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yuanhao Lyu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Junjie Chen
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Li Li
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Guang Tian
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shizhe Deng
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhihong Meng
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xuemin Shi
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
2
|
Shayeste H, Asl BM. Automatic seizure detection based on Gray Level Co-occurrence Matrix of STFT imaged-EEG. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104109] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
3
|
Qin S, Zhang Z, Zhao Y, Liu J, Qiu J, Gong Y, Fan W, Guo Y, Guo Y, Xu Z, Guo Y. The impact of acupuncture on neuroplasticity after ischemic stroke: a literature review and perspectives. Front Cell Neurosci 2022; 16:817732. [PMID: 36439200 PMCID: PMC9685811 DOI: 10.3389/fncel.2022.817732] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 10/24/2022] [Indexed: 09/07/2023] Open
Abstract
Ischemic stroke is common in the elderly, and is one of the main causes of long-term disability worldwide. After ischemic stroke, spontaneous recovery and functional reconstruction take place. These processes are possible thanks to neuroplasticity, which involves neurogenesis, synaptogenesis, and angiogenesis. However, the repair of ischemic damage is not complete, and neurological deficits develop eventually. The WHO recommends acupuncture as an alternative and complementary method for the treatment of stroke. Moreover, clinical and experimental evidence has documented the potential of acupuncture to ameliorate ischemic stroke-induced neurological deficits, particularly sequelae such as dyskinesia, spasticity, cognitive impairment, and dysphagia. These effects are related to the ability of acupuncture to promote spontaneous neuroplasticity after ischemic stroke. Specifically, acupuncture can stimulate neurogenesis, activate axonal regeneration and sprouting, and improve the structure and function of synapses. These processes modify the neural network and function of the damaged brain area, producing the improvement of various skills and adaptability. Astrocytes and microglia may be involved in the regulation of neuroplasticity by acupuncture, such as by the production and release of a variety of neurotrophic factors, including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). Moreover, the evidence presented indicates that acupuncture promotes neuroplasticity by modulating the functional reconstruction of the whole brain after ischemia. Therefore, the promotion of neuroplasticity is expected to become a new target for acupuncture in the treatment of neurological deficits after ischemic stroke, and research into the mechanisms responsible for these actions will be of significant clinical value.
Collapse
Affiliation(s)
- Siru Qin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zichen Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yadan Zhao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingyi Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiwen Qiu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yinan Gong
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wen Fan
- Department of Rehabilitation Physical Therapy Course, Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Japan
| | - Yongming Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yang Guo
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Acupuncture Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Li Y, Yu Z, Zhou X, Wu P, Chen J. Aberrant interhemispheric functional reciprocities of the default mode network and motor network in subcortical ischemic stroke patients with motor impairment: A longitudinal study. Front Neurol 2022; 13:996621. [PMID: 36267883 PMCID: PMC9577250 DOI: 10.3389/fneur.2022.996621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The purpose of the present study was to explore the longitudinal changes in functional homotopy in the default mode network (DMN) and motor network and its relationships with clinical characteristics in patients with stroke. Methods Resting-state functional magnetic resonance imaging was performed in stroke patients with subcortical ischemic lesions and healthy controls. The voxel-mirrored homotopic connectivity (VMHC) method was used to examine the differences in functional homotopy in patients with stroke between the two time points. Support vector machine (SVM) and correlation analyses were also applied to investigate whether the detected significant changes in VMHC were the specific feature in patients with stroke. Results The patients with stroke had significantly lower VMHC in the DMN and motor-related regions than the controls, including in the precuneus, parahippocampus, precentral gyrus, supplementary motor area, and middle frontal gyrus. Longitudinal analysis revealed that the impaired VMHC of the superior precuneus showed a significant increase at the second time point, which was no longer significantly different from the controls. Between the two time points, the changes in VMHC in the superior precuneus were significantly correlated with the changes in clinical scores. SVM analysis revealed that the VMHC of the superior precuneus could be used to correctly identify the patients with stroke from the controls with a statistically significant accuracy of 81.25% (P ≤ 0.003). Conclusions Our findings indicated that the increased VMHC in the superior precuneus could be regarded as the neuroimaging manifestation of functional recovery. The significant correlation and the discriminative power in classification results might provide novel evidence to understand the neural mechanisms responsible for brain reorganization after stroke.
Collapse
Affiliation(s)
- Yongxin Li
- School of Traditional Chinese Medicine, Formula-Pattern Research Center, Jinan University, Guangzhou, China
- *Correspondence: Yongxin Li
| | - Zeyun Yu
- Acupuncture and Tuina School/Tird Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuan Zhou
- School of Traditional Chinese Medicine, Formula-Pattern Research Center, Jinan University, Guangzhou, China
| | - Ping Wu
- Acupuncture and Tuina School/Tird Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Ping Wu
| | - Jiaxu Chen
- School of Traditional Chinese Medicine, Formula-Pattern Research Center, Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Publication Trends in Rehabilitative Effects of Acupuncture: A Visual Analysis of the Literature. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7705256. [PMID: 35449821 PMCID: PMC9017514 DOI: 10.1155/2022/7705256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/23/2022] [Indexed: 12/04/2022]
Abstract
Objectives To conduct a comprehensive analysis of scientific outputs in 2011–2021 regarding the rehabilitative effects of acupuncture on diseases. Methods The study was conducted in the form of knowledge graph and data visualization, with data being drawn from the Web of Science Core Collection database. Results Articles and reviews were the dominant types; China, Guangzhou University of Chinese Medicine and Medicine ranked was the active country, institution, and journal, respectively, in terms of issued articles. Systematic reviews and the meta-analyses of stroke and pain were extensively carried out in the past decade, whose principal interventions were manual acupuncture, electroacupuncture, scalp acupuncture, and dry needling correspondingly at Baihui (DU20) and Zusanli (ST36). And most frequently utilized rehabilitation assessment criteria were the Fugl-Meyer Assessment Scale and the Barthel Index. More recently, motor function and chronic obstructive pulmonary disease have captured researchers' attention, which might be the futuristic frontier. Conclusions This article provided a relatively panoramic picture of the scientific outputs in acupuncture for disease rehabilitation, which may help readers embrace the heated topic and grasp the recent research focus on this field.
Collapse
|
6
|
Jin Y, Bai X, Jiang B, Guo Z, Mu Q. Repetitive Transcranial Magnetic Stimulation Induces Quantified Functional and Structural Changes in Subcortical Stroke: A Combined Arterial Spin Labeling Perfusion and Diffusion Tensor Imaging Study. Front Hum Neurosci 2022; 16:829688. [PMID: 35463928 PMCID: PMC9019060 DOI: 10.3389/fnhum.2022.829688] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/28/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose To explore the changes of cerebral blood flow (CBF) and fractional anisotropy (FA) in stroke patients with motor dysfunction after repetitive transcranial magnetic stimulation (rTMS) treatment, and to better understand the role of rTMS on motor rehabilitation of subcortical stroke patients from the perfusion and structural level. Materials and Methods In total, 23 first-episode acute ischemic stroke patients and sixteen healthy controls (HCs) were included. The patients were divided into the rTMS and sham group. The rehabilitation assessments and examination of perfusion and structural MRI were performed before and after rTMS therapy for each patient. Voxel-based analysis was used to detect the difference in CBF and FA among all three groups. The Pearson correlation analysis was conducted to evaluate the relationship between the CBF/FA value and the motor scales. Results After rTMS, significantly increased CBF was found in the ipsilesional supplementary motor area, postcentral gyrus, precentral gyrus, pons, medulla oblongata, contralesional midbrain, superior cerebellar peduncle, and middle cerebellar peduncle compared to that during the prestimulation and in the sham group, these fasciculi comprise the cortex-pontine-cerebellum-cortex (CPC) loop. Besides, altered CBF in the ipsilesional precentral gyrus, postcentral gyrus, and pons was positively associated with the improved Fugl-Meyer assessment (FMA) scores. Significantly decreased FA was found in the contralesional precentral gyrus, increased FA was found in the ipsilesional postcentral gyrus, precentral gyrus, contralesional supplementary motor area, and bilateral cerebellum, these fasciculi comprise the corticospinal tract (CST). The change of FMA score was positively correlated with altered FA value in the ipsilesional postcentral gyrus and negatively correlated with altered FA value in the contralesional precentral gyrus. Conclusion Our results suggested that rTMS could facilitate the motor recovery of stroke patients. High frequency could promote the improvement of functional activity of ipsilesional CPC loop and the recovery of the microstructure of CST.
Collapse
Affiliation(s)
- Yu Jin
- Department of Radiology, Chengdu Second People’s Hospital, Chengdu, China
| | - Xi Bai
- Department of Radiology, Langzhong People’s Hospital, Langzhong, China
| | - Binghu Jiang
- Department of Radiology, Nanchong Central Hospital, Institute of Rehabilitation and Imaging of Brain Function, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Zhiwei Guo
- Department of Radiology, Nanchong Central Hospital, Institute of Rehabilitation and Imaging of Brain Function, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- *Correspondence: Zhiwei Guo,
| | - Qiwen Mu
- Department of Radiology, Nanchong Central Hospital, Institute of Rehabilitation and Imaging of Brain Function, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- Qiwen Mu,
| |
Collapse
|
7
|
Belskaya GN, Stepanova SB, Makarova LD, Sergienko DA, Krylova LG, Antimonova KV. [Acupuncture in the prevention and treatment of stroke: a review of foreign studies]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOĬ FIZICHESKOĬ KULTURY 2020; 97:68-77. [PMID: 32356637 DOI: 10.17116/kurort20209702168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Acupuncture has been recommended by the World Health Organization (WHO) as an alternative and complementary method for treating stroke and a way to increase the effectiveness of rehabilitation. The data available in the literature suggest that acupuncture has a beneficial effect on the status of patients with stroke. The mechanism of action of acupuncture for stroke includes the following components: 1) stimulation of neurogenesis and cell proliferation in the CNS; 2) regulation of cerebral blood flow; 3) antiapoptosis; 4) regulation of neurotransmitters; 5) improvement of the neuronal synaptic function, stimulation of long-term potentiation; 6) stimulation of neuroplasticity; and 7) decrease in blood-brain barrier permeability. Acupuncture has been proven to have a positive impact on the restoration of stroke-related dysfunctions, such as motor disorders, spasticity, cognitive impairment, and dysphagia. The most commonly used acupuncture points for the treatment of motor disorders are GV20, GB20, LI4, ST36, SP6, LI11, GB39, and motor scalp area; those for the treatment of cognitive dysfunction are GV20 and EX-HN-1, and those for the treatment of dysphagia are GV20, GV16, and CV23. A review of the literature indicates that studies of the clinical potential of acupuncture in the treatment of complications and the prevention of stroke are insufficient. It is assumed that the international community's recent interest in acupuncture methods used in the treatment of stroke will lead to the emergence of new studies and publications.
Collapse
Affiliation(s)
- G N Belskaya
- South Ural State Medical University, Ministry of Health of Russia, Chelyabinsk, Russia
| | - S B Stepanova
- South Ural State Medical University, Ministry of Health of Russia, Chelyabinsk, Russia
| | - L D Makarova
- South Ural State Medical University, Ministry of Health of Russia, Chelyabinsk, Russia
| | - D A Sergienko
- South Ural State Medical University, Ministry of Health of Russia, Chelyabinsk, Russia
| | - L G Krylova
- South Ural State Medical University, Ministry of Health of Russia, Chelyabinsk, Russia
| | - K V Antimonova
- South Ural State Medical University, Ministry of Health of Russia, Chelyabinsk, Russia
| |
Collapse
|
8
|
Li BX, Li C, Du YZ, Meng XG. Efficacy and safety of acupuncture for posterior circulation ischemic vertigo: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e22132. [PMID: 32925764 PMCID: PMC7489707 DOI: 10.1097/md.0000000000022132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Posterior circulation ischemic vertigo (PCIV) is one of the most complaint symptoms in clinical, and is associated with high risk of recurrence. Current studies show that acupuncture has therapeutic effect on releasing symptom as well as improving the blood flow of posterior circulation. In this review, we aim to assess the efficacy and safety of acupuncture for PCIV. METHODS Literature of clinical randomized control trials regarding acupuncture for PCIV published before August of 2020 will be searched in databases, including 5 English databases and 4 Chinese databases. For the included studies, methodological quality will be assessed according to Cochrane Risk of Bias Tool, and evidence quality will be evaluated with Grading of Recommendations Assessment, Development and Evaluation guidelines. Data analysis will be performed using Review Manager Software. RESULTS The primary outcomes involve changes of PCIV symptoms and blood flow velocity of vertebrobasilar. The secondary outcomes include Barthel Index, National Institute of Health Stroke Scale, clinical effectiveness, and adverse reactions. CONCLUSION Based on current clinical studies, this systematic review and meta-analysis will provide evidence-based basis for the efficacy and safety of acupuncture in treating PCIV. TRIAL REGISTRATION The protocol for this review has been registered in the INPLASY network (Registration number: INPLASY202070116).
Collapse
|
9
|
Hou Y, Liu Y, Li M, Ning B, Wen Z, Fu W. Acupuncture plus Rehabilitation for Unilateral Neglect after Stroke: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:5301568. [PMID: 32256649 PMCID: PMC7085868 DOI: 10.1155/2020/5301568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/01/2020] [Accepted: 02/06/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To systematically assess the efficacy of acupuncture combined with rehabilitation on unilateral neglect after stroke. METHODS The Cochrane Library, PubMed, Excerpt Medical Database (EMBASE), China National Knowledge Infrastructure (CNKI), China Science and Technology Journal Database (VIP), Chinese Biomedical Literature Database (CBM), and Wan Fang databases were searched online for randomised controlled trials (RCTs) of acupuncture and its effects on unilateral neglect after stroke from their inception to September 2019. RCTs on acupuncture combined with rehabilitation in the experimental group for unilateral neglect compared with rehabilitation alone or rehabilitation plus sham acupuncture in the control group were included. Two authors separately screened the literature, extracted the data, and evaluated the quality of the included studies. Review Manager 5.3 software was used for the data analysis. RESULTS A total of 542 patients from nine RCTs were included. The meta-analysis showed that the experimental groups could significantly improve Fugl-Meyer Assessment (FMA) (MD = 11.54, 95% CI [9.54, 13.54], P < 0.00001) and the ability of daily living (SMD = 1.35, 95% CI [0.64, 2.07], P < 0.00001) and the ability of daily living (SMD = 1.35, 95% CI [0.64, 2.07], P < 0.00001) when compared with the control groups. However, there was no significant difference in the drop of Catherine Bergego Scale (CBS) and Behavioural Inattention Test-conventional (BIT-C) between the two groups. CONCLUSIONS Acupuncture combined with rehabilitation was more effective in improving the motor function and the ability of daily living. Because of the limitations regarding the quantity and quality of the studies in this meta-analysis, high-quality and well-designed RCTs are necessary to validate the above conclusions.
Collapse
Affiliation(s)
- Yonghui Hou
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- The First Hospital of Shijiazhuang City, Shijiazhuang, Hebei, China
| | - Ying Liu
- The First Hospital of Shijiazhuang City, Shijiazhuang, Hebei, China
| | - Minying Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Baile Ning
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zehuai Wen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- National Center for Design Measurement and Evaluation in Clinical Research, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wenbin Fu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Synergistic Effects of Scalp Acupuncture and Repetitive Transcranial Magnetic Stimulation on Cerebral Infarction: A Randomized Controlled Pilot Trial. Brain Sci 2020; 10:brainsci10020087. [PMID: 32046150 PMCID: PMC7071610 DOI: 10.3390/brainsci10020087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 11/17/2022] Open
Abstract
This study investigated the synergistic effects of scalp acupuncture (SA) and repetitive transcranial magnetic stimulation (rTMS), known to be effective for cerebral infarction. This outcome-assessor-blinded, randomized controlled clinical trial included a per-protocol analysis to compare the efficacy of SA and electromagnetic convergence stimulation (SAEM-CS) and single or no stimulation. The trial was conducted with 42 cerebral infarction patients (control group, 12; SA group, 11; rTMS group, 8; SAEM-CS group, 11). All patient groups underwent two sessions of CSRT per day. SA, rTMS, and SAEM-CS were conducted once per day, 5 days per week, for 3 weeks. The primary outcome was evaluated using the Fugl–Mayer assessment (FMA). FMA Upper Extremity, FMA total, MBI, and FIM scores significantly increased in the rTMS group compared with the control group. Additionally, FMA Upper Extremity, FMA total, MBI and FIM scores significantly increased in the rTMS group compared with the SAEM-CS group. However, there were no significant changes in the SA or SAEM-CS groups. In conclusion, low-frequency rTMS in the contralesional hemisphere may have long-term therapeutic effects on upper extremity motor function recovery and improvements in activities of daily living. SAEM-CS did not show positive synergistic effects of SA and rTMS.
Collapse
|
11
|
Shao X, Xu M, Qiu C, Niu R, Wang Y, Wang X. Application of siemens SMART neuro attenuation correction in brain PET imaging. Medicine (Baltimore) 2018; 97:e12502. [PMID: 30235760 PMCID: PMC6160143 DOI: 10.1097/md.0000000000012502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Siemens SMART neuro attenuation correction (SNAC) is a new type of calculated attenuation correction (CAC) method. This article aimed to evaluate the effect of SNAC on the quantitative analysis of brain positron emission tomography (PET) imaging.Brain PET images of 52 healthy participants after reconstructed by SNAC and CT attenuation correction (CTAC) were analyzed qualitatively by visual analysis, and quantitatively by Scenium software to compare their contrast, signal-to-noise ratio (SNR) as well as the mean standardized uptake value (SUVmean) of different brain regions.Compared with CTAC, reconstruction of images by SNAC significantly reduced the SNR by 17.3% (P < .001), but not affected the contrast (P = .440). In addition, the SUVmean of different brain regions in images reconstructed by SNAC is increased, but still significantly correlated with that by CTAC (r = 0.988, P < .001), with a coefficient of R = 0.976 in linear regression analysis. Moreover, the mean percent difference of SUVmean between images reconstructed with SNAC and CTAC was 8.03% ± 5.38%, varying significantly in the range of -7.56% to 75.31% among 10 different brain regions (F = 35.702, P < .001) and showed greater percent difference in the peripheral brain regions than in the mesial brain regions.Image reconstruction by SNAC has greater effect on quantitative analysis by increasing SUVmean of different brain regions to varying degrees, but has little influence on the brain PET image quality. Moreover, it simplifies examination process and reduces radiation dose, which is beneficial to pediatric patients as well as serial scans to monitor therapy.
Collapse
|
12
|
Longitudinal Brain Functional Connectivity Changes of the Cortical Motor-Related Network in Subcortical Stroke Patients with Acupuncture Treatment. Neural Plast 2017; 2017:5816263. [PMID: 29375914 PMCID: PMC5742470 DOI: 10.1155/2017/5816263] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/06/2017] [Accepted: 10/17/2017] [Indexed: 01/11/2023] Open
Abstract
In clinical practice, the effectiveness of the rehabilitation therapy such as acupuncture combining conventional Western medicine (AG) on stroke people's motor-related brain network and their behaviors has not been systematically studied. In the present study, seventeen adult ischemic patients were collected and divided into two groups: the conventional Western medicine treatment group (CG) and the AG. The neurological deficit scores (NDS) and resting-state functional MRI data were collected before and after treatment. Compared with the CG patients, AG patients exhibited a significant enhancement of the percent changes of NDS from pre- to posttreatment intervention. All patients showed significant changes of functional connectivity (FC) between the pair of cortical motor-related regions. After treatment, both patient groups showed a recovery of brain connectivity to the nearly normal level compared with the controls in these pairs. Moreover, a significant correlation between the percent changes of NDS and the pretreatment FC values of bilateral primary motor cortex (M1) in all patients was found. In conclusion, our results showed that AG therapy can be an effective means for ischemic stroke patients to recover their motor function ability. The FC strengths between bilateral M1 of stroke patients can predict stroke patients' treatment outcome after rehabilitation therapy.
Collapse
|
13
|
Ipsilesional High Frequency Repetitive Transcranial Magnetic Stimulation Add-On Therapy Improved Diffusion Parameters of Stroke Patients with Motor Dysfunction: A Preliminary DTI Study. Neural Plast 2016; 2016:6238575. [PMID: 27840742 PMCID: PMC5093297 DOI: 10.1155/2016/6238575] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/31/2016] [Indexed: 12/22/2022] Open
Abstract
Purpose. The aim of this study was to evaluate the effects of high frequency repetitive transcranial magnetic stimulation (HF-rTMS) on stroke patients with motor dysfunction and to investigate the underlying neural mechanism. Methods. Fifteen stroke patients were assigned to the rTMS treatment (RT) group and conventional treatment (CT) group. Patients in the RT received 10 Hz rTMS stimulation on the ipsilesional primary motor cortex for 10 days plus conventional treatment of CT, which consisted of acupuncture and antiplatelet aggregation medication. Difference in fractional anisotropy (FA) between pretreatment and posttreatment and between two groups was determined. Correlations between FA values and neurological assessments were also calculated. Results. Both groups significantly improved the neurological function after treatment. rTMS-treated patients showed better improvement in Fugl-Meyer Assessment (FMA) score and increased FA value in motor-related white matter and gray matter cortices compared with CT-treated patients and pretreatment status. Besides, the increased FA value in the ipsilesional posterior limb of the internal capsule in RT group was significantly correlated with the improved FMA score. Significance. HF-rTMS could be a supplement therapy to CT in improving motor recovery in patients with stroke. And this benefit effect may be achieved through modulating the ipsilesional corticospinal tracts and motor-related gray matter cortices.
Collapse
|
14
|
Zhan J, Qin W, Zhang Y, Jiang J, Ma H, Li Q, Luo Y. Upregulation of neuronal zinc finger protein A20 expression is required for electroacupuncture to attenuate the cerebral inflammatory injury mediated by the nuclear factor-kB signaling pathway in cerebral ischemia/reperfusion rats. J Neuroinflammation 2016; 13:258. [PMID: 27716383 PMCID: PMC5048665 DOI: 10.1186/s12974-016-0731-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/23/2016] [Indexed: 02/16/2023] Open
Abstract
Background Zinc finger protein A20 (tumor necrosis factor alpha-induced protein 3) functions as a potent negative feedback inhibitor of the nuclear factor-kB (NF-kB) signaling. It exerts these effects by interrupting the activation of IkB kinase beta (IKKβ), the most critical kinase in upstream of NF-kB, and thereby controlling inflammatory homeostasis. We reported previously that electroacupuncture (EA) could effectively suppress IKKβ activation. However, the mechanism underlying these effects was unclear. Therefore, the current study further explored the effects of EA on A20 expression in rat brain and investigated the possible mechanism of A20 in anti-neuroinflammation mediated by EA using transient middle cerebral artery occlusion (MCAO) rats. Methods Rats were treated with EA at the “Baihui (GV20),” “Hegu (L14),” and “Taichong (Liv3)” acupoints once a day starting 2 h after focal cerebral ischemia. The spatiotemporal expression of A20, neurobehavioral scores, infarction volumes, cytokine levels, glial cell activation, and the NF-kB signaling were assessed at the indicated time points. A20 gene interference (overexpression and silencing) was used to investigate the role of A20 in mediating the neuroprotective effects of EA and in regulating the interaction between neuronal and glial cells by suppressing neuronal NF-kB signaling during cerebral ischemia/reperfusion-induced neuroinflammation. Results EA treatment increased A20 expression with an earlier peak and longer lasting upregulation. The upregulated A20 protein was predominantly located in neurons in the cortical zone of the ischemia/reperfusion. Furthermore, neuronal A20 cell counts were positively correlated with neurobehavioral scores but negatively correlated with infarct volume, the accumulation of pro-inflammatory cytokines, and glial cell activation. Moreover, the effects of EA on improving the neurological outcome and suppressing neuroinflammation in the brain were reversed by A20 silencing. Finally, A20 silencing also suppressed the ability of EA to inhibit neuronal NF-kB signaling pathway. Conclusions Ischemia/reperfusion cortical neurons in MCAO rats are the main cell types that express A20, and there is a correlation between A20 expression and the suppression of neuroinflammation and the resulting neuroprotective effects. EA upregulated neuronal A20 expression, which played an essential role in the anti-inflammatory effects of EA by suppressing the neuronal NF-kB signaling pathway in the brains of MCAO rats.
Collapse
Affiliation(s)
- Jian Zhan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Neurology, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.,Department of Neurology, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou Province, 563000, China
| | - Wenyi Qin
- Department of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ying Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Neurology, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jing Jiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Neurology, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Hongmei Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Neurology, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Qiongli Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Neurology, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yong Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurology, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
15
|
Erratum to “The Effect of Acupuncture on the Motor Function and White Matter Microstructure in Ischemic Stroke Patients”. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:4259430. [PMID: 27313647 PMCID: PMC4895036 DOI: 10.1155/2016/4259430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/16/2016] [Indexed: 11/17/2022]
|