1
|
Wu J, Yang R, Zheng Q, Wei L, Wang B, Yan W, Meng S, Cheng D, Huang S, Zhang Z, Zhang P. Effect of Brucea javanica Oil on the Toxicity of β-Cypermethrin Emulsifiable Concentrate Formulation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9713-9724. [PMID: 38373060 DOI: 10.1021/acsami.3c16384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Enhancing the performance of traditional pesticide formulations by improving their leaf surface wetting capabilities is a crucial approach for maximizing the pesticide efficiency. This study develops an emulsifiable concentrate (EC) of 4.5% β-cypermethrin containing Brucea javanica oil (BJO). The incorporation of BJO aims to improve the leaf-wetting properties of the EC formulation and enhance its insecticidal effectiveness. The droplet size and emulsion characteristics of β-CYP EC emulsion with varying concentrations of the emulsifier were evaluated, and changes after incorporating BJO were assessed to develop the optimal formulation. A comprehensive comparison was conducted among commercial 4.5% β-cypermethrin EC (β-CYP EC-1), 4.5% β-cypermethrin EC with BJO (β-CYP EC-2), and 4.5% β-cypermethrin EC without BJO (β-CYP EC-3). This comparison encompassed various factors including storage stability, insecticidal activity, cytotoxicity, and wetting performance on cabbage leaves. The results indicated that the ideal emulsifier concentration was 15% emulsifier 0201B. β-CYP EC-2 demonstrated superior wetting properties on cabbage leaves (the wetting performance of β-CYP EC-2 emulsion on cabbage leaves is 2.60 times that of the β-CYP EC-1 emulsion), heightened insecticidal activity against the third larvae of Plutella xylostella [diamondback moth (DBM)] [the insecticidal activity of the β-CYP EC-2 emulsion against the third larvae of DBM is 1.93 times that of the β-CYP EC-1 emulsion (12 h)], and more obvious inhibitory effects on the proliferation of DBM embryo cells than the other tested formulations. These findings have significant implications for advancing pest control strategies and promoting sustainable and effective agricultural practices.
Collapse
Affiliation(s)
- Jian Wu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Rongjie Yang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Qun Zheng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Liting Wei
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Botong Wang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Wenjuan Yan
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Shaoke Meng
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Dongmei Cheng
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Suqing Huang
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Peiwen Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
- Shaoguan University, Shaoguan 512005, China
| |
Collapse
|
2
|
Chen J, Yu D, Li X, Deng Q, Yang H, Chen L, Bai L. A review of Brucea javanica: metabolites, pharmacology and clinical application. Front Pharmacol 2024; 14:1317620. [PMID: 38371913 PMCID: PMC10871038 DOI: 10.3389/fphar.2023.1317620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/27/2023] [Indexed: 02/20/2024] Open
Abstract
This review examines advances in the metabolites, pharmacological research, and therapeutic applications of the medicinal fruit of Brucea javanica (L.) Merr. Brucea javanica (BJ) is derived from the fruit of the Brucea javanica (L.) Merr. There are nearly 200 metabolites present in BJ, and due to the diversity of its metabolites, BJ has a wide range of pharmacological effects. The traditional pharmacological effects of BJ include anti-dysentery, anti-malaria, etc. The research investigating the contemporary pharmacological impacts of BJ mainly focuses on its anti-tumor properties. In the article, the strong monomeric metabolites among these pharmacological effects were preliminarily screened. Regarding the pharmacological mechanism of action, current research has initially explored BJ's pharmacological agent and molecular signaling pathways. However, a comprehensive system has yet to be established. BJ preparations have been utilized in clinical settings and have demonstrated effectiveness. Nevertheless, clinical research is primarily limited to observational studies, and there is a need for higher-quality research evidence to support its clinical application. There are still many difficulties and obstacles in studying BJ. However, it is indisputable that BJ is a botanical drugs with significant potential for application, and it is expected to have broader global usage.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Guangyuan Central Hospital of Sichuan Province, Guangyuan, China
| | - Dongke Yu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinyu Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qichuan Deng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Yang
- Power China Chengdu Engineering Corporation Limited, Chengdu, China
| | - Lu Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Pharmacy, Guanghan People's Hospital, Guanghan, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Liu E, Yang M, Li Q, Cheng Q, Wang Y, Ye L, Tian F, Ding H, Ling Y, Xia M, Ji ZS, Li W. Antitumor activity of a whey peptide-based enteral diet in C26 colon tumor-bearing mice. J Food Sci 2023; 88:4275-4288. [PMID: 37615996 DOI: 10.1111/1750-3841.16724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/07/2023] [Accepted: 07/14/2023] [Indexed: 08/25/2023]
Abstract
The antitumor effects of a whey peptide-based enteral diet, whose main components are whey peptides and yogurt fermented by Lactobacillus delbureckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131, were investigated in mice. Our results indicated that the tumor weight in C26 carcinoma-transplanted mice was significantly smaller at day 16 post-implantation in the whey peptide-based enteral diet group (1.36 ± 0.54 g) than in the control group (1.83 ± 0.89 g) (p < 0.05). The whey peptide-based enteral diet group exhibited higher tumor cell apoptosis, lower cell proliferation, and inactive angiogenesis indicating by higher degree of TUNEL, lower positive rates of Ki-67, VEGF, and CD34 than control group. It also attenuated inflammatory cell infiltration of spleen and liver as indicated by the decreased spleen index (10.89 ± 2.06 vs. 12.85 ± 2.92, p < 0.05) and increased liver index (58.09 ± 11.37 vs. 53.19 ± 6.67, p < 0.05) in the whey peptide-based enteral diet group than the control diet group. These results proved the inhibitory effect of the whey peptide-based enteral diet on tumor growth, which might be attributed to the whey peptides component. PRACTICAL APPLICATION: A whey peptide-based enteral diet (MEIN® ), containing cheese whey and multiple nutrients, was selected to verify the anti-tumor effect by animal experiments. The tumor weight growth, tumor cell proliferation, inflammatory cell infiltration of spleen and liver in tumor model mice was significantly attenuated by the whey peptide-based enteral diet, that might be attributed to its whey peptides component. These results provided an additive direction for cancer therapy and need a further study including clinical trials.
Collapse
Affiliation(s)
- Enuo Liu
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Mingjun Yang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Qilin Li
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Qianqian Cheng
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Yuzhu Wang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Luyi Ye
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Fang Tian
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Hao Ding
- Shanghai Tongyuan Food Science and Technology Co., Ltd., Shanghai, China
| | - Yiqun Ling
- Department of Nutrition, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Minjie Xia
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Zai-Si Ji
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
- Shanghai Tongyuan Food Science and Technology Co., Ltd., Shanghai, China
| | - Weihua Li
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| |
Collapse
|
4
|
Li K, Xiao K, Zhu S, Wang Y, Wang W. Chinese Herbal Medicine for Primary Liver Cancer Therapy: Perspectives and Challenges. Front Pharmacol 2022; 13:889799. [PMID: 35600861 PMCID: PMC9117702 DOI: 10.3389/fphar.2022.889799] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/21/2022] [Indexed: 12/17/2022] Open
Abstract
Primary liver cancer (PLC) is one of the most common solid malignancies. However, PLC drug development has been slow, and first-line treatments are still needed; thus, studies exploring and developing alternative strategies for effective PLC treatment are urgently needed. Chinese herbal medicine (CHM) has long been applied in the clinic due to its advantages of low toxicity and targeting of multiple factors and pathways, and it has great potential for the development of novel natural drugs against PLC. Purpose: This review aims to provide an update on the pharmacological mechanisms of Chinese patent medicines (CPMs) and the latest CHM-derived compounds for the treatment of PLC and relevant clinical evaluations. Materials and Methods: A systematic search of English literature databases, Chinese literature, the Clinical Trials Registry Platform, and the Chinese Clinical Trial Registry for studies of CHMs for PLC treatment was performed. Results: In this review, we summarize the clinical trials and mechanisms of CPMs for PLC treatment that have entered the clinic with the approval of the Chinese medicine regulatory authority. These CPMs included Huaier granules, Ganfule granules, Fufang Banmao capsules, Jinlong capsules, Brucea javanica oil emulsions, and compound kushen injections. We also summarize the latest in vivo, in vitro, and clinical studies of CHM-derived compounds against PLC: icaritin and ginsenoside Rg3. Dilemmas facing the development of CHMs, such as drug toxicity and low oral availability, and future developments are also discussed. Conclusion: This review provides a deeper the understanding of CHMs as PLC treatments and provides ideas for the development of new natural drugs against PLC.
Collapse
Affiliation(s)
- Kexin Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Kunmin Xiao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shijie Zhu
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Yong Wang, ; Wei Wang,
| | - Wei Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Institute of Prescription and Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provinvial Key Laboratory of TCM Pathogenesis and Prescriptions of Heart and Spleen Diseases, Guangzhou, China
- *Correspondence: Yong Wang, ; Wei Wang,
| |
Collapse
|
5
|
Li KW, Liang YY, Wang Q, Li Y, Zhou SJ, Wei HC, Zhou CZ, Wan XH. Brucea javanica: A review on anticancer of its pharmacological properties and clinical researches. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 86:153560. [PMID: 33858739 DOI: 10.1016/j.phymed.2021.153560] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The dried fruits of Brucea javanica (L.) Merr (BJ) is being widely investigated, both in lab and in clinic, to explore its potential anticancer activity and molecular mechanism involved. PURPOSE We appraised the available literature and suggested the future research directions to improve the medicinal value of BJ. METHOD In this review, we have summarized the scientific findings from experimental and clinical studies regarding the anticancer activity and mechanisms. RESULTS Numerous studies have reported that BJ exerts anticancer effect on various types of cancer lines through inhibiting cell proliferation, inducing apoptosis, inhibiting migration/invasion, inducing autophagy and restraining angiogenesis. Brucea javanica triggers the generation of reactive oxygen species (ROS), release of cytochrome C, activation of mitochondrial apoptosis pathway and regulation of a series of signal pathways and proteins related to cancer. The molecular mechanism involved are inhibiting the PI3K/Akt/mTOR, NF-κB and Nrf2-Notch1 pathways; up or down modulating the levels of p53, p62, p21, Bax, and Bcl-2 respectively, and inhibiting the expression of matrix metalloproteinases (MMPs), vascular endothelial growth factor (VEGF), cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2). Brucea javanica's efficacy in treating cancer patients either as a main or supportive treatment is also discussed in this review. CONCLUSION This review will serve as a comprehensive resource of BJ's potential as anticancer agent and its molecular pathways. The analysis of the literature suggests that BJ can serve as a potential candidate for the treatment of cancer.
Collapse
Affiliation(s)
- Kun-Wei Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Yi-Yu Liang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Qi Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Ying Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Sheng-Jun Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Hao-Cheng Wei
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Chang-Zheng Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China.
| | - Xin-Huan Wan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China.
| |
Collapse
|
6
|
Qiu ZH, Zhang WW, Zhang HH, Jiao GH. Brucea javanica oil emulsion improves the effect of radiotherapy on esophageal cancer cells by inhibiting cyclin D1-CDK4/6 axis. World J Gastroenterol 2019; 25:2463-2472. [PMID: 31171890 PMCID: PMC6543247 DOI: 10.3748/wjg.v25.i20.2463] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/12/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Esophageal cancer is one of the most common cancers around the world, and it has high incidence and mortality rates. The conventional therapy for esophageal cancer is radiotherapy, although its effect is highly limited by the resistance of esophageal cancer cells. Thus, strong radiosensitizers can be very crucial during radiotherapy against esophageal cancer. Brucea javanica oil emulsion (BJOE) is a widely used drug against various cancers, such as liver, colon, and ovarian cancer. However, its anti-cancer effect and mechanism and the use of BJOE as a radiosensitizer have not been explored in esophageal cancer.
AIM To evaluate the anti-cancer effect and mechanism of BJOE and explore the potential use of BJOE as a radiosensitizer during radiotherapy.
METHODS The inhibitory effect of BJOE and its enhancement function with radiation on cell viability were examined with the calculated half-maximal effective concentration and half-maximal lethal concentration. The influence of BJOE on cell migration and invasion were measured with EC109 and JAR cells by wound-healing and transwell assay. Clonogenesis and apoptotic rate, which was measured by Hoechst staining, were investigated to confirm its enhancement function with radiation. To investigate the molecular pathway underlying the effect of BJOE, the expressions of several apoptosis- and cycle-related proteins was detected by western blotting.
RESULTS Our results demonstrated that BJOE inhibited the growth of esophageal cancer cell lines more than normal cell lines, and it markedly reduced migration and invasion in esophageal cancer cells (EC109 and JAR). Moreover, it promoted cell apoptosis and enhanced the effect of radiotherapy against esophageal cancerous cells. In the viability test, the values of half-maximal effective concentration and half-maximal lethal concentration were reduced. Compared to the control, only around 1/5 colonies formed when using BJOE and radiation together in the clonogenic assay. The apoptotic rate in EC109 was obviously promoted when BJOE was added during radiotherapy. Our study suggests that the expression of the apoptosis-proteins Bax and p21 were increased, while the expression of Bcl-2 was stable. Further detection of downstream proteins revealed that the expression of cyclin D1 and cyclin-dependent kinase 4/6 were significantly decreased.
CONCLUSION BJOE has a strong anti-cancer effect on esophageal cancer and can be used as a radiosensitizer to promote apoptosis in cancerous esophageal cells via the cyclin D1-cyclin-dependent kinase 4/6 axis.
Collapse
Affiliation(s)
- Zhong-Hua Qiu
- Department of Interventional Therapy, Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong Province, China
| | - Wei-Wei Zhang
- Department of Interventional Therapy, Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong Province, China
| | - Hong-Hua Zhang
- Department of Neurology, Liangshan County People's Hospital, Jining, 272600, Shandong Province, China
| | - Gui-Hua Jiao
- Department of Interventional Therapy, Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong Province, China
| |
Collapse
|
7
|
Zhu J, Xu J, Jiang LL, Huang JQ, Yan JY, Chen YW, Yang Q. Improved antitumor activity of cisplatin combined with Ganoderma lucidum polysaccharides in U14 cervical carcinoma-bearing mice. Kaohsiung J Med Sci 2019; 35:222-229. [PMID: 30958641 DOI: 10.1002/kjm2.12020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/20/2019] [Indexed: 02/01/2023] Open
Abstract
Research on anticervical cancer is urgently required to enhance clinical outcomes. As a main anticancer drug for cervical carcinoma, cisplatin (CIS) has been used for a lot of years in clinical therapy. However, serious adverse effects including nephrotoxicity and neurotoxicity limit its long-term treatment. Our main goal of this study is to investigate the improvement of Ganoderma lucidum polysaccharides (GPS) on CIS-induced antitumor effect of in U14 cervical carcinoma-bearing mice. The results showed that GPS + CIS could not only inhibit the growth of the tumor but also improve the spleen and thymus indexes. Moreover, little toxicological effects were observed on hepatic function and renal function in GPS + CIS treated mice bearing U14 tumor cells. Further analysis of the tumor inhibition mechanism indicated that the number of apoptotic tumor cells increased significantly, the expression of Bax increased and the expression of Bcl-2 decreased dramatically in cervical cancer sections after oral administration of GPS + CIS for 14 days. This GPS/CIS combined therapy represents intriguing therapeutic strategy for U14 cervical carcinoma providing not only superior efficacy but also a higher safety level.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Gynaecology and Obstetrics, First People's Hospital of Wenling, Wenling, China
| | - Jia Xu
- Department of Gynaecology and Obstetrics, First People's Hospital of Wenling, Wenling, China
| | - Ling-Ling Jiang
- Department of Gynaecology and Obstetrics, First People's Hospital of Wenling, Wenling, China
| | - Jin-Qun Huang
- Department of Gynaecology and Obstetrics, First People's Hospital of Wenling, Wenling, China
| | - Jin-Yu Yan
- Department of Gynaecology and Obstetrics, First People's Hospital of Wenling, Wenling, China
| | - Yi-Wan Chen
- Department of Gynaecology and Obstetrics, First People's Hospital of Wenling, Wenling, China
| | - Qian Yang
- Department of Gynaecology and Obstetrics, First People's Hospital of Wenling, Wenling, China
| |
Collapse
|
8
|
Chang M, Wu M, Li H. Antitumor activities of novel glycyrrhetinic acid-modified curcumin-loaded cationic liposomes in vitro and in H22 tumor-bearing mice. Drug Deliv 2019; 25:1984-1995. [PMID: 30499350 PMCID: PMC6282420 DOI: 10.1080/10717544.2018.1526227] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
At present, the chemotherapy of advanced inoperable liver cancer is limited with serious side effects. Curcumin possesses multiple cancer preventive activities and low safety concerns. However, its poor solubility and instability in water pose significant pharmacological barriers to its clinical application. In this study, we presented a novel delivery system – the glycyrrhetinic acid modified curcumin-loaded cationic liposomes (GAMCLCL) and investigated its antitumor activities on HepG2 cells in vitro and in H22 tumor-bearing mice. The experimental results demonstrated that GAMCLCL was a cationic liposome and could be Intravenous administration. Compared to free curcumin, GAMCLCL exhibited stronger antitumor activities in vitro and in vivo. The antitumor results of GAMCLCL after intravenous administration were very similar to those after intratumoral administration. The main activities of GAMCLCL and curcumin included inhibition of HepG2 cell proliferation, inhibition of tumor growth, reduction of tumor microvascular density, down-regulation of the expression of VEGF protein, and up-regulation of the expression of Caspases3 protein in H22 tumor tissues. Furthermore, GAMCLCL improved the parameters of WBC, RBC, ALT, CRE, LDH of H22 tumor-bearing mice. Curcumin is a nontoxic natural compound with definite antitumor activities, its antitumor effects can be enhanced by preparation of GAMCLCL.
Collapse
Affiliation(s)
- Mingxiang Chang
- a First clinical medical school , Hubei University of Chinese Medicine , Wuhan , P.R. China.,b Hubei Provincial Hospital of Traditional Chinese Medicine , Wuhan , P.R. China.,c Hubei Province Academy of Traditional Chinese Medicine , Wuhan , P.R.China
| | - Meimei Wu
- b Hubei Provincial Hospital of Traditional Chinese Medicine , Wuhan , P.R. China.,c Hubei Province Academy of Traditional Chinese Medicine , Wuhan , P.R.China
| | - Hanmin Li
- b Hubei Provincial Hospital of Traditional Chinese Medicine , Wuhan , P.R. China.,c Hubei Province Academy of Traditional Chinese Medicine , Wuhan , P.R.China
| |
Collapse
|
9
|
Liu D, Li Y, Shang Y, Wang W, Chen SZ. Effect of brown adipose tissue/cells on the growth of mouse hepatocellular carcinoma in vitro and in vivo. Oncol Lett 2019; 17:3203-3210. [PMID: 30867750 PMCID: PMC6396209 DOI: 10.3892/ol.2019.9977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 12/21/2018] [Indexed: 01/15/2023] Open
Abstract
Activation of brown adipose tissue (BAT) is an effective strategy for treating obesity. Hepatocellular carcinoma (HCC) is a life-threatening hepatic malignancy with a high mortality rate. Considering that obesity is a risk factor for HCC, the aim of the present study was to investigate the association between HCC and BAT. Using a mouse model, H22 transplantation led to an increase in liver weight, a decrease in the weight of BAT and white adipose tissue, and an increase in the serum level of triacylglycerol (TG). In the in vivo BAT excision model, the removal of BAT led to increased growth of H22 tumors, which was accompanied by a more marked increase in liver weight and in the serum level of TG. The in vitro and in vivo intervention models with primary brown adipose cells (BACs) indicated that primary BACs can directly decrease the viability of H22 cells and the growth of tumors. In conclusion, BAT is a protective organ or tissue against HCC, and BACs may be a potential therapeutic tool for the treatment of HCC.
Collapse
Affiliation(s)
- Dong Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Yi Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Yue Shang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Wendie Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Shu-Zhen Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| |
Collapse
|
10
|
Zhang Y, Zhang L, Zhang Q, Zhang X, Zhang T, Wang B. Enhanced gastric therapeutic effects of Brucea javanica oil and its gastroretentive drug delivery system compared to commercial products in pharmacokinetics study. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:535-544. [PMID: 29559770 PMCID: PMC5856296 DOI: 10.2147/dddt.s155244] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Brucea javanica oil (BJO), a traditional Chinese herbal medicine, has a variety of pharmacological activities and several BJO-related patent drugs have been widely used in China. Purpose The objective of this study was to evaluate the gastric therapeutic effects of self-made BJO and its pharmaceutical potential to formulate novel BJO gastroretentive floating bead by comparing with commercial products. Methods BJO was extracted from the seeds of B. javanica, and its therapeutic effects were evaluated by comparing with commercial products in the treatment of human gastric cancer and gastric ulcer. Furthermore, the developed gastroretentive drug delivery system was evaluated by in vivo tests. A high-performance liquid chromatography–tandem mass spectrometry (HPLC-MS/MS) method for detecting the concentration of glycerol trioleate in the pharma-cokinetic study was applied. Results The antitumor activity of BJO was stronger than that of the marketed preparation; the 50% inhibitory concentration (IC50) values of BJO extracts on HGC27, SGC7901 and BGC823 gastric carcinoma were 0.3091, 1.736 and 2.743 μg/mL, respectively, whereas the values of marked BJO preparation were 15.26, 32.60 and 7.456 μg/mL, respectively. Histopathological studies demonstrated the ability of BJO to locally prevent and treat absolute ethanol-induced gastric ulcer. Developed BJO gastroretentive floating bead showed a satisfactory in vivo study. The highest glycerol trioleate concentration in the stomach after taking BJO gastroretentive floating bead was nearly two times higher when compared to the marketed BJO soft capsule. Conclusion Self-made BJO has a strong therapeutic effect on the stomach, and gastroretentive drug delivery system can be a promising approach to prolong and enhance its therapy ability when treating gastric diseases.
Collapse
Affiliation(s)
- Yue Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Pudong New District, Shanghai, People's Republic of China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Pudong New District, Shanghai, People's Republic of China
| | - Liying Zhang
- Foreign Languages Teaching Center, Shanghai University of Traditional Chinese Medicine, Pudong New District, Shanghai, People's Republic of China
| | - Qi Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Pudong New District, Shanghai, People's Republic of China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Pudong New District, Shanghai, People's Republic of China
| | - Xitong Zhang
- Department of Pharmacy, Shanghai Xiangshan Hospital of Traditional Chinese Medicine, Huangpu District, Shanghai, People's Republic of China
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Pudong New District, Shanghai, People's Republic of China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Pudong New District, Shanghai, People's Republic of China
| | - Bing Wang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Pudong New District, Shanghai, People's Republic of China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Pudong New District, Shanghai, People's Republic of China
| |
Collapse
|
11
|
Li Q, Yang L, Fan L, Liang C, Wang Q, Wen H, Dai J, Li X, Zhang Y. Activity of Brucea javanica oil emulsion against gastric ulcers in rodents. Asian J Pharm Sci 2017; 13:279-288. [PMID: 32104401 PMCID: PMC7032098 DOI: 10.1016/j.ajps.2017.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/03/2017] [Accepted: 12/04/2017] [Indexed: 02/07/2023] Open
Abstract
The present study aims to investigate the gastroprotective effect of Brucea javanica oil emulsion (BJOE) in animals. Gastroprotective potential of BJOE was studied on absolute ethanol, aspirin, reserpine and restraint plus water immersion-induced gastric ulcers in mice as well as glacial acetic acid (GAA) and pyloric ligation (PL)-induced gastric ulcers in rats. Except for ulcer scores, total acidity as well as pepsin activity as for the PL-induced gastric ulcer model and ulcer incidence as for the GAA-induced gastric ulcer model were also determined. Histopathological evaluation as for aspirin, reserpine, PL-induced models was conducted. Results showed that BJOE significantly (P < 0.05) reduced ulcer index in the mouse and rat models in a dose-dependent manner. It had significant (P < 0.05) suppressive effect on total activity of gastric juice as well in PL-induced model. Histopathological examination for the stomach samples confirmed the findings in the aspirin, reserpine or PL-induced gastric lesion models, which showed relatively complete mucosa structure and less inflammation. It is concluded that BJOE could be effective on gastric ulcer in rodents and its gastroprotective activity might be related to antioxidant, anti-inflammatory ability and promote gastric mucus secreted. The results may provide beneficial basis for increasing BJOE's clinical indication in future.
Collapse
Affiliation(s)
- Qian Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linglong Yang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linlin Fan
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chen Liang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qiujv Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huimin Wen
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jinwei Dai
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuyang Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
12
|
Optimization of Ultrasonic-assisted Extraction of Fatty Acids in Seeds of Brucea Javanica (L.) Merr. from Different Sources and Simultaneous Analysis Using High-Performance Liquid Chromatography with Charged Aerosol Detection. Molecules 2017; 22:molecules22060931. [PMID: 28587214 PMCID: PMC6152649 DOI: 10.3390/molecules22060931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/24/2017] [Accepted: 06/01/2017] [Indexed: 01/28/2023] Open
Abstract
Our research aimed to optimize the oil extraction process and determine the fatty acids in Brucea javanica (L.) Merr. seeds. The extraction technology was optimized using response surface methodology. A Box-Behnken design was employed to investigate the effects of three independent variables on an ultrasonic-assisted extraction technique, namely, sonication time (X1: 20–40 min), liquid–solid ratio (X2: 16:1 mL/g–24:1 mL/g), and ethanol concentration (X3: 90%–100%). The optimum conditions of sonication time, liquid–solid ratio, and ethanol concentration were 40 min, 24:1 mL/g, and 100%, respectively. The content of fatty acids and the oil yield were 14.64 mg/g and 16.87%, respectively, which match well with the predicted models. The optimum number of extraction times was eventually identified as two. A new rapid method for the qualitative and quantitative analysis of the fatty acids of B. javanica (L.) Merr. seed oil using HPLC with a charged aerosol detector was described. The fatty acid contents of 14 batches of B. javanica (L.) Merr. seed oil were determined, and the relevance and difference were analyzed by fingerprint analysis. The fingerprint has five common peaks, and the similarity was greater than 0.991. HPLC analysis represents a specialized and rational approach for the quality identification and comprehensive evaluation of B. javanica (L.) Merr. seed oils.
Collapse
|
13
|
Yang L, Xin J, Zhang Z, Yan H, Wang J, Sun E, Hou J, Jia X, Lv H. TPGS-modified liposomes for the delivery of ginsenoside compound K against non-small cell lung cancer: formulation design and its evaluation in vitro and in vivo. J Pharm Pharmacol 2016; 68:1109-18. [DOI: 10.1111/jphp.12590] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 05/29/2016] [Indexed: 01/09/2023]
Abstract
Abstract
Objective
This work aimed at preparing ginsenoside compound K (GCK)-loaded liposomes modified with TPGS (GCKT-liposomes) to enhance solubility and targeting capability of GCK, as well as inhibit the efflux of GCK from tumour cells.
Methods
GCKT-liposomes were prepared by the thin-film hydration method and characterized by particle size, polydispersity, zeta potential and drug encapsulation efficiency. A549 cells were used as antitumour cell model to access the cellular uptake of the GCK and perform its antitumour function. The enhancement of in vivo antitumour efficacy of GCKT-liposomes was evaluated by nude mice bearing tumour model.
Key findings
The results showed that GCKT-liposomes achieved a comparatively high drug loading efficiency and reasonable particle size at the ratio of 7 : 3 (phospholipid: TPGS). The in vitro release demonstrated that the dissolution of GCK was remarkably improved by entrapping it into liposomes. In addition, GCKT-liposomes exhibited a great hypersensitizing effect on A549 cells, and the cellular uptake was enhanced. Compared with free GCK, the IC50 of GCKT-liposomes was significantly reduced (16.3 ± 0.8 vs 24.9 ± 1.0 μg/ml). In vivo antitumour assay also indicated that GCKT-liposomes achieved higher antitumour efficacy (67.5 ± 0.5 vs 40.8 ± 0.7%).
Conclusion
The novel GCKT-liposomes significantly improved the antitumour efficacy of GCK.
Collapse
Affiliation(s)
- Lei Yang
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu, China
- College of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jin Xin
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhenhai Zhang
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hongmei Yan
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jing Wang
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu, China
| | - E Sun
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jian Hou
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu, China
- College of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaobin Jia
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu, China
- College of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Huixia Lv
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|