1
|
Cuero-Amu K, Daniela Bonilla-Velásquez L, Vargas-Casanova Y, Lucía Leal-Castro A, Marcela Parra-Giraldo C, Giselle López-Sánchez A, Fierro-Medina R, García-Castañeda J, Rivera-Monroy Z. Linear and Polyvalent Peptides with Potent Antimicrobial Activity Against Sensitive and Multidrug-Resistant E. c oli Clinical Isolates. Chem Biodivers 2025; 22:e202401734. [PMID: 39486005 DOI: 10.1002/cbdv.202401734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/09/2024] [Accepted: 10/31/2024] [Indexed: 11/03/2024]
Abstract
Peptides containing the sequences 20RRWQWR25 and 20RRWQWRMKKLG30 derived from Bovine lactoferricin (LfcinB) were synthesized and their antibacterial effect against reference strains and sensitive and resistant clinical isolates of E. coli was evaluated. Tetra-branched multiple antigen peptide (MAP) ((RRWQWR)2-K-Ahx-C)2 exhibited significant antibacterial activity against sensitive, resistant, and multidrug-resistant clinical isolates of E. coli. Peptide 3: RRWQWR-Nal-KKLG; MIC=16 μM, 26[F]: (RRWQWRFKKLG)2-K-Ahx; MIC=15 μM, 17: (RRWQWRFK)2-K-Ahx; MIC=9 μM, and LfcinB (20-25)2: (RRWQWR)2-K-Ahx; MIC=11 μM exhibited the highest antibacterial activity against E. coli strains, with bactericidal effect and haemolytic effect at MIC less than 5 % and a therapeutic index >1. A synergistic effect of peptides 26[F] and 17 with ciprofloxacin (CIP) or ceftriaxone (CEF) was observed. Prolonged treatment of E. coli ATCC 25922 with sublethal concentrations of CIP induced resistance in this strain, whereas some peptides did not induce resistance. These peptides can be considered to be promising candidates for treating infections caused by resistant strains of E. coli.
Collapse
Affiliation(s)
- Kelin Cuero-Amu
- Instituto de Biotecnología, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 45 No 26-85, 11321, Bogotá, Colombia
| | - Laura Daniela Bonilla-Velásquez
- Instituto de Biotecnología, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 45 No 26-85, 11321, Bogotá, Colombia
| | | | - Aura Lucía Leal-Castro
- Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Carrera 45 No 26-85, 11321, Bogotá, Colombia
| | | | - Amalia Giselle López-Sánchez
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 45 No 26-85, 11321, Bogotá, Colombia
| | - Ricardo Fierro-Medina
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 45 No 26-85, 11321, Bogotá, Colombia
| | - Javier García-Castañeda
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 45 No 26-85, 11321, Bogotá, Colombia
| | - Zuly Rivera-Monroy
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 45 No 26-85, 11321, Bogotá, Colombia
| |
Collapse
|
2
|
Eker F, Akdaşçi E, Duman H, Yalçıntaş YM, Canbolat AA, Kalkan AE, Karav S, Šamec D. Antimicrobial Properties of Colostrum and Milk. Antibiotics (Basel) 2024; 13:251. [PMID: 38534686 DOI: 10.3390/antibiotics13030251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
The growing number of antibiotic resistance genes is putting a strain on the ecosystem and harming human health. In addition, consumers have developed a cautious attitude towards chemical preservatives. Colostrum and milk are excellent sources of antibacterial components that help to strengthen the immunity of the offspring and accelerate the maturation of the immune system. It is possible to study these important defenses of milk and colostrum, such as lactoferrin, lysozyme, immunoglobulins, oligosaccharides, etc., as biotherapeutic agents for the prevention and treatment of numerous infections caused by microbes. Each of these components has different mechanisms and interactions in various places. The compound's mechanisms of action determine where the antibacterial activity appears. The activation of the antibacterial activity of milk and colostrum compounds can start in the infant's mouth during lactation and continue in the gastrointestinal regions. These antibacterial properties possess potential for therapeutic uses. In order to discover new perspectives and methods for the treatment of bacterial infections, additional investigations of the mechanisms of action and potential complexes are required.
Collapse
Affiliation(s)
- Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey
| | - Yalçın Mert Yalçıntaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey
| | - Ahmet Alperen Canbolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey
| | - Arda Erkan Kalkan
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey
| | - Dunja Šamec
- Department of Food Technology, University North, Trg Dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia
| |
Collapse
|
3
|
Guimarães CFRC, Félix AS, Brandão TAS, Bemquerer MP, Piló-Veloso D, Verly RM, Resende JM. Optimizing the synthesis of dimeric peptides: influence of the reaction medium and effects that modulate kinetics and reaction yield. Amino Acids 2023; 55:1201-1212. [PMID: 37543997 DOI: 10.1007/s00726-023-03309-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023]
Abstract
Peptides are remarkably interesting alternatives to several applications. In particular, antimicrobial sequences have raised major interest of the scientific community due to the resistance acquired by commonly used antibiotics. Amongst these, some dimeric peptides have shown very promising characteristics as strong biological activities and resistance against degradation by peptidases. However, despite such promising characteristics, a relatively small number of studies address dimeric peptides, mainly due to the synthesis-related obstacles in their production, whereas the well-implemented routines of solid phase peptide synthesis-which includes the possibility of automation-makes life significantly easier. Here, we present kinetic investigations of the dimerization of a cysteine-containing sequence to obtain the homodimeric antimicrobial peptide homotarsinin. Based on the structural and membrane interaction data already available for the dimer and its monomeric chain, we have proposed distinct dimerization protocols in selected environments, namely, aqueous buffer, TFE:H2O and micellar solutions. The experimental results were adjusted by a theoretical model. Both the kinetic profiles and the reaction yields are dependent on the reaction medium, clearly indicating that aggregation, peptide structure, and peptide-membrane interactions play major roles in the formation of the disulfide bond. Finally, the rationalization of the different aspects addressed here is expected to contribute to research and applications that demand the obtainment of dimeric peptides.
Collapse
Affiliation(s)
- Carlos F R C Guimarães
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, P.O. Box 486, Belo Horizonte, MG, 31270-901, Brazil
- Present Address: Universidade Nilton Lins, Avenida Professor Nilton Lins, Manaus, AM, 69058-030, Brazil
| | - Amanda S Félix
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000, Brazil
| | - Tiago A S Brandão
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, P.O. Box 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Marcelo P Bemquerer
- Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Embrapa Gado de Leite, Juiz de Fora, MG, 36038-330, Brazil
| | - Dorila Piló-Veloso
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, P.O. Box 486, Belo Horizonte, MG, 31270-901, Brazil
| | - Rodrigo M Verly
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000, Brazil.
| | - Jarbas M Resende
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, P.O. Box 486, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
4
|
González-López N, Insuasty-Cepeda DS, Huertas-Ortiz KA, Reyes-Calderón JE, Martínez-Ramírez JA, Fierro-Medina R, Jenny Rivera-Monroy Z, García-Castañeda JE. Gradient Retention Factor Concept Applied to Method Development for Peptide Analysis by Means of RP-HPLC. ACS OMEGA 2022; 7:44817-44824. [PMID: 36530233 PMCID: PMC9753532 DOI: 10.1021/acsomega.2c04907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/05/2022] [Indexed: 06/17/2023]
Abstract
Using the van Deemter model, the efficiency of three stationary phase systems in the analysis of a mixture of synthetic peptides was evaluated: (i) monolithic, (ii) packed, and (iii) core-shell columns, and it was shown that the efficiency of the monolithic column is superior to the others, specifically using it, the lowest values of H min (0.03 and 0.1 mm) were obtained, and additionally its efficiency was not significantly affected by increasing the flow. Using the concept of the gradient retention factor (k*), a method for chromatographic separation of a peptide complex mixture was designed, implemented, and optimized and then transferred from a packed column to a monolithic one. The results showed that it was possible to separate all components of the mixture using both evaluated columns; moreover, the analysis time was reduced from 70 to 10 min, conserving the critical pair resolution (1.4), by the transfer method using the k* concept. The method developed was tested against a mixture of doping peptides, showing that this method is efficient for separating peptides of various natures. This investigation is very useful for the development of methods for the analysis of complex peptide mixtures since it provides a systematic approach that can be extrapolated to different types of columns and instrumentation.
Collapse
Affiliation(s)
- Nicolás
Mateo González-López
- Pharmacy
Department, Universidad Nacional de Colombia,
Bogotá, Carrera
45 No 26-85, Building 450, 11321Bogotá, Colombia
| | | | - Kevin Andrey Huertas-Ortiz
- Chemistry
Department, Universidad Nacional de Colombia,
Bogotá, Carrera 45 No 26-85, Building 451, 11321Bogotá, Colombia
| | - Juan Esteban Reyes-Calderón
- Chemistry
Department, Universidad Nacional de Colombia,
Bogotá, Carrera 45 No 26-85, Building 451, 11321Bogotá, Colombia
| | - Jorge Ariel Martínez-Ramírez
- Pharmacy
Department, Universidad Nacional de Colombia,
Bogotá, Carrera
45 No 26-85, Building 450, 11321Bogotá, Colombia
| | - Ricardo Fierro-Medina
- Chemistry
Department, Universidad Nacional de Colombia,
Bogotá, Carrera 45 No 26-85, Building 451, 11321Bogotá, Colombia
| | - Zuly Jenny Rivera-Monroy
- Chemistry
Department, Universidad Nacional de Colombia,
Bogotá, Carrera 45 No 26-85, Building 451, 11321Bogotá, Colombia
| | | |
Collapse
|
5
|
Design and Evaluation of Short Bovine Lactoferrin-Derived Antimicrobial Peptides against Multidrug-Resistant Enterococcus faecium. Antibiotics (Basel) 2022; 11:antibiotics11081085. [PMID: 36009954 PMCID: PMC9404989 DOI: 10.3390/antibiotics11081085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022] Open
Abstract
Enterococcus faecium has become an important drug-resistant nosocomial pathogen because of widespread antibiotic abuse. We developed short and chemically simple antimicrobial peptides (AMPs) with a selective amino acid composition, fixed charge, and hydrophobicity ratio based on the core antimicrobial motif of bovine lactoferrin (LfcinB6). Among these peptides, 5L and 6L (both 12 residues long) demonstrated a narrow spectrum and high antibacterial activity against drug-resistant E. faecium isolates with a minimal inhibitory concentration (MIC) that ranged from 4–16 µg/mL. At 32 µg/mL, peptides 5L and 6L inhibited E. faecium strain C68 biofilm formation by 90% and disrupted established biofilms by 75%. At 40 µg/mL, 5L reduced 1 × 107E. faecium persister cells by 3 logs within 120 min of exposure, whereas 6L eliminated all persister cells within 60 min. At 0.5× MIC, 5L and 6L significantly downregulated the expression of a crucial biofilm gene ace by 8 folds (p = 0.02) and 4 folds (p = 0.01), respectively. At 32 µg/mL, peptides 5L and 6L both depolarized the E. faecium membrane, increased fluidity, and eventually ruptured the membrane. Physiologically, 5L (at 8 µg/mL) altered the tricarboxylic acid cycle, glutathione, and purine metabolism. Interestingly, in an ex vivo model of porcine skin infection, compared to no treatment, 5L (at 10× MIC) effectively eliminated all 1 × 106 exponential (p = 0.0045) and persister E. faecium cells (p = 0.0002). In conclusion, the study outlines a roadmap for developing narrow-spectrum selective AMPs and presents peptide 5L as a potential therapeutic candidate to be explored against E. faecium.
Collapse
|
6
|
Barragán-Cárdenas AC, Insuasty-Cepeda DS, Cárdenas-Martínez KJ, López-Meza J, Ochoa-Zarzosa A, Umaña-Pérez A, Rivera-Monroy ZJ, García-Castañeda JE. LfcinB-Derived Peptides: Specific and punctual change of an amino acid in monomeric and dimeric sequences increase selective cytotoxicity in colon cancer cell lines. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
7
|
Olvera-Rosales LB, Cruz-Guerrero AE, García-Garibay JM, Gómez-Ruíz LC, Contreras-López E, Guzmán-Rodríguez F, González-Olivares LG. Bioactive peptides of whey: obtaining, activity, mechanism of action, and further applications. Crit Rev Food Sci Nutr 2022; 63:10351-10381. [PMID: 35612490 DOI: 10.1080/10408398.2022.2079113] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bioactive peptides derived from diverse food proteins have been part of diverse investigations. Whey is a rich source of proteins and components related to biological activity. It is known that proteins have effects that promote health benefits. Peptides derived from whey proteins are currently widely studied. These bioactive peptides are amino acid sequences that are encrypted within the first structure of proteins, which required hydrolysis for their release. The hydrolysis could be through in vitro or in vivo enzymatic digestion and using microorganisms in fermented systems. The biological activities associated with bio-peptides include immunomodulatory properties, antibacterial, antihypertensive, antioxidant and opioid, etc. These functions are related to general conditions of health or reduced risk of certain chronic illnesses. To determine the suitability of these peptides/ingredients for applications in food technology, clinical studies are required to evaluate their bioavailability, health claims, and safety of them. This review aimed to describe the biological importance of whey proteins according to the incidence in human health, their role as bioactive peptides source, describing methods, and obtaining technics. In addition, the paper exposes biochemical mechanisms during the activity exerted by biopeptides of whey, and their application trends.
Collapse
Affiliation(s)
- L B Olvera-Rosales
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Ciudad del Conocimiento, Mineral de la Reforma, Hidalgo, México
| | - A E Cruz-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
| | - J M García-Garibay
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
- Departamento de Ciencias de la Alimentación Lerma de Villada, Universidad Autónoma Metropolitana-Lerma, Edo. de México, México
| | - L C Gómez-Ruíz
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
| | - E Contreras-López
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Ciudad del Conocimiento, Mineral de la Reforma, Hidalgo, México
| | - F Guzmán-Rodríguez
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa. División de Ciencias Biológicas y de la Salud, Colonia Vicentina, Ciudad de México, México
| | - L G González-Olivares
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Ciudad del Conocimiento, Mineral de la Reforma, Hidalgo, México
| |
Collapse
|
8
|
Mohan NM, Zorgani A, Earley L, Chauhan S, Trajkovic S, Savage J, Adelfio A, Khaldi N, Martins M. Preservatives from food-For food: Pea protein hydrolysate as a novel bio-preservative against Escherichia coli O157:H7 on a lettuce leaf. Food Sci Nutr 2021; 9:5946-5958. [PMID: 34760228 PMCID: PMC8565202 DOI: 10.1002/fsn3.2489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022] Open
Abstract
Fresh-cut fruits and vegetables are becoming particularly popular as healthy fast-food options; however, they present challenges such as accelerated rates of decay and increased risk for contamination when compared to whole produce. Given that food safety must remain paramount for producers and manufacturers, research into novel, natural food preservation solutions which can help to ensure food safety and protect against spoilage is on the rise. In this work, we investigated the potential of using a novel protein hydrolysate, produced by the enzymatic hydrolysis of Pisum sativum (PSH), as a novel bio-preservative and its abilities to reduce populations of Escherichia coli O157:H7 after inoculation on a lettuce leaf. While unhydrolyzed P. sativum proteins show no antimicrobial activity, once digested, and purified, the enzymatically released peptides induced in vitro bactericidal effects on the foodborne pathogen at 8 mg/ml. When applied on an infected lettuce leaf, the PSH significantly reduced the number of bacteria recovered after 2 hr of treatment. PSH may be preferred over other preservation strategies based on its natural, inexpensive, sustainable source, environmentally friendly process, nontoxic nature, good batch to batch consistency, and ability to significantly reduce counts of E. coli both in vitro and in a lettuce leaf.
Collapse
Affiliation(s)
- Niamh M. Mohan
- Department of MicrobiologyMoyne Institute of Preventive MedicineSchool of Genetics and MicrobiologyTrinity College DublinThe University of DublinDublinIreland
- Nuritas LimitedDublinIreland
| | | | | | | | | | | | | | | | - Marta Martins
- Department of MicrobiologyMoyne Institute of Preventive MedicineSchool of Genetics and MicrobiologyTrinity College DublinThe University of DublinDublinIreland
| |
Collapse
|
9
|
Gruden Š, Poklar Ulrih N. Diverse Mechanisms of Antimicrobial Activities of Lactoferrins, Lactoferricins, and Other Lactoferrin-Derived Peptides. Int J Mol Sci 2021; 22:ijms222011264. [PMID: 34681923 PMCID: PMC8541349 DOI: 10.3390/ijms222011264] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/22/2022] Open
Abstract
Lactoferrins are an iron-binding glycoprotein that have important protective roles in the mammalian body through their numerous functions, which include antimicrobial, antitumor, anti-inflammatory, immunomodulatory, and antioxidant activities. Among these, their antimicrobial activity has been the most studied, although the mechanism behind antimicrobial activities remains to be elucidated. Thirty years ago, the first lactoferrin-derived peptide was isolated and showed higher antimicrobial activity than the native lactoferrin lactoferricin. Since then, numerous studies have investigated the antimicrobial potencies of lactoferrins, lactoferricins, and other lactoferrin-derived peptides to better understand their antimicrobial activities at the molecular level. This review defines the current antibacterial, antiviral, antifungal, and antiparasitic activities of lactoferrins, lactoferricins, and lactoferrin-derived peptides. The primary focus is on their different mechanisms of activity against bacteria, viruses, fungi, and parasites. The role of their structure, amino-acid composition, conformation, charge, hydrophobicity, and other factors that affect their mechanisms of antimicrobial activity are also reviewed.
Collapse
|
10
|
Effects of Substituting Arginine by Lysine in Bovine Lactoferricin Derived Peptides: Pursuing Production Lower Costs, Lower Hemolysis, and Sustained Antimicrobial Activity. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10207-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Manju Devi S, Raj N, Sashidhar RB. Efficacy of short-synthetic antifungal peptides on pathogenic Aspergillus flavus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 174:104810. [PMID: 33838711 DOI: 10.1016/j.pestbp.2021.104810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
The efficacies of three short synthetic antifungal peptides were tested for their inhibitory action on pathogenic fungi, Aspergillus flavus. The sequences of the short synthetic peptides are PPD1- FRLHF, 66-10-FRLKFH, 77-3- FRLKFHF, respectively. These test peptides inhibited fungal growth and showed a membranolytic activity. The fungal biomass and ergosterol levels were significantly low in peptides treated samples. Further, the fungal cell wall component chitin was also found to be lower in peptides treated samples. Scanning electron microscopic images also showed highly wrinkled fungal mycelia. Significant membrane permeabilisation as well as potassium ion leakage was also observed in fungal samples treated with peptides. To assess the membrane damage, the uptake of Sytox green dye was employed. At tested concentration, peptides induced fungal membrane damage as evidenced by the green fluorescence. Further, at tested concentration, these peptides induced an oxidative stress in A.flavus as evidenced by an increase in the ROS production, malondialdehyde levels, increase in the antioxidant enzymes - superoxide dismutase, catalase with concomitant decrease in the reduced glutathione content. Additionally, a growth dependent reduction in aflatoxin levels were also observed in peptides treated samples. Docking studies on the interaction of the peptides with a trans-membrane protein calcium ATPase of A. flavus showed that all the peptides were able to bind to the protein with high z rank score. The activity of the calcium ATPase was significantly decreased in peptides treated fungal samples, thereby validating the docking results. Among all the tested peptides, 77-3 peptide exhibited the maximal membrane damage property.
Collapse
Affiliation(s)
- S Manju Devi
- Department of Biochemistry, University College of Science, Osmania University, Hyderabad 500007, Telangana State, India
| | - Navya Raj
- Department of Health Informatics, College of Health Sciences, Saudi Electronic University, Dammam, Saudi Arabia
| | - R B Sashidhar
- Department of Biochemistry, University College of Science, Osmania University, Hyderabad 500007, Telangana State, India.
| |
Collapse
|
12
|
Insuasty-Cepeda DS, Maldonado M, García-Castañeda JE, Rivera-Monroy ZJ. Obtaining an immunoaffinity monolithic material: poly(GMA- co-EDMA) functionalized with an HPV-derived peptide using a thiol-maleimide reaction. RSC Adv 2021; 11:4247-4255. [PMID: 35424340 PMCID: PMC8694329 DOI: 10.1039/d0ra09095f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/12/2021] [Indexed: 11/21/2022] Open
Abstract
Metabolites have great potential for the design of biomarkers, since their presence or absence provides valuable information about a biological system. In this context, polyclonal antibodies are important metabolites for diagnostic procedures, but in some pathologies, it has been found that these metabolites are present at low concentrations, so it could be difficult to detect them. In this investigation, an organic monolithic material of poly(GMA-co-EDMA) was functionalized with a peptide via Michael addition (thiol-maleimide) click chemistry. The peptide, covalently bound to the monolith, contains the SPINNTKPHEAR sequence derived from the human papilloma virus L1 protein. It was determined that the obtained monolithic support allows selectively isolating polyclonal antibodies against the SPINNTKPHEAR sequence, since they are retained on the chemical surface of the material by an immunoaffinity interaction. The monolithic material functionalization protocol reported here could be applied to incorporate any peptide with a terminal cysteine in order to recover a specific analyte. A new method was developed for isolating and pre-concentrating antibodies using monolithic materials, which could contribute to the improvement of disease detection strategies based on immunoaffinity interactions.
Collapse
Affiliation(s)
- Diego Sebastián Insuasty-Cepeda
- Departamento de Química, Universidad Nacional de Colombia Carrera 45 No 26-85, Building 451, Office 409 Bogotá Bogotá 11321 Colombia
| | - Mauricio Maldonado
- Departamento de Química, Universidad Nacional de Colombia Carrera 45 No 26-85, Building 451, Office 409 Bogotá Bogotá 11321 Colombia
| | | | - Zuly Jenny Rivera-Monroy
- Departamento de Química, Universidad Nacional de Colombia Carrera 45 No 26-85, Building 451, Office 409 Bogotá Bogotá 11321 Colombia
| |
Collapse
|
13
|
Li J, Zhi QQ, Zhang J, Yuan XY, Jia LH, Wan YL, Liu QY, Shi JR, He ZM. Synthetic antimicrobial agents inhibit aflatoxin production. Braz J Microbiol 2021; 52:821-835. [PMID: 33447936 DOI: 10.1007/s42770-021-00423-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/05/2021] [Indexed: 11/25/2022] Open
Abstract
Antimicrobial peptides (AMPs) are biologically active molecules that can eradicate bacteria by destroying the bacterial membrane structure, causing the bacteria to rupture. However, little is known about the extent and effect of AMPs on filamentous fungi. In this study, we synthesized small molecular polypeptides by an inexpensive heat conjugation approach and examined their effects on the growth of Aspergillus flavus and its secondary metabolism. The antimicrobial agents significantly inhibited aflatoxin production, conidiation, and sclerotia formation in A. flavus. Furthermore, we found that the expression of aflatoxin structural genes was significantly inhibited, and the intracellular reactive oxygen species (ROS) level was reduced. Additionally, the antimicrobial agents can change membrane permeability. Overall, our results demonstrated that antimicrobial agents, safe to mammalian cells, have an obvious impact on aflatoxin production, which indicated that antimicrobial agents may be adopted as a new generation of potential agents for controlling aflatoxin contamination.
Collapse
Affiliation(s)
- Jing Li
- The Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qing-Qing Zhi
- The Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jie Zhang
- The Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiao-Yu Yuan
- The Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Li-Hong Jia
- The Guangdong Provincial Key Laboratory for Biotechnology Drug Candidates, School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yu-Lin Wan
- The Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qiu-Yun Liu
- The Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Jian-Rong Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, 210000, China.
| | - Zhu-Mei He
- The Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
14
|
Pineda-Castañeda HM, Huertas-Ortiz KA, Leal-Castro AL, Vargas-Casanova Y, Parra-Giraldo CM, García-Castañeda JE, Rivera-Monroy ZJ. Designing Chimeric Peptides: A Powerful Tool for Enhancing Antibacterial Activity. Chem Biodivers 2020; 18:e2000885. [PMID: 33369144 DOI: 10.1002/cbdv.202000885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/21/2020] [Indexed: 11/10/2022]
Abstract
Chimeric peptides containing short sequences derived from bovine Lactoferricin (LfcinB) and Buforin II (BFII) were synthetized using solid-phase peptide synthesis (SPPS) and characterized via reversed-phase liquid chromatography and mass spectrometry. The chimeras were obtained with high purity, demonstrating their synthetic viability. The chimeras' antibacterial activity against Gram-positive and Gram-negative strains was evaluated. Our results showed that all the chimeras exhibited greater antibacterial activity against the evaluated strains than the individual sequences, suggesting that chemical binding of short sequences derived from AMPs significantly increased the antibacterial activity. For each strain, the chimera with the best antibacterial activity exerted a bacteriostatic and/or bactericidal effect, which was dependent on the concentration. It was found that: (i) the antibacterial activity of a chimera is mainly influenced by the linked sequences, the palindromic motif RLLRRLLR being the most relevant one; (ii) the inclusion of a spacer between the short sequences did not significantly affect the chimera's synthesis process; however, it enhanced its antibacterial activity against Gram-negative and Gram-positive strains; on the other hand, (iii) the replacement of Arg with Lys in the LfcinB or BFII sequences improved the chimeras' synthesis process without significantly affecting their antibacterial activity. These results illustrate the great importance of the synthesis of chimeric peptides for the generation of promising antibacterial peptides.
Collapse
Affiliation(s)
- Héctor Manuel Pineda-Castañeda
- Chemistry Department, Universidad Nacional de Colombia, Carrera 45 No. 26-85, Building 451, Office 409, Bogotá, Zip Code 11321, Colombia
| | - Kevin Andrey Huertas-Ortiz
- Chemistry Department, Universidad Nacional de Colombia, Carrera 45 No. 26-85, Building 451, Office 409, Bogotá, Zip Code 11321, Colombia
| | - Aura Lucía Leal-Castro
- Medicine Faculty, Universidad Nacional de Colombia, Carrera 45 No. 26-85, Building 451, Office 409, Bogotá, Zip Code 11321, Colombia
| | - Yerly Vargas-Casanova
- Microbiology Department, Pontificia Universidad Javeriana, Carrera 7 No. 40-62, Bogotá, Zip Code 110231, Colombia
| | | | - Javier Eduardo García-Castañeda
- Pharmacy Department, Universidad Nacional de Colombia, Carrera, 45 No. 26-85, Building 450, Office 213, Bogotá, Zip Code 11321, Colombia
| | - Zuly Jenny Rivera-Monroy
- Chemistry Department, Universidad Nacional de Colombia, Carrera 45 No. 26-85, Building 451, Office 409, Bogotá, Zip Code 11321, Colombia
| |
Collapse
|
15
|
Pineda-Castañeda HM, Insuasty-Cepeda DS, Niño-Ramírez VA, Curtidor H, Rivera-Monroy ZJ. Designing Short Peptides: A Sisyphean Task? CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200910094034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Over the last few years, short peptides have become a powerful tool in basic and
applied research, with different uses like diagnostic, antimicrobial peptides, human health
promoters or bioactive peptides, therapeutic treatments, templates for peptidomimetic design,
and peptide-based vaccines. In this endeavor, different approaches and technologies
have been explored, such as bioinformatics, large-scale peptide synthesis, omics sciences,
structure-activity relationship studies, and a biophysical approach, among others, seeking to
obtain the shortest sequence with the best activity. The advantage of short peptides lies in
their stability, ease of production, safety, and low cost. There are many strategies for designing
short peptides with biomedical and industrial applications (targeting the structure, length,
charge, or polarity) or as a starting point for improving their properties (sequence data base,
de novo sequences, templates, or organic scaffolds). In peptide design, it is necessary to keep in mind factors
such as the application (peptidomimetic, immunogen, antimicrobial, bioactive, or protein-protein interaction
inhibitor), the expected target (membrane cell, nucleus, receptor proteins, or immune system), and particular
characteristics (shorter, conformationally constrained, cycled, charged, flexible, polymerized, or pseudopeptides).
This review summarizes the different synthetic approaches and strategies used to design new peptide analogs,
highlighting the achievements, constraints, and advantages of each.
Collapse
Affiliation(s)
| | | | - Víctor A. Niño-Ramírez
- Chemistry Department, Sciences Faculty, Universidad Nacional de Colombia, Bogota, Colombia
| | | | - Zuly J. Rivera-Monroy
- Chemistry Department, Sciences Faculty, Universidad Nacional de Colombia, Bogota, Colombia
| |
Collapse
|
16
|
Wang L, Wang YL, Lv ZL, Zhang EP, Guo AZ. Design of bovine lactoferricin-derived peptide and its expression and activity in Pichia pastoris. Biochem Biophys Res Commun 2020; 534:822-829. [PMID: 33239173 DOI: 10.1016/j.bbrc.2020.10.098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 10/28/2020] [Indexed: 10/22/2022]
Abstract
Bovine lactoferrin peptide has been shown to be a broad-spectrum antimicrobial peptide. Based on the relationship between the structure and function of antimicrobial peptides, the antimicrobial peptide databases and protein analysis software were used to optimize the design of bovine lactoferricin peptide (LfcinB). The designed bovine lactoferricin-derived peptide (LfcinBD) gene fragment was inserted into a pPIC9K-His plasmid to construct a recombinant expression vector. After linearization of the Recombinant plasmid, Pichia pastoris GS115 cells were transfected with linearized recombinant plasmid by using electroporation and LfcinBD gene expression was induced with methanol. After the fermentation, supernatant was separated by low-temperature high-speed centrifugation. Ultrafiltration and freeze drying of the fermentation supernatant were performed, purified. Experimental results showed that the LfcinBD had stronger bacteriostatic activity against Staphylococcus aureus than the natural bovine lactoferrin peptide (LfcinB) produced under the same fermentation conditions. The effective expression of the optimized bovine lactoferricin-derived peptide was detected using SDS-PAGE electrophoresis. This study lays the foundation for further exploration to improve the biological activities of antimicrobial peptides.
Collapse
Affiliation(s)
- Liang Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Yu-Lian Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zi-Li Lv
- School of Medical and Life Sciences/Reproductive & Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610041, China
| | - En-Peng Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Ai-Zhen Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
17
|
Secondary Structural Transformation of Bovine Lactoferricin Affects Its Antibacterial Activity. Probiotics Antimicrob Proteins 2020; 13:873-884. [PMID: 33188636 DOI: 10.1007/s12602-020-09726-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2020] [Indexed: 10/23/2022]
Abstract
Lactoferricin (Lfcin) is a potent antibacterial peptide derived from lactoferrin by pepsin hydrolysis. It was hypothesized that structural transformation of Lfcin could affect its antibacterial function through forming and breaking of intramolecular disulfide bond. To prove this hypothesis, bovine Lfcin (bLfcin) and its two derivatives, bLfcin with a disulfide bond (bLfcin DB) and bLfcin with a mutation C36G (bLfcin C36G), were synthesized, purified, and identified. The circular dichroism (CD) spectra of the peptides were detected in solutions with different ionic and hydrophobic strength. Then, the secondary structure contents of the peptides were calculated on the basis of the CD spectra. The antibacterial activity of the peptides against Escherichia coli ATCC 25922, Salmonella typhimurium ATCC 14028, Shigella flexneri ATCC 12022, and Staphylococcus aureus ATCC 25923 was evaluated. The results showed that bLfcin and bLfcin C36G had similar percentages of secondary structure in water, while bLfcin and bLfcin DB had similar ratios of secondary structure under less hydrophobic conditions. The synthetic peptides exhibited antibacterial activity against all the tested bacteria, except for S. aureus ATCC 25923. bLfcin demonstrated higher antibacterial activity compared with its derivatives. The results suggested that bLfcin could transform its structure under alterative ionic strengths and hydrophobic conditions, and the transformation of structures was beneficial to enhancing the antibacterial function.
Collapse
|
18
|
Biasibetti E, Rapacioli S, Bruni N, Martello E. Lactoferrin-derived peptides antimicrobial activity: an in vitro experiment. Nat Prod Res 2020; 35:6073-6077. [PMID: 32927978 DOI: 10.1080/14786419.2020.1821017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Antibiotic resistance is a global problem, searching for new antimicrobial agents is an urgent need. In this study, in vitro antibacterial and antimicrobial effects of milk-derived antimicrobial agents, lactoferrin-derived peptides, lactoferricin (Lfc) and lactoferrampin (Lfa) (alone or in combination) and their association with natural extracts have been explored. The assessment of antimicrobial activity was based on two measurements: Minimum Inhibitory Concentration and Fractional Inhibitory Concentration indexes. Lfc alone is more suitable for inhibiting Staphylococcus intermedius and Malassezia pachydermatis, while Lfa against Candida albicans, a synergistic effect of the two peptides against all the three pathogens has been detected. A strong synergy of all the natural extracts with Lfc and Lfa solution against selected microorganisms in vitro was pointed out. Our results suggest that natural-derived compounds, such as milk peptides and vegetal extracts could be promising tools to treat moderate fungal and bacterial infections.
Collapse
Affiliation(s)
- Elena Biasibetti
- Histopathology Department CIBA, Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy
| | | | | | - Elisa Martello
- Division of Epidemiology and Public Health, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
19
|
Kumari P, Nath Y, Murty US, Ravichandiran V, Mohan U. Sortase A Mediated Bioconjugation of Common Epitopes Decreases Biofilm Formation in Staphylococcus aureus. Front Microbiol 2020; 11:1702. [PMID: 32903711 PMCID: PMC7438799 DOI: 10.3389/fmicb.2020.01702] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/29/2020] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is one of the most notorious pathogens and is frequently associated with nosocomial infections imposing serious risk to immune-compromised patients. This is in part due to its ability to colonize at the surface of indwelling medical devices and biofilm formation. Combating the biofilm formation with antibiotics has its own challenges like higher values of minimum inhibitory concentrations. Here, we describe a new approach to target biofilm formation by Gram positive bacteria. Sortase A is a transpeptidase enzyme which is responsible for tagging of around ∼22 cell surface proteins onto the outer surface. These proteins play a major role in the bacterial virulence. Sortase A recognizes its substrate through LPXTG motif. Here, we use this approach to install the synthetic peptide substrates onS. aureus. Sortase A substrate mimic, 6His-LPETG peptide was synthesized using solid phase peptide chemistry. Incorporation of the peptide on the cell surface was measured using ELISA. Effect of peptide incubation on Staphylococcus aureus biofilm was also studied. 71.1% biofilm inhibition was observed with 100 μM peptide while on silicon coated rubber latex catheter, 45.82% inhibition was observed. The present work demonstrates the inability of surface modified S. aureus to establish biofilm formation thereby presenting a novel method for attenuating its virulence.
Collapse
Affiliation(s)
- Poonam Kumari
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Yutika Nath
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | | | - Velayutham Ravichandiran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Utpal Mohan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, India
| |
Collapse
|
20
|
Vargas‐Casanova Y, Carlos Villamil Poveda J, Jenny Rivera‐Monroy Z, Ceballos Garzón A, Fierro‐Medina R, Le Pape P, Eduardo García‐Castañeda J, Marcela Parra Giraldo C. Palindromic Peptide LfcinB (21‐25)
Pal
Exhibited Antifungal Activity against Multidrug‐Resistant
Candida. ChemistrySelect 2020. [DOI: 10.1002/slct.202001329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yerly Vargas‐Casanova
- Departamento de Microbiología-Pontificia Universidad Javeriana Carrera 7 No. 40–62 Bogotá Colombia
| | | | - Zuly Jenny Rivera‐Monroy
- Facultad de Ciencias-Universidad Nacional de Colombia Carrera 45 No 26–85, Building 451, office 134 Bogotá Colombia
| | - Andrés Ceballos Garzón
- Departamento de Microbiología-Pontificia Universidad Javeriana Carrera 7 No. 40–62 Bogotá Colombia
| | - Ricardo Fierro‐Medina
- Facultad de Ciencias-Universidad Nacional de Colombia Carrera 45 No 26–85, Building 451, office 134 Bogotá Colombia
| | - Patrice Le Pape
- Department of Parasitology and Medical MycologyFaculty of Pharmacy-University of Nantes Nantes Atlantique Universities Nantes France
| | | | | |
Collapse
|
21
|
Ardila-Chantré N, Hernández-Cardona AK, Pineda-Castañeda HM, Estupiñan-Torres SM, Leal-Castro AL, Fierro-Medina R, Rivera-Monroy ZJ, García-Castañeda JE. Short peptides conjugated to non-peptidic motifs exhibit antibacterial activity. RSC Adv 2020; 10:29580-29586. [PMID: 35521126 PMCID: PMC9055962 DOI: 10.1039/d0ra05937d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/30/2020] [Indexed: 11/21/2022] Open
Abstract
Short peptides derived from buforin and lactoferricin B were conjugated with other antimicrobial molecules of different chemical natures.
Collapse
|
22
|
Molecular Dynamics Study of the Human Beta-defensins 2 and 3 Chimeric Peptides with the Cell Membrane Model of Pseudomonas aeruginosa. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-10000-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Qu W, Yang K, Liu J, Liu K, Liu F, Ji J, Zhang W. Precise management of chronic wound by nisin with antibacterial selectivity. Biomed Mater 2019; 14:045008. [DOI: 10.1088/1748-605x/ab12b3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Analysis of antibacterial and antibiofilm activity of purified recombinant Azurin from Pseudomonas aeruginosa. IRANIAN JOURNAL OF MICROBIOLOGY 2019; 11:166-176. [PMID: 31341572 PMCID: PMC6635317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVES The aim of this study was to evaluate the antibacterial and antibiofilm activity of recombinant Azurin from Pseudomonas aeruginosa against different bacterial species. MATERIALS AND METHODS The azurin gene was cloned in the pET21a vector. The pET21a-azurin construct was transformed into Escherichia coli BL21. The recombinant Azurin was expressed and purified using affinity chromatography and confirmed by Western blotting. The cytotoxicity of rAzurin was assessed on peripheral blood mononuclear cells. Antibacterial and antibiofilm activity of rAzurin with different concentrations were determined by micro-broth dilution and crystal violet methods, respectively. The effect of rAzurin on bacterial species was statistically analyzed by t-test and spearman correlation. RESULTS The identity of purified protein was confirmed by blotting and distinguished as a 14 kDa band on 15% SDS-PAGE. The IC50 of rAzurin on Peripheral Blood Mononuclear Cell (PBMC) was determined as 377.91±0.5 μg/mL in 24 h. Vibrio cholerae and Campilobacter jejuni displayed the most sensitivity to rAzurin (27.5 and 55 μg/mL, respectively) and the highest resistance (220 μg/mL) was displayed by P. aeruginosa and E. coli. The MIC for other species was 110 μg/mL. The Minimum Biofilm Inhibition Concentration (MBIC) was determined as 220 μg/mL for Salmonella enterica and V. cholerae, 300 μg/mL for Shigella sonnei, Shigella flexneri and P. aeruginosa and 440 μg/mL for the other species. The antimicrobial effect of rAzurin on bacterial species were significant (p value<0.05) and correlation coefficient was negative. CONCLUSION The rAzurin appears to be an appropriate choice and a new strategy for prevention of bacterial infection. It inhibits bacterial growth and biofilm formation and candidates as antimicrobial peptides.
Collapse
|
25
|
Oliveira JTA, Souza PFN, Vasconcelos IM, Dias LP, Martins TF, Van Tilburg MF, Guedes MIF, Sousa DOB. Mo-CBP 3-PepI, Mo-CBP 3-PepII, and Mo-CBP 3-PepIII are synthetic antimicrobial peptides active against human pathogens by stimulating ROS generation and increasing plasma membrane permeability. Biochimie 2018; 157:10-21. [PMID: 30389515 DOI: 10.1016/j.biochi.2018.10.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/23/2018] [Indexed: 12/28/2022]
Abstract
The efficiency of current antimicrobial drugs is noticeably decreasing and thus the development of new treatments is necessary. Natural and synthetic antimicrobial peptides (AMPs) have attracted great attention as promising candidates. Inspired on Mo-CBP3, an antimicrobial protein from Moringa oleifera seeds, we designed and synthesized three AMPs named Mo-CBP3-PepI, Mo-CBP3-PepII, and Mo-CBP3-PepIII. All these three peptides inhibited the growth of Candida species and pathogenic bacteria, penetrate into microbial cells, but none is hemolytic or toxic to human cells. Mo-CBP3-PepIII, particularly, showed the strongest antimicrobial activity against Staphylococcus aureus and Candida species, important human pathogens. Additionally, Mo-CBP3-PepIII did not exhibit hemolytic or toxic activity to mammalian cells, but increased Staphylococcus aureus plasma membrane permeabilization. In Candida parapsilosis, Mo-CBP3-PepIII induced pore formation in the plasma membrane and overproduction of reactive oxygen species. Bioinformatics analysis suggested that Mo-CBP3-PepIII is resistant to pepsin digestion and other proteolytic enzymes present in the intestinal environment, which opens the possibility of oral delivery in future treatments. Together, these results suggest that Mo-CBP3-PepIII has great potential as an antimicrobial agent against the bacterium S. aureus and the fungi C. parapsilosis.
Collapse
Affiliation(s)
- Jose T A Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60451, Brazil.
| | - Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60451, Brazil; Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| | - Ilka M Vasconcelos
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60451, Brazil
| | - Lucas P Dias
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60451, Brazil
| | - Thiago F Martins
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60451, Brazil
| | | | - Maria I F Guedes
- Department of Biotechnology, State University of Ceara (UECE), Ceara, 60741, Brazil
| | - Daniele O B Sousa
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60451, Brazil
| |
Collapse
|
26
|
Effect of Polyvalence on the Antibacterial Activity of a Synthetic Peptide Derived from Bovine Lactoferricin against Healthcare-Associated Infectious Pathogens. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5252891. [PMID: 29984236 PMCID: PMC6015718 DOI: 10.1155/2018/5252891] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/07/2018] [Accepted: 04/11/2018] [Indexed: 11/29/2022]
Abstract
Antimicrobial peptides (AMPs) are gaining interest as potential therapeutic agents. Peptides derived from bovine lactoferricin B (LfcinB) have been reported to exhibit antimicrobial activity, and the LfcinB RRWQWR sequence is the smallest known motif that exhibits antibacterial and cytotoxic activity. Our goal was to examine the effect of multicopy arrangements of the RRWQWR motif, on its antibacterial activity against healthcare-associated infections (HCAIs). Linear and branched peptides containing the RRWQWR motif were generated using solid phase peptide synthesis-Fmoc/tBu methodology, purified, and characterized using reverse phase-high performance liquid chromatography and matrix-assisted laser desorption/ionization time of flight mass spectrometry. For each peptide, the antibacterial activity against Staphylococcus aureus (ATCC 25923 and 33591 strains) and Klebsiella pneumoniae (ATCC 13883 and 700603 strains) was assessed by measuring the minimum inhibitory and the minimum bactericidal concentrations, in the exponential phase. Cells were observed by scanning electron microscopy, and the hemolytic activity of the peptides was assessed. The overall results demonstrate that, compared to linear analogues, polyvalent presentation of the RRWQWR motif enhances its antibacterial activity against both Gram-negative and Gram-positive bacteria even on resistant strain.
Collapse
|
27
|
Vega SC, Martínez DA, Chalá MDS, Vargas HA, Rosas JE. Design, Synthesis and Evaluation of Branched RRWQWR-Based Peptides as Antibacterial Agents Against Clinically Relevant Gram-Positive and Gram-Negative Pathogens. Front Microbiol 2018; 9:329. [PMID: 29551999 PMCID: PMC5840262 DOI: 10.3389/fmicb.2018.00329] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/12/2018] [Indexed: 12/19/2022] Open
Abstract
Multidrug resistance of pathogenic bacteria has become a public health crisis that requires the urgent design of new antibacterial drugs such as antimicrobial peptides (AMPs). Seeking to obtain new, lactoferricin B (LfcinB)-based synthetic peptides as viable early-stage candidates for future development as AMPs against clinically relevant bacteria, we designed, synthesized and screened three new cationic peptides derived from bovine LfcinB. These peptides contain at least one RRWQWR motif and differ by the copy number (monomeric, dimeric or tetrameric) and structure (linear or branched) of this motif. They comprise a linear palindromic peptide (RWQWRWQWR), a dimeric peptide (RRWQWR)2KAhx and a tetrameric peptide (RRWQWR)4K2Ahx2C2. They were screened for antibacterial activity against Enterococcus faecalis (ATCC 29212 and ATCC 51575 strains), Pseudomonas aeruginosa (ATCC 10145 and ATCC 27853 strains) and clinical isolates of two Gram-positive bacteria (Enterococcus faecium and Staphylococcus aureus) and two Gram-negative bacteria (Klebsiella pneumoniae and Pseudomonas aeruginosa). All three peptides exhibited greater activity than did the reference peptide, LfcinB (17-31), which contains a single linear RRWQWR motif. Against the ATCC reference strains, the three new peptides exhibited minimum inhibitory concentration (MIC50) values of 3.1-198.0 μM and minimum bactericidal concentration (MBC) values of 25-200 μM, and against the clinical isolates, MIC50 values of 1.6-75.0 μM and MBC values of 12.5-100 μM. However, the tetrameric peptide was also found to be strongly hemolytic (49.1% at 100 μM). Scanning Electron Microscopy (SEM) demonstrated that in the dimeric and tetrameric peptides, the RRWQWR motif is exposed to the pathogen surface. Our results may inform the design of new, RRWQWR-based AMPs.
Collapse
Affiliation(s)
- Sandra C Vega
- Department of Pharmacy, Faculty of Science, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Diana A Martínez
- Department of Pharmacy, Faculty of Science, Universidad Nacional de Colombia, Bogotá, Colombia
| | - María Del S Chalá
- Laboratory of Public Health, Secretaria Distrital de Salud, Bogotá, Colombia
| | - Hernán A Vargas
- Laboratory of Public Health, Secretaria Distrital de Salud, Bogotá, Colombia
| | - Jaiver E Rosas
- Department of Pharmacy, Faculty of Science, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
28
|
Hao Y, Yang N, Teng D, Wang X, Mao R, Wang J. A review of the design and modification of lactoferricins and their derivatives. Biometals 2018; 31:331-341. [PMID: 29455278 DOI: 10.1007/s10534-018-0086-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/14/2018] [Indexed: 11/28/2022]
Abstract
Lactoferricin (Lfcin), a multifunction short peptide with a length of 25 residues, is derived from the whey protein lactoferrin by acidic pepsin hydrolysis. It has potent nutritional enhancement, antimicrobial, anticancer, antiviral, antiparasitic, and anti-inflammatory activities. This review describes the research advantages of the above biological functions, with attention to the molecular design and modification of Lfcin. In this examination of design and modification studies, research on the identification of Lfcin active derivatives and crucial amino acid residues is also reviewed. Many strategies for Lfcin optimization have been studied in recent decades, but we mainly introduce chemical modification, cyclization, chimera and polymerization of this peptide. Modifications such as incorporation of D-amino acids, acetylation and/or amidation could effectively improve the activity and stability of these compounds. Due to their wide array of bio-functions and applications, Lfcins have great potential to be developed as biological agents with multiple functions involved with nutritional enhancement, as well as disease preventive and therapeutic effects.
Collapse
Affiliation(s)
- Ya Hao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, People's Republic of China.,R & D Center, Beijing Shengtai Clouds Bio-Technology, Inc., Beijing, 100081, People's Republic of China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
| | - Na Yang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, People's Republic of China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
| | - Da Teng
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, People's Republic of China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, People's Republic of China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
| | - Ruoyu Mao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, People's Republic of China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
| | - Jianhua Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, People's Republic of China. .,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
29
|
Sharma N, Huynh DL, Kim SW, Ghosh M, Sodhi SS, Singh AK, Kim NE, Lee SJ, Hussain K, Oh SJ, Jeong DK. A PiggyBac mediated approach for lactoferricin gene transfer in bovine mammary epithelial stem cells for management of bovine mastitis. Oncotarget 2017; 8:104272-104285. [PMID: 29262639 PMCID: PMC5732805 DOI: 10.18632/oncotarget.22210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/21/2017] [Indexed: 12/31/2022] Open
Abstract
The antibacterial and anti-inflammatory properties of lactoferricin have been ascribed to its ability to sequester essential iron. The objective of the study was to clone bovine lactoferricin (LFcinB) gene into PiggyBac Transposon vector, expression study in the bovine mammary epithelial stem cells (bMESCs) and also to determine the antimicrobial property of recombinant LFcinB against bovine mastitis-causing organisms. The PiggyBac-LFcinB was transfected into bMESCs by electroporation and a three fold of LFcinB secretion was observed in the transfected bMESCs medium by ELISA assay. Furthermore, the assessment of antimicrobial activity against mastitis causing pathogens Staphylococcus aureus and Escherichia coli demonstrated convincing evidence to prove strong antibacterial activity of LFcinB with 14.0±1.0 mm and 18.0±1.5 mm zone of inhibition against both organisms, respectively. The present study provides the convincing evidence to suggest the potential of PiggyBac transposon system to transfer antibacterial peptide into bMESCs or cow mammary gland and also pave the way to use bovine mammary gland as the bioreactors. Simultaneously, it also suggest toward commercial utilization of LFcinB bioreactor system in pharmaceutical industry.
Collapse
Affiliation(s)
- Neelesh Sharma
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea.,Division of Veterinary Medicine, Faculty of Veterinary Science & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Jammu, India
| | - Do Luong Huynh
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Sung Woo Kim
- Animal Genetic Resources Station, National Institute of Animal Science, Rural Development Administration, Namwon, Republic of Korea
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Simrinder Singh Sodhi
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Amit Kumar Singh
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Nam Eun Kim
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Sung Jin Lee
- Department of Animal Biotechnology, College of Animal Bioscience and Technology, Kangwon National University, Chuncheon, Republic of Korea
| | - Kafil Hussain
- Division of Veterinary Medicine, Faculty of Veterinary Science & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Jammu, India
| | - Sung Jong Oh
- National Institute of Animal Science, Wanju-gun, Republic of Korea
| | - Dong Kee Jeong
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
30
|
Vargas Casanova Y, Rodríguez Guerra JA, Umaña Pérez YA, Leal Castro AL, Almanzar Reina G, García Castañeda JE, Rivera Monroy ZJ. Antibacterial Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Cytotoxic Effect against MDA-MB-468 and MDA-MB-231 Breast Cancer Cell Lines. Molecules 2017; 22:E1641. [PMID: 28961215 PMCID: PMC6151437 DOI: 10.3390/molecules22101641] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 12/20/2022] Open
Abstract
Linear, dimeric, tetrameric, and cyclic peptides derived from lactoferricin B, containing the RRWQWR motif, were designed, synthesized, purified, and characterized using RP-HPLC chromatography and MALDI-TOF mass spectrometry. The antibacterial activity of the designed peptides against E. coli (ATCC 11775 and 25922) and their cytotoxic effect against MDA-MB-468 and MDA-MB-231 breast cancer cell lines were evaluated. Dimeric and tetrameric peptides showed higher antibacterial activity in both bacteria strains than linear peptides. The dimeric peptide (RRWQWR)₂K-Ahx exhibited the highest antibacterial activity against the tested bacterial strains. Furthermore, the peptides with high antibacterial activity exhibited significant cytotoxic effect against the tested breast cancer cell lines. This cytotoxic effect was fast and dependent on the peptide concentration. The tetrameric molecule containing RRWQWR motif has an optimal cytotoxic effect at a concentration of 22 µM. The evaluated dimeric and tetrameric peptides could be considered as candidates for developing new therapeutic agents against breast cancer. Polyvalence of linear sequences could be considered as a novel and versatile strategy for obtaining molecules with high anticancer activity.
Collapse
Affiliation(s)
- Yerly Vargas Casanova
- Biotechnology Institute, Universidad Nacional de Colombia, Carrera 45 No 26-85, 11321 Bogotá, Colombia.
| | - Jorge Antonio Rodríguez Guerra
- Pharmacy Department, Universidad Nacional de Colombia, Carrera 45 No 26-85, Building 450, Office 213, 11321 Bogotá, Colombia.
| | - Yadi Adriana Umaña Pérez
- Chemistry Department, Universidad Nacional de Colombia, Carrera 45 No 26-85, Building 450, Office 213, 11321 Bogotá, Colombia.
| | - Aura Lucía Leal Castro
- Medicine Faculty, Universidad Nacional de Colombia, Carrera 45 No 26-85, Building 450, Office 213, 11321 Bogotá, Colombia.
| | | | - Javier Eduardo García Castañeda
- Pharmacy Department, Universidad Nacional de Colombia, Carrera 45 No 26-85, Building 450, Office 213, 11321 Bogotá, Colombia.
| | - Zuly Jenny Rivera Monroy
- Chemistry Department, Universidad Nacional de Colombia, Carrera 45 No 26-85, Building 450, Office 213, 11321 Bogotá, Colombia.
| |
Collapse
|
31
|
Huertas NDJ, Monroy ZJR, Medina RF, Castañeda JEG. Antimicrobial Activity of Truncated and Polyvalent Peptides Derived from the FKCRRQWQWRMKKGLA Sequence against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Molecules 2017; 22:molecules22060987. [PMID: 28613262 PMCID: PMC6152618 DOI: 10.3390/molecules22060987] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/08/2017] [Accepted: 06/12/2017] [Indexed: 12/29/2022] Open
Abstract
Peptides derived from LfcinB were designed and synthesized, and their antibacterial activity was tested against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Specifically, a peptide library was constructed by systemically removing the flanking residues (N or C-terminal) of Lfcin 17–31 (17FKCRRWQWRMKKLGA31), maintaining in all peptides the 20RRWQWR25 sequence that corresponds to the minimal antimicrobial motif. For this research, also included were (i) a peptide containing an Ala instead of Cys ([Ala19]-LfcinB 17–31) and (ii) polyvalent peptides containing the RRWQWR sequence and a non-natural amino acid (aminocaproic acid). We established that the lineal peptides LfcinB 17–25 and LfcinB 17–26 exhibited the greatest activity against E. coli ATCC 25922 and S. aureus ATCC 25923, respectively. On the other hand, polyvalent peptides, a dimer and a tetramer, exhibited the greatest antibacterial activity, indicating that multiple copies of the sequence increase the activity. Our results suggest that the dimeric and tetrameric sequence forms potentiate the antibacterial activity of lineal sequences that have exhibited moderate antibacterial activity.
Collapse
Affiliation(s)
- Nataly de Jesús Huertas
- Chemistry Department, Universidad Nacional de Colombia, Bogotá Carrera 45 No. 26-85, Building 451, Office 409, Laboratory 334, Bogotá 11321, Colombia.
| | - Zuly Jenny Rivera Monroy
- Chemistry Department, Universidad Nacional de Colombia, Bogotá Carrera 45 No. 26-85, Building 451, Office 409, Laboratory 334, Bogotá 11321, Colombia.
| | - Ricardo Fierro Medina
- Chemistry Department, Universidad Nacional de Colombia, Bogotá Carrera 45 No. 26-85, Building 451, Office 409, Laboratory 334, Bogotá 11321, Colombia.
| | - Javier Eduardo García Castañeda
- Pharmacy Department, Universidad Nacional de Colombia, Bogotá Carrera 45 No. 26-85, Building 450, office 203, Bogotá 11321, Colombia.
| |
Collapse
|
32
|
A tetrameric peptide derived from bovine lactoferricin as a potential therapeutic tool for oral squamous cell carcinoma: A preclinical model. PLoS One 2017; 12:e0174707. [PMID: 28358840 PMCID: PMC5373611 DOI: 10.1371/journal.pone.0174707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/14/2017] [Indexed: 11/29/2022] Open
Abstract
Oral squamous cell carcinoma is the fifth most common epithelial cancer in the world, and its current clinical treatment has both low efficiency and poor selectivity. Cationic amphipathic peptides have been proposed as new drugs for the treatment of different types of cancer. The main goal of the present work was to determine the potential of LfcinB(20–25)4, a tetrameric peptide based on the core sequence RRWQWR of bovine lactoferricin LfcinB(20–25), for the treatment of OSCC. In brief, OSCC was induced in the buccal pouch of hamsters by applying 7,12-Dimethylbenz(a)anthracene, and tumors were treated with one of the following peptides: LfcinB(20–25)4, LfcinB(20–25), or vehicle (control). Lesions were macroscopically evaluated every two days and both histological and serum IgG assessments were conducted after 5 weeks. The size of the tumors treated with LfcinB(20–25)4 and LfcinB(20–25) was smaller than that of the control group (46.16±4.41 and 33.92±2.74 mm3 versus 88.77±10.61 mm3, respectively). Also, LfcinB(20–25)4 caused acellularity in the parenchymal tumor compared with LfcinB(20–25) and vehicle treatments. Furthermore, our results demonstrated that both LfcinB(20–25)4 and LfcinB(20–25) induced higher degree of apoptosis relative to the untreated tumors (75–86% vs 8%, respectively). Moreover, although the lowest inflammatory response was achieved when LfcinB(20–25)4 was used, this peptide appeared to induce higher levels of IgG antibodies relative to the vehicle and LfcinB(20–25). In addition the cellular damage and selectivity of the LfcinB(20–25)4 peptide was evaluated in vitro. These assays showed that LfcinB(20–25)4 triggers a selective necrotic effect in the carcinoma cell line. Cumulatively, these data indicate that LfcinB(20–25)4 could be considered as a new therapeutic agent for the treatment of OSCC.
Collapse
|
33
|
Huertas Méndez NDJ, Vargas Casanova Y, Gómez Chimbi AK, Hernández E, Leal Castro AL, Melo Diaz JM, Rivera Monroy ZJ, García Castañeda JE. Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076. Molecules 2017; 22:molecules22030452. [PMID: 28287494 PMCID: PMC6155255 DOI: 10.3390/molecules22030452] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/01/2017] [Accepted: 03/08/2017] [Indexed: 12/14/2022] Open
Abstract
Linear, dimeric, tetrameric, and cyclic peptides derived from lactoferricin B–containing non-natural amino acids and the RWQWR motif were synthesized, purified, and characterized using RP-HPLC, MALDI-TOF mass spectrometry, and circular dichroism. The antibacterial activity of peptides against Escherichia coli ATCC 11775, Stenotrophomonas maltophilia ATCC 13636, and Salmonella enteritidis ATCC 13076 was evaluated. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The synthetic bovine lactoferricin exhibited antibacterial activity against E. coli ATCC 11775 and S. enteritidis ATCC 13076. The dimeric peptide (RRWQWR)2K-Ahx exhibited the highest antibacterial activity against the tested bacterial strain. The monomeric, cyclic, tetrameric, and palindromic peptides containing the RWQWR motif exhibited high and specific activity against E. coli ATCC 11775. The results suggest that short peptides derived from lactoferricin B could be considered as potential candidates for the development of antibacterial agents against infections caused by E. coli.
Collapse
Affiliation(s)
- Nataly De Jesús Huertas Méndez
- Chemistry Department, Universidad Nacional de Colombia, Bogotá Carrera 45 No 26-85, Building 451, office 409, Bogotá 11321, Colombia.
| | - Yerly Vargas Casanova
- Bacteriology Department, Universidad Colegio Mayor de Cundinamarca, Bogotá Calle 28 No. 5B-02, Bogotá 110311; Colombia.
| | | | - Edith Hernández
- Bacteriology Department, Universidad Colegio Mayor de Cundinamarca, Bogotá Calle 28 No. 5B-02, Bogotá 110311; Colombia.
| | - Aura Lucia Leal Castro
- Medicine Faculty, Universidad Nacional de Colombia, Bogotá Carrera 45 No 26-85, Building 471, Bogotá 11321, Colombia.
| | - Javier Mauricio Melo Diaz
- Chemistry Department, Universidad Nacional de Colombia, Bogotá Carrera 45 No 26-85, Building 451, office 409, Bogotá 11321, Colombia.
| | - Zuly Jenny Rivera Monroy
- Chemistry Department, Universidad Nacional de Colombia, Bogotá Carrera 45 No 26-85, Building 451, office 409, Bogotá 11321, Colombia.
| | - Javier Eduardo García Castañeda
- Pharmacy Department, Universidad Nacional de Colombia, Bogotá Carrera 45 No 26-85, Building 450, office 203, Bogotá 11321, Colombia.
| |
Collapse
|
34
|
Giansanti F, Panella G, Leboffe L, Antonini G. Lactoferrin from Milk: Nutraceutical and Pharmacological Properties. Pharmaceuticals (Basel) 2016; 9:E61. [PMID: 27690059 PMCID: PMC5198036 DOI: 10.3390/ph9040061] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/15/2016] [Accepted: 09/21/2016] [Indexed: 12/17/2022] Open
Abstract
Lactoferrin is an iron-binding protein present in large quantities in colostrum and in breast milk, in external secretions and in polymorphonuclear leukocytes. Lactoferrin's main function is non-immune protection. Among several protective activities shown by lactoferrin, those displayed by orally administered lactoferrin are: (i) antimicrobial activity, which has been presumed due to iron deprivation, but more recently attributed also to a specific interaction with the bacterial cell wall and extended to viruses and parasites; (ii) immunomodulatory activity, with a direct effect on the development of the immune system in the newborn, together with a specific antinflammatory effects; (iii) a more recently discovered anticancer activity. It is worth noting that most of the protective activities of lactoferrin have been found, sometimes to a greater extent, also in peptides derived from limited proteolysis of lactoferrin that could be generated after lactoferrin ingestion. Lactoferrin could therefore be considered an ideal nutraceutic product because of its relatively cheap production from bovine milk and of its widely recognized tolerance after ingestion, along with its well demonstrated protective activities. The most important protective activities shown by orally administered bovine lactoferrin are reviewed in this article.
Collapse
Affiliation(s)
- Francesco Giansanti
- Department of Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila I-67100, Italy.
- Interuniversity Consortium on Biostructures and Biosystems INBB, Rome I-00136, Italy.
| | - Gloria Panella
- Department of Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila I-67100, Italy.
| | - Loris Leboffe
- Department of Sciences, Roma Tre University, Rome I-00146, Italy.
| | - Giovanni Antonini
- Interuniversity Consortium on Biostructures and Biosystems INBB, Rome I-00136, Italy.
- Department of Sciences, Roma Tre University, Rome I-00146, Italy.
| |
Collapse
|