1
|
Wang C, Zou RQ, He GZ. Progress in mechanism-based diagnosis and treatment of tuberculosis comorbid with tumor. Front Immunol 2024; 15:1344821. [PMID: 38298194 PMCID: PMC10827852 DOI: 10.3389/fimmu.2024.1344821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
Tuberculosis (TB) and tumor, with similarities in immune response and pathogenesis, are diseases that are prone to produce autoimmune stress response to the host immune system. With a symbiotic relationship between the two, TB can facilitate the occurrence and development of tumors, while tumor causes TB reactivation. In this review, we systematically sorted out the incidence trends and influencing factors of TB and tumor, focusing on the potential pathogenesis of TB and tumor, to provide a pathway for the co-pathogenesis of TB comorbid with tumor (TCWT). Based on this, we summarized the latest progress in the diagnosis and treatment of TCWT, and provided ideas for further exploration of clinical trials and new drug development of TCWT.
Collapse
Affiliation(s)
- Chuan Wang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Rong-Qi Zou
- Vice Director of Center of Sports Injury Prevention, Treatment and Rehabilitation China National Institute of Sports Medicine A2 Pangmen, Beijing, China
| | - Guo-Zhong He
- School of Public Health, Kunming Medical University, Kunming, China
| |
Collapse
|
2
|
Jing F, Liu G, Zhang R, Xue W, Lin J, Zhu H, Zhu Y, Wu C, Luo Y, Chen T, Li S, Bao M. PYY modulates the tumorigenesis and progression of colorectal cancer unveiled by proteomics. Am J Cancer Res 2022; 12:5500-5515. [PMID: 36628274 PMCID: PMC9827100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/20/2022] [Indexed: 01/12/2023] Open
Abstract
Despite decrease in mortality caused by colorectal cancer (CRC), there remains no effective therapeutic method for patients with CRC. We attempted to screen biomarkers with therapeutic values in CRC. Proteomic analysis was performed on tumor, tumor-adjacent, and normal tissues derived from five patients with colon adenocarcinoma (COAD) via label-free proteome profiling. Differentially expressed proteins (DEPs) were identified, and functional annotation was performed based on the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The effect of marker proteins on CRC was determined via cell function experiments and using tumor organoid models. The localization of the marker proteins was determined via immunofluorescence. A total of 126 DEPs were identified in COAD tissues compared with normal tissues, of which Peptide YY (PYY) overlapped among the tumor, adjacent, and normal groups. DEPs in the cancer group vs. normal group were enriched in the regulation of cell cycle checkpoint, developmental process, focal adhesion, and apoptosis-related pathways. The low expression of PYY in CRC tissues was verified via qRT-PCR, western blotting, and immunohistochemistry. Overexpression of PYY promoted apoptosis and inhibited the proliferation, migration, and invasion of HCT116 and HT29 cells. Furthermore, PYY was secreted by neurons and its supplementation suppressed tumor organoid growth in a dose-dependent manner. In conclusion, PYY exerted inhibitory action on CRC and could be a therapeutic target for CRC.
Collapse
Affiliation(s)
- Fangyan Jing
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical UniversityGuangzhou 510515, Guangdong, China
| | - Guanglong Liu
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical UniversityGuangzhou 510515, Guangdong, China
| | - Renyi Zhang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical UniversityGuangzhou 510515, Guangdong, China
| | - Weisong Xue
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical UniversityGuangzhou 510515, Guangdong, China
| | - Jiabao Lin
- Department of Health Management, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong, China
| | - Huacong Zhu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical UniversityGuangzhou 510515, Guangdong, China
| | - Yu Zhu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical UniversityGuangzhou 510515, Guangdong, China
| | - Chaosong Wu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical UniversityGuangzhou 510515, Guangdong, China
| | - Yang Luo
- Department of Urology, The Fifth Affiliated Hospital of Southern Medical UniversityGuangzhou 510900, Guangdong, China
| | - Tao Chen
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical UniversityGuangzhou 510515, Guangdong, China
| | - Shenglong Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical UniversityGuangzhou 510515, Guangdong, China
| | - Ming Bao
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical UniversityGuangzhou 510515, Guangdong, China
| |
Collapse
|
3
|
Galal MA, Abdel Jabar M, Zhra M, Abdel Rahman AM, Aljada A. Absolute quantification of senescence mediators in cells using multiple reaction monitoring liquid chromatography-Tandem mass spectrometry. Anal Chim Acta 2021; 1184:339009. [PMID: 34625254 DOI: 10.1016/j.aca.2021.339009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The identification of unique senescence markers remains challenging. Current hallmarks of senescent cells, including increased senescence-associated β-galactosidase activity, increased levels of cell cycle regulators such as p16INK4a, p27, and p53, and altered levels of sirtuins and lamins, are detected commonly by Western blot and immunohistochemistry methods. Mass spectrometry outperforms these conventional quantification methods in terms of high throughput, specificity, and reproducibility. OBJECTIVES To develop multiple reaction monitoring-based tandem mass spectrometric senescence assay for simultaneous measuring of p16INK4a, p27, p53, p53-β, the seven proteins of the sirtuins family and the four transcript variants of lamins proteins in aging cell model and cancerous cell lines. METHODOLOGY Multiple reaction monitoring-tandem mass transitions per protein were developed for each signature peptide(s) and stable isotope-labeled internal standard. The developed assay was validated in a matrix using breast cancer MCF7 cell lines according to the US-FDA guidelines for bioanalytical assays. RESULTS The analytes chromatographic peaks were baseline separated and showed linear behavior in a wide dynamic range with r2 ≥ 0.98. The method for all proteins has passed the inter/intra-day precision and accuracy validation using three levels of quality control samples. The accuracy and the precision for most analytes were 80-120% and ≤20%, respectively. The method's sensitivity for the panels' signature peptides ranged from 1 ng μL-1 to 1 μg mL-1. Extraction recovery assessed in two quality control levels was >60% for most analytes. This LC-MS-MS validated senescence assay showed reduced lamin A, lamin A△10, lamin A△50, SIRT1, SIRT3, SIRT5, p53, and p16INK4a, as well as p53-β induction, are implicated in replicative senescence. Meanwhile, increased lamin C: lamin A ratio was evident and can diagnose breast carcinogenesis. Moreover, in breast cancer metastasis, reduced SIRT2 and p27 and elevated levels of lamin A△50, SIRT5, SIRT7, and p53-β are evident. CONCLUSION LC-MS/MS is a potent alternative tool to the currently available assays. The high throughput method established can study senescence's role in different pathophysiological processes.
Collapse
Affiliation(s)
- Mariam Ahmed Galal
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia
| | - Mai Abdel Jabar
- Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Center (KFSH-RC), Riyadh, 11211, Saudi Arabia
| | - Mahmoud Zhra
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia
| | - Anas M Abdel Rahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia; Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Center (KFSH-RC), Riyadh, 11211, Saudi Arabia.
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia.
| |
Collapse
|
4
|
Duan L, Jiang H, Liu J, Liu Y, Ma T, Xie Y, Wang L, Cheng J, Zou J, Wu J, Liu S, Gao M, Li W, Xie H. Whole Transcriptome Analysis Revealed a Stress Response to Deep Underground Environment Conditions in Chinese Hamster V79 Lung Fibroblast Cells. Front Genet 2021; 12:698046. [PMID: 34603371 PMCID: PMC8481809 DOI: 10.3389/fgene.2021.698046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/20/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Prior studies have shown that the proliferation of V79 lung fibroblast cells could be inhibited by low background radiation (LBR) in deep underground laboratory (DUGL). In the current study, we revealed further molecular changes by performing whole transcriptome analysis on the expression profiles of long non-coding RNA (lncRNA), messenger RNA (mRNA), circular RNA (circRNA) and microRNA (miRNA) in V79 cells cultured for two days in a DUGL. Methods: Whole transcriptome analysis including lncRNA, mRNAs, circ RNA and miRNA was performed in V79 cells cultured for two days in DUGL and above ground laboratory (AGL), respectively. The differentially expressed (DE) lncRNA, mRNA, circRNA, and miRNA in V79 cells were identified by the comparison between DUGL and AGL groups. Quantitative real-time polymerase chain reaction(qRT-PCR)was conducted to verify the selected RNA sequencings. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway was analyzed for the DE mRNAs which enabled to predict target genes of lncRNA and host genes of circRNA. Results: With |log2(Fold-change)| ≥ 1.0 and p < 0.05, a total of 1257 mRNAs (353 mRNAs up-regulated, 904 mRNAs down-regulated), 866 lncRNAs (145 lncRNAs up-regulated, 721 lncRNAs down-regulated), and 474 circRNAs (247 circRNAs up-regulated, 227 circRNAs down-regulated) were significantly altered between the two groups. There was no significant difference in miRNA between the two groups. The altered RNA profiles were mainly discovered in lncRNAs, mRNAs and circRNAs. DE RNAs were involved in many pathways including ECM-RI, PI3K-Akt signaling, RNA transport and the cell cycle under the LBR stress of the deep underground environment. Conclusion: Taken together, these results suggest that the LBR in the DUGL could induce transcriptional repression, thus reducing metabolic process and reprogramming the overall gene expression profile in V79 cells.
Collapse
Affiliation(s)
- Liju Duan
- Wangjiang Hospital, Sichuan University, Chengdu, China
| | - Hongying Jiang
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jifeng Liu
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China.,Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yilin Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Tengfei Ma
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China.,Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yike Xie
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Wang
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Cheng
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Zou
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China.,Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiang Wu
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shixi Liu
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Mingzhong Gao
- College of Water Resources & Hydropower, Sichuan University, Chengdu, China.,Institute of Deep Earth Science and Green Energy, Shenzhen University, Shenzhen, China
| | - Weimin Li
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Heping Xie
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China.,College of Water Resources & Hydropower, Sichuan University, Chengdu, China.,Institute of Deep Earth Science and Green Energy, Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Liu J, Ma T, Gao M, Liu Y, Liu J, Wang S, Xie Y, Wang L, Cheng J, Liu S, Zou J, Wu J, Li W, Xie H. Proteomics provides insights into the inhibition of Chinese hamster V79 cell proliferation in the deep underground environment. Sci Rep 2020; 10:14921. [PMID: 32913333 PMCID: PMC7483447 DOI: 10.1038/s41598-020-71154-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/07/2020] [Indexed: 02/05/2023] Open
Abstract
As resources in the shallow depths of the earth exhausted, people will spend extended periods of time in the deep underground space. However, little is known about the deep underground environment affecting the health of organisms. Hence, we established both deep underground laboratory (DUGL) and above ground laboratory (AGL) to investigate the effect of environmental factors on organisms. Six environmental parameters were monitored in the DUGL and AGL. Growth curves were recorded and tandem mass tag (TMT) proteomics analysis were performed to explore the proliferative ability and differentially abundant proteins (DAPs) in V79 cells (a cell line widely used in biological study in DUGLs) cultured in the DUGL and AGL. Parallel Reaction Monitoring was conducted to verify the TMT results. γ ray dose rate showed the most detectable difference between the two laboratories, whereby γ ray dose rate was significantly lower in the DUGL compared to the AGL. V79 cell proliferation was slower in the DUGL. Quantitative proteomics detected 980 DAPs (absolute fold change ≥ 1.2, p < 0.05) between V79 cells cultured in the DUGL and AGL. Of these, 576 proteins were up-regulated and 404 proteins were down-regulated in V79 cells cultured in the DUGL. KEGG pathway analysis revealed that seven pathways (e.g. ribosome, RNA transport and oxidative phosphorylation) were significantly enriched. These data suggest that proliferation of V79 cells was inhibited in the DUGL, likely because cells were exposed to reduced background radiation. The apparent changes in the proteome profile may have induced cellular changes that delayed proliferation but enhanced survival, rendering V79 cells adaptable to the changing environment.
Collapse
Affiliation(s)
- Jifeng Liu
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu, China
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tengfei Ma
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu, China
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Mingzhong Gao
- College of Water Resources & Hydropower, Sichuan University, Chengdu, China
| | - Yilin Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Liu
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu, China
| | - Shichao Wang
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yike Xie
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Wang
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Cheng
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shixi Liu
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu, China.
| | - Jian Zou
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu, China.
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Jiang Wu
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Weimin Li
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Heping Xie
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
- College of Water Resources & Hydropower, Sichuan University, Chengdu, China
- Institute of Deep Earth Science and Green Energy, Shenzhen University, Shenzhen, China
| |
Collapse
|
6
|
Chen Y, Cao W, Wang L, Zhong T. AMPH1 functions as a tumour suppressor in ovarian cancer via the inactivation of PI3K/AKT pathway. J Cell Mol Med 2020; 24:7652-7659. [PMID: 32476271 PMCID: PMC7339212 DOI: 10.1111/jcmm.15400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/04/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
AMPH1, an abundant protein in nerve terminals, plays a critical role in the recruitment of dynamin to sites of clathrin-mediated endocytosis. Recently, it is reported to be involved in breast cancer and lung cancer. However, the impact of AMPH1 on ovarian cancer is unclear. In this study, we used gain-of-function and loss-of-function methods to explore the role of AMPH1 in ovarian cancer cells. AMPH1 inhibited ovarian cancer cell growth and cell migration, and promoted caspase-3 activity, resulting in the increase of cell apoptosis. In xenograft mice model, AMPH1 prevented tumour progression. The anti-oncogene effects of AMPH1 on ovarian cancer might be partially due to the inhibition of PI3K/AKT signalling pathway after overexpression of AMPH1. Immunohistochemistry analysis showed that the staining of AMPH1 was remarkably reduced in ovarian cancer tissues compared with normal ovarian tissues. In conclusion, our study identifies AMPH1 as a tumour suppressor in ovarian cancer in vitro and in vivo. This is the first evidence that AMPH1 inhibited cell growth and migration, and induced apoptosis via the inactivation of PI3K/AKT signalling pathway on ovarian cancer, which may be used as an effective strategy.
Collapse
Affiliation(s)
- Yajun Chen
- Department of Clinical LaboratoryNanjing Maternity and Child Health Care HospitalWomen’s Hospital of Nanjing Medical UniversityNanjingChina
| | - Wenjiao Cao
- The international Peace Maternity and Child Health HospitalSchool of MedicineThe China Welfare InstituteShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
- Shanghai Municipal Key Clinical SpecialtyShanghaiChina
| | - Lihua Wang
- The international Peace Maternity and Child Health HospitalSchool of MedicineThe China Welfare InstituteShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
- Shanghai Municipal Key Clinical SpecialtyShanghaiChina
| | - Tianying Zhong
- Department of Clinical LaboratoryNanjing Maternity and Child Health Care HospitalWomen’s Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
7
|
Zhou J, Jiang Y, Chen H, Wu Y, Zhang L. Tanshinone I attenuates the malignant biological properties of ovarian cancer by inducing apoptosis and autophagy via the inactivation of PI3K/AKT/mTOR pathway. Cell Prolif 2020; 53:e12739. [PMID: 31820522 PMCID: PMC7046305 DOI: 10.1111/cpr.12739] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/29/2019] [Accepted: 11/06/2019] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES Tanshinone I (Tan-I) is one of the vital fatsoluble monomer components, which extracted from Chinese medicinal herb Salvia miltiorrhiza Bunge. It has been shown that Tan-I exhibited anti-tumour activities on different types of cancers. However, the underlying mechanisms by which Tan-Ⅰ regulates apoptosis and autophagy in ovarian cancer remain unclear. Thus, this study aimed to access the therapy effect of Tan-Ⅰ and the underlying mechanisms. METHODS Ovarian cancer cells A2780 and ID-8 were treated with different concentrations of Tan-Ⅰ (0, 1.2, 2.4, 4.8 and 9.6 μg/mL) for 24 hours. The cell proliferation was analysed by CCK8 assay, EdU staining and clone formation assay. Apoptosis was assessed by the TUNEL assay and flow cytometry. The protein levels of apoptosis protein (Caspase-3), autophagy protein (Beclin1, ATG7, p62 and LC3II/LC3I) and PI3K/AKT/mTOR pathway were determined by Western blot. Autophagic vacuoles in cells were observed with LC3 dyeing using confocal fluorescent microscopy. Anti-tumour activity of Tan-Ⅰ was accessed by subcutaneous xeno-transplanted tumour model of human ovarian cancer in nude mice. The Ki67, Caspase-3 level and apoptosis level were analysed by immunohistochemistry and TUNEL staining. RESULTS Tan-Ⅰ inhibited the proliferation of ovarian cancer cells A2780 and ID-8 in a dose-dependent manner, based on CCK8 assay, EdU staining and clone formation assay. In additional, Tan-Ⅰ induced cancer cell apoptosis and autophagy in a dose-dependent manner in ovarian cancer cells by TUNEL assay, flow cytometry and Western blot. Tan-Ⅰ significantly inhibited tumour growth by inducing cell apoptosis and autophagy. Mechanistically, Tan-Ⅰ activated apoptosis-associated protein Caspase-3 cleavage to promote cell apoptosis and inhibited PI3K/AKT/mTOR pathway to induce autophagy. CONCLUSIONS This is the first evidence that Tan-Ⅰ induced apoptosis and promoted autophagy via the inactivation of PI3K/AKT/mTOR pathway on ovarian cancer and further inhibited tumour growth, which might be considered as effective strategy.
Collapse
Affiliation(s)
- Jin Zhou
- College of ScienceSichuan Agricultural UniversityYa'anChina
| | | | - Huan Chen
- College of ScienceSichuan Agricultural UniversityYa'anChina
| | - Yi‐chao Wu
- College of Life ScienceChina West Normal UniversityNanchongChina
| | - Li Zhang
- College of ScienceSichuan Agricultural UniversityYa'anChina
| |
Collapse
|
8
|
Pan L, Zhang X, Jia H, Huang M, Liu F, Wang J, Du B, Wei R, Sun Q, Xing A, Li Q, Zhang Z. Label-Free Quantitative Proteomics Identifies Novel Biomarkers for Distinguishing Tuberculosis Pleural Effusion from Malignant Pleural Effusion. Proteomics Clin Appl 2019; 14:e1900001. [PMID: 31715074 DOI: 10.1002/prca.201900001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 10/29/2019] [Indexed: 02/04/2023]
Abstract
PURPOSE To identify potential protein biomarkers for distinguishing tuberculosis plural effusion (TBPE) from malignant plural effusion (MPE). EXPERIMENTAL DESIGN Five independent samples from each group (TBPE and MPE) are enrolled for label-free quantitative proteomics analyses. The differentially expressed proteins are validated by western blot and ELISA. Logistic regression analysis is used to obtain the optimal diagnostic model. RESULTS In total, 14 proteins with significant difference are identified between TBPE and MPE. Seven differentially expressed proteins are validated using western blot, and the expression patterns of these seven proteins are similar with those in proteomics analysis. Statistically significant differences in four proteins (AGP1, ORM2, C9, and SERPING1) are noted between TBPE and MPE in the training set (n = 230). Logistic regression analysis shows the combination of AGP1-ORM2-C9 presents a sensitivity of 73.0% (92/126) and specificity of 89.4% (93/104) in discriminating TBPE from MPE. Additional validation is performed to evaluate the diagnostic model in an independent blind testing set (n = 80), and yielded a sensitivity of 74.4% (32/43) and specificity of 91.9% (34/37) in discriminating TBPE from MPE. CONCLUSION The study uncovers the proteomic profiles of TBPE and MPE, and provides new potential diagnostic biomarkers for distinguishing TBPE from MPE.
Collapse
Affiliation(s)
- Liping Pan
- Beijing Chest Hospital, Capital Medical University; Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Xia Zhang
- Beijing Chest Hospital, Capital Medical University; Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Hongyan Jia
- Beijing Chest Hospital, Capital Medical University; Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Mailing Huang
- Department of Tuberculosis, Beijing Chest Hospital Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Fei Liu
- Department of Tuberculosis, Beijing Chest Hospital Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Jinghui Wang
- Department of Medical Oncology, Beijing Chest Hospital Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Boping Du
- Beijing Chest Hospital, Capital Medical University; Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Rongrong Wei
- Beijing Chest Hospital, Capital Medical University; Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Qi Sun
- Beijing Chest Hospital, Capital Medical University; Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Aiying Xing
- Beijing Chest Hospital, Capital Medical University; Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Qi Li
- Department of Tuberculosis, Beijing Chest Hospital Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Zongde Zhang
- Beijing Chest Hospital, Capital Medical University; Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| |
Collapse
|
9
|
Khosla R, Hemati H, Rastogi A, Ramakrishna G, Sarin SK, Trehanpati N. miR-26b-5p helps in EpCAM+cancer stem cells maintenance via HSC71/HSPA8 and augments malignant features in HCC. Liver Int 2019; 39:1692-1703. [PMID: 31276277 DOI: 10.1111/liv.14188] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Targeting cancer stem cells (CSCs) in hepatocellular carcinoma (HCC) is difficult because of their similarities with normal stem cells (NSCs). EpCAM can identify CSCs from EpCAM+AFP+HCC cases, but is also expressed on NSCs. We aimed to distinguish the two using integrated protein, mRNA and miRNA profiling. METHODS iTRAQ based protein profiling and Next Generation Sequencing (NGS) was performed on EpCAM+/EpCAM- cells isolated from HCC (Ep+CSC, Ep- HCC) and EpCAM+ cells from non-cancerous/non-cirrhotic control liver tissues (Ep+NSC). Validations were done using qRT-PCR, flowcytometry and western blotting followed by in vitro and in vivo functional studies. RESULTS 11 proteins were overexpressed (>3 fold) in Ep+CSCs compared to Ep- HCC and Ep+NSC cells. However, RNA-sequencing confirmed the Ep+CSC specific up-regulation of only HSPA8, HNRNPC, MPST and GAPDH mRNAs among these. Database search combined with miRNA profiling revealed Ep+ CSC specific down-regulation of 29 miRNAs targeting these four genes. Of these, only miR-26b-5p was found to target both HSPA8 and EpCAM. Validation of HSPA8 overexpression and miR-26b-5p down-regulation followed by linear regression analysis established a negative correlation between the two. Functional studies demonstrated that reduced miR-26b-5p expression increased the spheroid formation, migration, invasion and tumourigenicity of Ep+ CSCs. Furthermore, anti-miR-26b-5p increased the number of Ep+ CSCs with a concomitant overexpression of stemness genes and reduction of proapoptotic protein BBC3, which is a known substrate of HSPA8. CONCLUSION miR-26b-5p imparts metastatic properties and helps in maintenance of Ep+ CSCs via HSPA8. Thus, miR-26b-5p and HSPA8 could serve as molecular targets for selectively eliminating the Ep+ CSC population in human HCCs.
Collapse
Affiliation(s)
- Ritu Khosla
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, India
| | - Hamed Hemati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, India.,Department of Biotechnology, Punjab University, Chandigarh, India
| | | | - Gayatri Ramakrishna
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, India
| | - Shiv K Sarin
- Department of Hepatology, ILBS, New Delhi, India
| | - Nirupma Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, India
| |
Collapse
|
10
|
K. B. A, Madhavan A, T. R. R, Thomas S, Nisha P. Short chain fatty acids enriched fermentation metabolites of soluble dietary fibre from Musa paradisiaca drives HT29 colon cancer cells to apoptosis. PLoS One 2019; 14:e0216604. [PMID: 31095579 PMCID: PMC6522120 DOI: 10.1371/journal.pone.0216604] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
In this study, the prebiotic potential of soluble dietary fibre extracted from plantain inflorescence (PIF) was investigated. PIF demonstrated prebiotic potential by enhancing the growth of the probiotics under study and thereby hindered colon cancer development. The soluble dietary fibre from Musa paradisiaca inflorescence (PIF) was fermented using Lactobacillus casei and Bifidobacterium bifidum. The fermentation supernatants (LS and BS) were enriched with short chain fatty acids (SCFA) and were able to initiate apoptotic signalling in HT29 colon cancer cells leading to cell death. Both BS and LS exhibited cytotoxic effect; induced DNA damage and enhanced generation of reactive oxygen species in HT29 cells leading to apoptosis. The induction of apoptosis was facilitated by the reduction of membrane potential of mitochondria and ATP synthesis; enhanced delivery of cytochrome c and interference with the expression of pro/antiapoptotic proteins. BS, which exhibited better activity, was further analysed for the identification of differentially regulated proteins by performing two dimensional electrophoresis and MALDI-TOF mass spectrometry. Results emphasized on the fact that, the exposure to BSalteredthe HT29 proteins expression, particularly the upregulation of apoptosis- inducing factor-AIFM1 leading to apoptosis of HT29 cells.
Collapse
Affiliation(s)
- Arun K. B.
- Agro Processing and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India
| | - Aravind Madhavan
- Microbial Processing and Technology Division, CSIR-NIIST, Thiruvananthapuram, Kerala, India
| | - Reshmitha T. R.
- Agro Processing and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Sithara Thomas
- Agro Processing and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - P. Nisha
- Agro Processing and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
- * E-mail:
| |
Collapse
|
11
|
BioMed Research International. Retracted: Label-Free Quantitative Mass Spectrometry Reveals a Panel of Differentially Expressed Proteins in Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7821495. [PMID: 30834275 PMCID: PMC6374809 DOI: 10.1155/2019/7821495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 11/17/2022]
Abstract
[This retracts the article DOI: 10.1155/2015/365068.].
Collapse
|
12
|
Sun H, Pan L, Jia H, Zhang Z, Gao M, Huang M, Wang J, Sun Q, Wei R, Du B, Xing A, Zhang Z. Label-Free Quantitative Proteomics Identifies Novel Plasma Biomarkers for Distinguishing Pulmonary Tuberculosis and Latent Infection. Front Microbiol 2018; 9:1267. [PMID: 29951049 PMCID: PMC6008387 DOI: 10.3389/fmicb.2018.01267] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/24/2018] [Indexed: 12/11/2022] Open
Abstract
The lack of effective differential diagnostic methods for active tuberculosis (TB) and latent infection (LTBI) is still an obstacle for TB control. Furthermore, the molecular mechanism behind the progression from LTBI to active TB has been not elucidated. Therefore, we performed label-free quantitative proteomics to identify plasma biomarkers for discriminating pulmonary TB (PTB) from LTBI. A total of 31 overlapping proteins with significant difference in expression level were identified in PTB patients (n = 15), compared with LTBI individuals (n = 15) and healthy controls (HCs, n = 15). Eight differentially expressed proteins were verified using western blot analysis, which was 100% consistent with the proteomics results. Statistically significant differences of six proteins were further validated in the PTB group compared with the LTBI and HC groups in the training set (n = 240), using ELISA. Classification and regression tree (CART) analysis was employed to determine the ideal protein combination for discriminating PTB from LTBI and HC. A diagnostic model consisting of alpha-1-antichymotrypsin (ACT), alpha-1-acid glycoprotein 1 (AGP1), and E-cadherin (CDH1) was established and presented a sensitivity of 81.2% (69/85) and a specificity of 95.2% (80/84) in discriminating PTB from LTBI, and a sensitivity of 81.2% (69/85) and a specificity of 90.1% (64/81) in discriminating PTB from HCs. Additional validation was performed by evaluating the diagnostic model in blind testing set (n = 113), which yielded a sensitivity of 75.0% (21/28) and specificity of 96.1% (25/26) in PTB vs. LTBI, 75.0% (21/28) and 92.3% (24/26) in PTB vs. HCs, and 75.0% (21/28) and 81.8% (27/33) in PTB vs. lung cancer (LC), respectively. This study obtained the plasma proteomic profiles of different M.TB infection statuses, which contribute to a better understanding of the pathogenesis involved in the transition from latent infection to TB activation and provide new potential diagnostic biomarkers for distinguishing PTB and LTBI.
Collapse
Affiliation(s)
- Huishan Sun
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Liping Pan
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hongyan Jia
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zhiguo Zhang
- Changping Tuberculosis Prevent and Control Institute of Beijing, Beijing, China
| | - Mengqiu Gao
- Department of Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Mailing Huang
- Department of Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jinghui Wang
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Qi Sun
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Rongrong Wei
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Boping Du
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Aiying Xing
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zongde Zhang
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Lomnytska M, Pinto R, Becker S, Engström U, Gustafsson S, Björklund C, Templin M, Bergstrand J, Xu L, Widengren J, Epstein E, Franzén B, Auer G. Platelet protein biomarker panel for ovarian cancer diagnosis. Biomark Res 2018; 6:2. [PMID: 29344361 PMCID: PMC5767003 DOI: 10.1186/s40364-018-0118-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/03/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Platelets support cancer growth and spread making platelet proteins candidates in the search for biomarkers. METHODS Two-dimensional (2D) gel electrophoresis, Partial Least Squares Discriminant Analysis (PLS-DA), Western blot, DigiWest. RESULTS PLS-DA of platelet protein expression in 2D gels suggested differences between the International Federation of Gynaecology and Obstetrics (FIGO) stages III-IV of ovarian cancer, compared to benign adnexal lesions with a sensitivity of 96% and a specificity of 88%. A PLS-DA-based model correctly predicted 7 out of 8 cases of FIGO stages I-II of ovarian cancer after verification by western blot. Receiver-operator curve (ROC) analysis indicated a sensitivity of 83% and specificity of 76% at cut-off >0.5 (area under the curve (AUC) = 0.831, p < 0.0001) for detecting these cases. Validation on an independent set of samples by DigiWest with PLS-DA differentiated benign adnexal lesions and ovarian cancer, FIGO stages III-IV, with a sensitivity of 70% and a specificity of 83%. CONCLUSION We identified a group of platelet protein biomarker candidates that can quantify the differential expression between ovarian cancer cases as compared to benign adnexal lesions.
Collapse
Affiliation(s)
- Marta Lomnytska
- Department of Obstetrics and Gynaecology, Academical Uppsala University Hospital, Uppsala University, SE-751 85 Uppsala, Sweden
- Institute of Women’s and Children’s Health, Karolinska Institute, SE-171 76 Stockholm, Sweden
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institute, SE-171 76 Stockholm, Sweden
| | - Rui Pinto
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, St. Mary’s Campus, Norfolk Place, W2 1PG, London, England UK
| | - Susanne Becker
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institute, SE-171 76 Stockholm, Sweden
| | - Ulla Engström
- Ludwig Institute for Cancer Research Ltd, Box 595, SE-751 24 Uppsala, Sweden
| | - Sonja Gustafsson
- NeoProteomics AB, Cancer Centre Karolinska, SE-17176 Stockholm, Sweden
| | | | - Markus Templin
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Jan Bergstrand
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Lei Xu
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Jerker Widengren
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Elisabeth Epstein
- Institute of Women’s and Children’s Health, Karolinska Institute, SE-171 76 Stockholm, Sweden
- Department of Obstetrics and Gynaecology, Department of Clinical Science and Education, Södersjukhuset, SE-118 83 Stockholm, Sweden
| | - Bo Franzén
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institute, SE-171 76 Stockholm, Sweden
- NeoProteomics AB, Cancer Centre Karolinska, SE-17176 Stockholm, Sweden
| | - Gert Auer
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institute, SE-171 76 Stockholm, Sweden
- NeoProteomics AB, Cancer Centre Karolinska, SE-17176 Stockholm, Sweden
| |
Collapse
|
14
|
ERp29 inhibits tumorigenicity by suppressing epithelial mesenchymal transition in gastric cancer. Oncotarget 2017; 8:78757-78766. [PMID: 29108263 PMCID: PMC5667996 DOI: 10.18632/oncotarget.20225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/25/2017] [Indexed: 02/06/2023] Open
Abstract
ERp29 is a novel endoplasmic reticulum (ER) protein that plays an important role in protein unfolding and secretion. Recently, it has been reported to be widely implicated in control of tumorigenesis in some tumors. However, the potential function of ERp29 in gastric cancer remains poorly understood. In this study, we found that the positive rate of ERp29 in gastric cancer tissues was significantly lower than that in adjacent non-tumor tissues. And tumor with high ERp29 expression had inclinations towards smaller tumor size and earlier TNM stage. The in vitro experiments indicated that over-expression of ERp29 in gastric cancer cells significantly suppressed the proliferation and migration of tumor cells, which is consistent with the result of the in vivo animal experiments. Furthermore, our mechanistic investigations revealed that ERp29 reversed EMT process in gastric carcinoma, and its effect was related to the inactivation of ERK1/2 and AKT phosphorylation. Thus, we conclude that ERp29 acts as a tumor suppressor gene in gastric cancer, and is expected to become a novel target of the treatment of GC.
Collapse
|
15
|
Corbo C, Cevenini A, Salvatore F. Biomarker discovery by proteomics-based approaches for early detection and personalized medicine in colorectal cancer. Proteomics Clin Appl 2017; 11. [PMID: 28019089 DOI: 10.1002/prca.201600072] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 11/29/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022]
Abstract
About one million people per year develop colorectal cancer (CRC) and approximately half of them die. The extent of the disease (i.e. local invasion at the time of diagnosis) is a key prognostic factor. The 5-year survival rate is almost 90% in the case of delimited CRC and 10% in the case of metastasized CRC. Hence, one of the great challenges in the battle against CRC is to improve early diagnosis strategies. Large-scale proteomic approaches are widely used in cancer research to search for novel biomarkers. Such biomarkers can help in improving the accuracy of the diagnosis and in the optimization of personalized therapy. Herein, we provide an overview of studies published in the last 5 years on CRC that led to the identification of protein biomarkers suitable for clinical application by using proteomic approaches. We discussed these findings according to biomarker application, including also the role of protein phosphorylation and cancer stem cells in biomarker discovery. Our review provides a cross section of scientific approaches and can furnish suggestions for future experimental strategies to be used as reference by scientists, clinicians and researchers interested in proteomics for biomarker discovery.
Collapse
Affiliation(s)
- Claudia Corbo
- CEINGE, Advanced Biotechnology s.c.a.r.l., Via G. Salvatore 486, Naples, Italy.,Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Armando Cevenini
- CEINGE, Advanced Biotechnology s.c.a.r.l., Via G. Salvatore 486, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Francesco Salvatore
- CEINGE, Advanced Biotechnology s.c.a.r.l., Via G. Salvatore 486, Naples, Italy
| |
Collapse
|
16
|
Fazeli Z, Alebouyeh M, Mansouri V, Malekpour H. Protein profiling of infected human gastric epithelial cells with an Iranian Helicobacter pylori clinical isolate. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2017; 10:S139-S145. [PMID: 29511484 PMCID: PMC5838193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AIM The main objective of this study was to use high throughput approach to characterize the response of human gastric epithelial cells to Helicobacter pylori (H. pylori) infection at protein level. BACKGROUND Alteration of host cell protein profiles occurs due to H.pylori infection. This alteration seems to be strain specific. High throughput approaches, such as proteomics, can describe changes that occurs at the protein levelin the infected cells in response to H.pylori infection. In accordance with this point of view, we used two dimensional electrophoresis (2-DE)/MS to determine changes in proteome profile of gastric epithelial cells infected with a clinical isolate of H. pylori from an Iranian patient. METHODS Human gastric epithelial cells (AGS) were infected by an Iranian H.pylori isolate (complete cagPAI, vacA s2m2, babA2, iceA1, sabA). The altered protein patterns separated by 2-DE were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. RESULTS The results showed 40 spots with significantly different intensities between the 2-DE gels. Protein SETSIP and Endoplasmic reticulum resident protein 29 were identified by MALD-TOF and Mascot search. Proteomic analysis for functional roles of these proteins showed that mechanisms to deal with stress conditions and transcriptional activator related to cell reprogramming are involved in H. pylori infection. CONCLUSION Using high throughput approaches, such as proteomics, we can provide further molecular details about interaction of H. pylori strains with the infected cells at protein level.
Collapse
Affiliation(s)
- Zeinab Fazeli
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Alebouyeh
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Mansouri
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib Malekpour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Galli M, Pagni F, De Sio G, Smith A, Chinello C, Stella M, L'Imperio V, Manzoni M, Garancini M, Massimini D, Mosele N, Mauri G, Zoppis I, Magni F. Proteomic profiles of thyroid tumors by mass spectrometry-imaging on tissue microarrays. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:817-827. [PMID: 27939607 DOI: 10.1016/j.bbapap.2016.11.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 01/22/2023]
Abstract
The current study proposes the successful use of a mass spectrometry-imaging technology that explores the composition of biomolecules and their spatial distribution directly on-tissue to differentially classify benign and malignant cases, as well as different histotypes. To identify new specific markers, we investigated with this technology a wide histological Tissue Microarray (TMA)-based thyroid lesion series. Results showed specific protein signatures for malignant and benign specimens and allowed to build clusters comprising several proteins with discriminant capabilities. Among them, FINC, ACTB1, LMNA, HSP7C and KAD1 were identified by LC-ESI-MS/MS and found up-expressed in malignant lesions. These findings represent the opening of further investigations for their translation into clinical practice, e.g. for setting up new immunohistochemical stainings, and for a better understanding of thyroid lesions. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
Collapse
Affiliation(s)
- Manuel Galli
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Gabriele De Sio
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Andrew Smith
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Clizia Chinello
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Martina Stella
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Vincenzo L'Imperio
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Marco Manzoni
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Mattia Garancini
- Department of Surgery, Hospital San Gerardo, Monza Brianza, Italy
| | - Diego Massimini
- Department of Surgery, Hospital San Gerardo, Monza Brianza, Italy
| | - Niccolò Mosele
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Giancarlo Mauri
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
| | - Italo Zoppis
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
| | - Fulvio Magni
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.
| |
Collapse
|
18
|
Huang HC, Yan L, Shao MY, Chen ZC. Advances in proteomic study of colorectal cancer. Shijie Huaren Xiaohua Zazhi 2016; 24:3870-3876. [DOI: 10.11569/wcjd.v24.i27.3870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is one of the most common malignant tumors and the fourth cause of cancer-related mortality. It is not easy to be found at the early stage and therefore has a poor prognosis. Thus, new molecular biomarkers are required to improve early diagnosis and discover new effective therapeutic targets. Advances in proteomic technologies have greatly enhanced our understanding of the pathogenesis of colorectal cancer at the protein level, and improved our ability of early diagnosis and treatment. Proteomic studies of colorectal tissues, serum and cell lines have identified differentially expressed proteins, new potential diagnostic biomarkers and clinical drug targets. This article reviews the advances in proteomic study of colorectal cancer in recent years.
Collapse
|