1
|
Akıncı O, Oğuz Eİ, Bozkurt P, Kadıoğlu MB, Ocak M, Orhan K, Kişnişçi RŞ. Effect of cleft palate type and manufacturing method on feeding plate adaptation: A volumetric micro-computed tomography analysis. J Prosthodont 2025. [PMID: 39871456 DOI: 10.1111/jopr.14027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/10/2025] [Indexed: 01/29/2025] Open
Abstract
PURPOSE Feeding plates for cleft palate patients have been used by clinicians for many years to temporarily close the oro-nasal communication until definitive treatment with surgical techniques. The current in vitro study aimed to evaluate the adaptation of the feeding plates manufactured by two different techniques for three cleft types. MATERIALS AND METHODS Feeding plates were manufactured with conventional compression molding (CM) and 3-dimensional (3D) additive manufacturing on main models representing bilateral cleft, unilateral right, and unilateral left cleft types (n = 10). The 3D volumetric space between the feeding plate and the corresponding main model was measured by micro-CT to evaluate the adaptation. The adaptation of the plates was assessed based on three different measurement regions: anterior, left, and right. Repeated measure analysis of variance (ANOVA), three factorial ANOVA, and post hoc Bonferroni tests were used as statistical analysis (α = 0.05). RESULTS CM groups showed higher volumetric space measurements between the base and master model than 3D groups regardless of measurement region and cleft type, which refers to misfit (p ˂ 0.05). Cleft type differed in the adaptation of 3D groups yet not in CM groups (p ˂ 0.05). The volumetric space evaluation for the right measurement region resulted in higher values regardless of manufacturing method and cleft type (p ˂ 0.05). CONCLUSION Considering that 3D-printed feeding plates showed better adaptation compared to conventionally manufactured plates for all cleft types, 3D printing can be suggested as the manufacturing method of choice for feeding plates.
Collapse
Affiliation(s)
- Osman Akıncı
- Graduate Oral and Maxillofacial Surgeon, Antalya, Turkey
| | - Ece İrem Oğuz
- Department of Prosthodontics, Faculty of Dentistry, Ankara University, Ankara, Turkey
| | | | | | - Mert Ocak
- Department of Anatomy, Faculty of Dentistry, Ankara University, Ankara, Turkey
| | - Kaan Orhan
- Department of Dentomaxillofacial Radiology, Ankara University, Ankara, Turkey
| | - Reha Şükrü Kişnişçi
- Department of Oral and Maxillofacial Surgery, Lokman Hekim University, Ankara, Turkey
| |
Collapse
|
2
|
Woo SJ, Choi HJ, Park YH, Rengaraj D, Kim JK, Han JY. Amplification of immunity by engineering chicken MDA5 combined with the C terminal domain (CTD) of RIG-I. Appl Microbiol Biotechnol 2022; 106:1599-1613. [PMID: 35129655 DOI: 10.1007/s00253-022-11806-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/24/2021] [Accepted: 01/26/2022] [Indexed: 11/24/2022]
Abstract
Innate immune system is triggered by pattern recognition receptors (PRRs) recognition. Retinoic acid-inducible gene 1 (RIG-I) is a major sensor that recognizes RNA ligands. However, chickens have no homologue of RIG-I; instead, they rely on melanoma differentiation-associated protein 5 (MDA5) to recognize RNA ligands, which renders chickens susceptible to infection by influenza A viruses (IAVs). Here, we engineered the cMDA5 viral RNA sensing domain (C-terminal domain, CTD) such that it functions similarly to human RIG-I (hRIG-I) by mutating histidine 925 into phenylalanine, a key residue for hRIG-I RNA binding loop function, or by swapping the CTD of cMDA5 with that of hRIG-I or duck RIG-I (dRIG-I). The engineered cMDA5 gene was expressed in cMDA5 knockout DF-1 cells, and interferon-beta (IFN-β) activity and expression of interferon-related genes were measured after transfection of cells with RNA ligands of hRIG-I or human MDA5 (hMDA5). We found that both mutant cMDA5 and engineered cMDA5 triggered significantly stronger interferon-mediated immune responses than wild-type cMDA5. Moreover, engineered cMDA5 reduced the IAV titer by 100-fold compared with that in control cells. Collectively, engineered cMDA5/RIG-I CTD significantly enhanced interferon-mediated immune responses, making them invaluable strategies for production of IAV-resistant chickens. KEY POINTS: • Mutant chicken MDA5 with critical residue of RIG-I (phenylalanine) enhanced immunity. • Engineered chicken MDA5 with CTD of RIG-I increased IFN-mediated immune responses. • Engineered chicken MDA5 reduced influenza A virus titers by up to 100-fold.
Collapse
Affiliation(s)
- Seung Je Woo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hee Jung Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Young Hyun Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Deivendran Rengaraj
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jin-Kyoo Kim
- Department of Microbiology, Changwon National University, Changwon, South Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
3
|
Ri S, Hwang W, Ri S, Shi W, Han Y, Tang Y, Zhang L, Yan M, Liu G. Cloning, characterization, and transcriptional activity of β-actin promoter of African catfish (Clarias gariepinus). Mol Biol Rep 2021; 48:2561-2571. [PMID: 33829356 DOI: 10.1007/s11033-021-06306-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/19/2021] [Indexed: 11/25/2022]
Abstract
Selection of suitable promoters is crucial for the efficient expression of exogenous genes in transgenic animals. Although one of the most effective promoters, the β-actin promoter, has been widely studied in fish species, it still remains unknown in the economical important African catfish (Clarias gariepinus). In this study, the β-actin promoter of African catfish (cgβ-actinP) was cloned and characterized. In addition, recombinant plasmid pcgβ-actinP-EGFP with enhanced green fluorescent protein (GFP) gene as the reporter gene was constructed to verify the transcriptional activity. We obtained a cgβ-actinP fragment length of 1405 bp, consisting 104 bp of the 5' proximal promoter, 96 bp of the first exon, and 1205 bp of the first intron. Similar to those of other fish species, cgβ-actinP contains three key transcription regulatory elements (CAAT box, CArG motif, and TATA box). GFP-specific fluorescent signals were detected in chicken embryonic fibroblasts cells (DF-1 cells) transfected with pcgβ-actinP-EGFP, which was approximately 1.11 times of the positive control. In addition, GFP was effectively expressed in zebrafish larvae microinjected with linearized cgβ-actinP-EGFP, with expression rate reaching approximately 49.84%. Our data indicate that cgβ-actinP could be a potential candidate promoter in the practice of constructing "all fish" transgenic fish.
Collapse
Affiliation(s)
- Sanghyok Ri
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
- College of Life Science, Kim Hyong Jik University of Education, Pyongyang, 99903, Democratic People's Republic of Korea
| | - Wenho Hwang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Sangryong Ri
- Faculty of Chemistry, Kim II Sung University, Pyongyang, 99903, Democratic People's Republic of Korea
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Lining Zhang
- Zhejiang Mariculture Research Institute, Wenzhou, 325005, PR China
| | - Maocang Yan
- Zhejiang Mariculture Research Institute, Wenzhou, 325005, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
4
|
Wei X, Qian W, Sizhu S, Li Y, Guo K, Jin M, Zhou H. Negative Regulation of Interferon-β Production by Alternative Splicing of Tumor Necrosis Factor Receptor-Associated Factor 3 in Ducks. Front Immunol 2018; 9:409. [PMID: 29599773 PMCID: PMC5863512 DOI: 10.3389/fimmu.2018.00409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/14/2018] [Indexed: 02/06/2023] Open
Abstract
Tumor necrosis factor receptor-associated factor 3 (TRAF3), an intracellular signal transducer, is identified as an important component of Toll-like receptors and RIG-I-like receptors induced type I interferon (IFN) signaling pathways. Previous studies have clarified TRAF3 function in mammals, but little is known about the role of TRAF3 in ducks. Here, we cloned and characterized the full-length duck TRAF3 (duTRAF3) gene and an alternatively spliced isoform of duTRAF3 (duTRAF3-S) lacking the fragment encoding amino acids 217–319, from duck embryo fibroblasts (DEFs). We found that duTRAF3 and duTRAF3-S played different roles in regulating IFN-β production in DEFs. duTRAF3 through its TRAF domain interacted with duMAVS or duTRIF, leading to the production of IFN-β. However, duTRAF3-S, containing the TRAF domain, was unable to bind duMAVS or duTRIF due to the intramolecular binding between the N- and C-terminal of duTRAF3-S that blocked the function of its TRAF domain. Further analysis identified that duTRAF3-S competed with duTRAF3 itself for binding to duTRAF3, perturbing duTRAF3 self-association, which impaired the assembly of duTRAF3-duMAVS/duTRIF complex, ultimately resulted in a reduced production of IFN-β. These findings suggest that duTRAF3 is an important regulator of duck innate immune signaling and reveal a novel mechanism for the negative regulation of IFN-β production via changing the formation of the homo-oligomerization of wild molecules, implying a novel regulatory role of truncated proteins.
Collapse
Affiliation(s)
- Xiaoqin Wei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Department of Animal Science, XiZang Agriculture and Animal Husbandry College, Linzhi, China
| | - Wei Qian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Suolang Sizhu
- Department of Animal Science, XiZang Agriculture and Animal Husbandry College, Linzhi, China
| | - Yongtao Li
- College of Animal Husbandry & Veterinary Science, Henan Agricultural University, Zhengzhou, China
| | - Kelei Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
5
|
Zhang M, Zhang X, Xu K, Teng Q, Liu Q, Li X, Yang J, Xu J, Chen H, Zhang X, Li Z. Characterization of the Pathogenesis of H10N3, H10N7, and H10N8 Subtype Avian Influenza Viruses Circulating in Ducks. Sci Rep 2016; 6:34489. [PMID: 27678170 PMCID: PMC5039634 DOI: 10.1038/srep34489] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 09/14/2016] [Indexed: 01/13/2023] Open
Abstract
Three H10 subtype avian influenza viruses were isolated from domestic ducks in China, designated as SH602/H10N8, FJ1761/H10N3 and SX3180/H10N7, with an intravenous pathogenicity index (IVPI) of 0.39, 1.60, and 1.27, respectively. These H10 viruses showed a complex pathology pattern in different species, although full genome characterizations of the viruses could not identify any molecular determinant underlying the observed phenotypes. Our findings describe the pathobiology of the three H10 subtype AIVs in chickens, ducks, and mice. FJ1761/H10N3 evolved E627K and Q591K substitutions in the gene encoding the PB2 protein in infected mice with severe lung damage, suggesting that H10 subtype avian influenza viruses are a potential threat to mammals.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Shanghai Public Health Clinical Center, Fudan University Shanghai 201508 P. R. China.,Shanghai Veterinary Research Institute, Chinese Academic of Agricultural Sciences, Shanghai 200241 P. R. China
| | - Xingxing Zhang
- Shanghai Veterinary Research Institute, Chinese Academic of Agricultural Sciences, Shanghai 200241 P. R. China
| | - Kaidi Xu
- Shanghai Veterinary Research Institute, Chinese Academic of Agricultural Sciences, Shanghai 200241 P. R. China
| | - Qiaoyang Teng
- Shanghai Veterinary Research Institute, Chinese Academic of Agricultural Sciences, Shanghai 200241 P. R. China.,Animal Influenza Virus Evolution and Pathogenesis Innovation Team of The Agricultural Science and Technology Innovation Team, Shanghai 200241 P. R. China
| | - Qinfang Liu
- Shanghai Veterinary Research Institute, Chinese Academic of Agricultural Sciences, Shanghai 200241 P. R. China.,Animal Influenza Virus Evolution and Pathogenesis Innovation Team of The Agricultural Science and Technology Innovation Team, Shanghai 200241 P. R. China
| | - Xuesong Li
- Shanghai Veterinary Research Institute, Chinese Academic of Agricultural Sciences, Shanghai 200241 P. R. China.,Animal Influenza Virus Evolution and Pathogenesis Innovation Team of The Agricultural Science and Technology Innovation Team, Shanghai 200241 P. R. China
| | - Jianmei Yang
- Shanghai Veterinary Research Institute, Chinese Academic of Agricultural Sciences, Shanghai 200241 P. R. China.,Animal Influenza Virus Evolution and Pathogenesis Innovation Team of The Agricultural Science and Technology Innovation Team, Shanghai 200241 P. R. China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University Shanghai 201508 P. R. China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academic of Agricultural Sciences, Shanghai 200241 P. R. China.,Animal Influenza Virus Evolution and Pathogenesis Innovation Team of The Agricultural Science and Technology Innovation Team, Shanghai 200241 P. R. China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, Fudan University Shanghai 201508 P. R. China
| | - Zejun Li
- Shanghai Veterinary Research Institute, Chinese Academic of Agricultural Sciences, Shanghai 200241 P. R. China.,Animal Influenza Virus Evolution and Pathogenesis Innovation Team of The Agricultural Science and Technology Innovation Team, Shanghai 200241 P. R. China
| |
Collapse
|
6
|
Chen S, Luo G, Yang Z, Lin S, Chen S, Wang S, Goraya MU, Chi X, Zeng X, Chen JL. Avian Tembusu virus infection effectively triggers host innate immune response through MDA5 and TLR3-dependent signaling pathways. Vet Res 2016; 47:74. [PMID: 27449021 PMCID: PMC4957414 DOI: 10.1186/s13567-016-0358-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 05/17/2016] [Indexed: 01/22/2023] Open
Abstract
Avian Tembusu virus (ATMUV) is a newly emerged flavivirus that belongs to the Ntaya virus group. ATMUV is a highly pathogenic virus causing significant economic loss to the Chinese poultry industry. However, little is known about the role of host innate immune mechanism in defending against ATMUV infection. In this study, we found that ATMUV infection significantly up-regulated the expression of type I and type III interferons (IFN) and some critical IFN-stimulated genes (ISG) in vivo and in vitro. This innate immune response was induced by genomic RNA of ATMUV. Furthermore, we observed that ATMUV infection triggered IFN response mainly through MDA5 and TLR3-dependent signaling pathways. Strikingly, shRNA-based disruption of IPS-1, IRF3 or IRF7 expression significantly reduced the production of IFN in the 293T cell model. Moreover, NF-κB was shown to be activated in both chicken and human cells during the ATMUV infection. Inhibition of NF-κB signaling also resulted in a clear decrease in expression of IFN. Importantly, experiments revealed that treatment with IFN significantly impaired ATMUV replication in the chicken cell. Consistently, type I IFN also exhibited promising antiviral activity against ATMUV replication in the human cell. Together, these data indicate that ATMUV infection triggers host innate immune response through MDA5 and TLR3-dependent signaling that controls IFN production, and thereby induces an effective antiviral immunity.
Collapse
Affiliation(s)
- Shilong Chen
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, 350002, China
| | - Guifeng Luo
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhou Yang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuncheng Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shaoying Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, 350002, China
| | - Song Wang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mohsan Ullah Goraya
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaojuan Chi
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiancheng Zeng
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ji-Long Chen
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.
| |
Collapse
|