1
|
Zhu JJ, Stenfeldt C, Bishop EA, Canter JA, Eschbaumer M, Rodriguez LL, Arzt J. Inferred Causal Mechanisms of Persistent FMDV Infection in Cattle from Differential Gene Expression in the Nasopharyngeal Mucosa. Pathogens 2022; 11:pathogens11080822. [PMID: 35894045 PMCID: PMC9329776 DOI: 10.3390/pathogens11080822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 02/05/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) can persistently infect pharyngeal epithelia in ruminants but not in pigs. Our previous studies demonstrated that persistent FMDV infection in cattle was associated with under-expression of several chemokines that recruit immune cells. This report focuses on the analysis of differentially expressed genes (DEG) identified during the transitional phase of infection, defined as the period when animals diverge between becoming carriers or terminators. During this phase, Th17-stimulating cytokines (IL6 and IL23A) and Th17-recruiting chemokines (CCL14 and CCL20) were upregulated in animals that were still infected (transitional carriers) compared to those that had recently cleared infection (terminators), whereas chemokines recruiting neutrophils and CD8+ T effector cells (CCL3 and ELR+CXCLs) were downregulated. Upregulated Th17-specific receptor, CCR6, and Th17-associated genes, CD146, MIR155, and ThPOK, suggested increased Th17 cell activity in transitional carriers. However, a complex interplay of the Th17 regulatory axis was indicated by non-significant upregulation of IL17A and downregulation of IL17F, two hallmarks of TH17 activity. Other DEG suggested that transitional carriers had upregulated aryl hydrocarbon receptor (AHR), non-canonical NFκB signaling, and downregulated canonical NFκB signaling. The results described herein provide novel insights into the mechanisms of establishment of FMDV persistence. Additionally, the fact that ruminants, unlike pigs, produce a large amount of AHR ligands suggests a plausible explanation of why FMDV persists in ruminants, but not in pigs.
Collapse
Affiliation(s)
- James J. Zhu
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (C.S.); (E.A.B.); (J.A.C.); (L.L.R.)
- Correspondence: (J.J.Z.); (J.A.); Tel.: +1-631-323-3340 (J.J.Z.); +1-631-323-4421 (J.A.); Fax: +1-631-323-3006 (J.A.)
| | - Carolina Stenfeldt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (C.S.); (E.A.B.); (J.A.C.); (L.L.R.)
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Elizabeth A. Bishop
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (C.S.); (E.A.B.); (J.A.C.); (L.L.R.)
| | - Jessica A. Canter
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (C.S.); (E.A.B.); (J.A.C.); (L.L.R.)
- Plum Island Animal Disease Center Research Participation Program, Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Michael Eschbaumer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany;
| | - Luis L. Rodriguez
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (C.S.); (E.A.B.); (J.A.C.); (L.L.R.)
| | - Jonathan Arzt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient, NY 11957, USA; (C.S.); (E.A.B.); (J.A.C.); (L.L.R.)
- Correspondence: (J.J.Z.); (J.A.); Tel.: +1-631-323-3340 (J.J.Z.); +1-631-323-4421 (J.A.); Fax: +1-631-323-3006 (J.A.)
| |
Collapse
|
2
|
Yang S, Ouyang J, Lu Y, Harypursat V, Chen Y. A Dual Role of Heme Oxygenase-1 in Tuberculosis. Front Immunol 2022; 13:842858. [PMID: 35281042 PMCID: PMC8913507 DOI: 10.3389/fimmu.2022.842858] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/08/2022] [Indexed: 12/19/2022] Open
Abstract
Iron metabolism is vital for the survival of both humans and microorganisms. Heme oxygenase-1 (HO-1) is an essential stress-response enzyme highly expressed in the lungs, and catabolizes heme into ferrous iron, carbon monoxide (CO), and biliverdin (BV)/bilirubin (BR), especially in pathological conditions which cause oxidative stress and inflammation. Ferrous iron (Fe2+) is an important raw material for the synthesis of hemoglobin in red blood cells, and patients with iron deficiency are often associated with decreased cellular immunity. CO and BR can inhibit oxidative stress and inflammation. Thus, HO-1 is regarded as a cytoprotective molecule during the infection process. However, recent study has unveiled new information regarding HO-1. Being a highly infectious pathogenic bacterium, Mycobacterium tuberculosis (MTB) infection causes acute oxidative stress, and increases the expression of HO-1, which may in turn facilitate MTB survival and growth due to increased iron availability. Moreover, in severe cases of MTB infection, excessive reactive oxygen species (ROS) and free iron (Fe2+) due to high levels of HO-1 can lead to lipid peroxidation and ferroptosis, which may promote further MTB dissemination from cells undergoing ferroptosis. Therefore, it is important to understand and illustrate the dual role of HO-1 in tuberculosis. Herein, we critically review the interplay among HO-1, tuberculosis, and the host, thus paving the way for development of potential strategies for modulating HO-1 and iron metabolism.
Collapse
|
3
|
Limoges MA, Cloutier M, Nandi M, Ilangumaran S, Ramanathan S. The GIMAP Family Proteins: An Incomplete Puzzle. Front Immunol 2021; 12:679739. [PMID: 34135906 PMCID: PMC8201404 DOI: 10.3389/fimmu.2021.679739] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Overview: Long-term survival of T lymphocytes in quiescent state is essential to maintain their cell numbers in secondary lymphoid organs and in peripheral circulation. In the BioBreeding diabetes-prone strain of rats (BB-DP), loss of functional GIMAP5 (GTPase of the immune associated nucleotide binding protein 5) results in profound peripheral T lymphopenia. This discovery heralded the identification of a new family of proteins initially called Immune-associated nucleotide binding protein (IAN) family. In this review we will use ‘GIMAP’ to refer to this family of proteins. Recent studies suggest that GIMAP proteins may interact with each other and also be involved in the movement of the cellular cargo along the cytoskeletal network. Here we will summarize the current knowledge on the characteristics and functions of GIMAP family of proteins.
Collapse
Affiliation(s)
- Marc-André Limoges
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and CRCHUS, Sherbrooke, QC, Canada
| | - Maryse Cloutier
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and CRCHUS, Sherbrooke, QC, Canada
| | - Madhuparna Nandi
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and CRCHUS, Sherbrooke, QC, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and CRCHUS, Sherbrooke, QC, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke and CRCHUS, Sherbrooke, QC, Canada
| |
Collapse
|
4
|
Pavlovich SS, Darling T, Hume AJ, Davey RA, Feng F, Mühlberger E, Kepler TB. Egyptian Rousette IFN-ω Subtypes Elicit Distinct Antiviral Effects and Transcriptional Responses in Conspecific Cells. Front Immunol 2020; 11:435. [PMID: 32231668 PMCID: PMC7083018 DOI: 10.3389/fimmu.2020.00435] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/25/2020] [Indexed: 12/15/2022] Open
Abstract
Bats host a number of viruses that cause severe disease in humans without experiencing overt symptoms of disease themselves. While the mechanisms underlying this ability to avoid sickness are not known, deep sequencing studies of bat genomes have uncovered genetic adaptations that may have functional importance in the antiviral response of these animals. Egyptian rousette bats (Rousettus aegyptiacus) are the natural reservoir hosts of Marburg virus (MARV). In contrast to humans, these bats do not become sick when infected with MARV. A striking difference to the human genome is that Egyptian rousettes have an expanded repertoire of IFNW genes. To probe the biological implications of this expansion, we synthesized IFN-ω4 and IFN-ω9 proteins and tested their antiviral activity in Egyptian rousette cells. Both IFN-ω4 and IFN-ω9 showed antiviral activity against RNA viruses, including MARV, with IFN-ω9 being more efficient than IFN-ω4. Using RNA-Seq, we examined the transcriptional response induced by each protein. Although the sets of genes induced by the two IFNs were largely overlapping, IFN-ω9 induced a more rapid and intense response than did IFN-ω4. About 13% of genes induced by IFN-ω treatment are not found in the Interferome or other ISG databases, indicating that they may be uniquely IFN-responsive in this bat.
Collapse
Affiliation(s)
- Stephanie S Pavlovich
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States.,National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA, United States
| | - Tamarand Darling
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Adam J Hume
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States.,Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Robert A Davey
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States.,National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA, United States.,Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Feng Feng
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States.,National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA, United States
| | - Thomas B Kepler
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States.,National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA, United States.,Department of Mathematics and Statistics, Boston University, Boston, MA, United States
| |
Collapse
|