1
|
Lee JH, Kim D, Kim Y, Kim DH, Park YC, Kim KH. Enzyme cascades for high-yield conversion of d-xylose into d-ribose by overcoming equilibrium constraints and enhancing selectivity. BIORESOURCE TECHNOLOGY 2025; 428:132435. [PMID: 40147566 DOI: 10.1016/j.biortech.2025.132435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/26/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
d-Ribose is essential for critical cellular functions and the synthesis of antiviral nucleosides. However, traditional chemical synthesis and fermentation methods of d-ribose production suffer from low yields and inefficient resource utilization. Here, we present a highly efficient enzymatic cascade strategy that utilizes selective phosphorylation and dephosphorylation processes, coupled with ATP regeneration to convert d-xylose into d-ribose with high yield. By optimizing this enzyme cascade, we achieved a substantial increase in d-ribose yield from 23.4 % to 93.5 % mol/mol, effectively overcoming the equilibrium limitations of sugar conversion processes. Notably, our approach allows for the selective conversion of d-xylose to d-ribose in lignocellulosic hydrolysates, even in the presence of d-glucose. This work demonstrates the highly efficient enzymatic conversion of d-xylose into d-ribose offering a competitive alternative to existing chemical synthesis methods. Our findings provide a novel approach to cellulosic biomass valorization and represent a significant contribution to the field of biorefinery.
Collapse
Affiliation(s)
- Ja Hyun Lee
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Doyeon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Yoonjoo Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Dong Hyun Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Yong-Cheol Park
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea.
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
2
|
Park YC. Xylose Metabolism and Transport in Bacillus subtilis and Its Application to D-Ribose Production. J Microbiol Biotechnol 2025; 35:e2504021. [PMID: 40274416 PMCID: PMC12034463 DOI: 10.4014/jmb.2504.04021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Accepted: 04/23/2025] [Indexed: 04/26/2025]
Abstract
Xylose is a five-carbon sugar and the second abundant mono-saccharide in lignocellulosic biomass. Xylose is not only a sugar substitute by itself, but also a good carbon source for the microbial and enzymatic synthesis of various valuable biomaterials. Most microorganisms are able to uptake and consume xylose as a sole carbon source because they possess specific transport systems and metabolic enzymes. Bacillus subtilis is a representative Gram-positive bacterium commercially used for enzyme and food production. Even though B. subtilis is popular in genetic and protein engineering, its application for metabolic engineering has been limited. Meanwhile, D-ribose is a five-carbon sugar and essential component in nucleotides, ATP, NAD, coenzyme A and so on. It boosts healthy effects on the human body such as enhancement of muscle performance and tolerance to myocardial ischemia. To produce D-ribose from xylose in B. subtilis, a comprehensive review on xylose metabolic regulation, xylose transport, and D-ribose biosynthetic engineering and fermentation process was provided. It would be useful for production of other valuable metabolites from xylose in B. subtilis.
Collapse
Affiliation(s)
- Yong-Cheol Park
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
3
|
Xu J, Dong H, Chen S, Chang J, Zhang W, Zhao A, Alam MA, Wang S, Wang W, Zhang J, Lv Y, Xu P. Producing D-Ribose from D-Xylose by Demonstrating a Pentose Izumoring Route. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27304-27313. [PMID: 39579380 DOI: 10.1021/acs.jafc.4c08105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
D-Ribose plays fundamental roles in all living organisms and has been applied in food, cosmetics, health care, and pharmaceutical sectors. At present, D-ribose is predominantly produced by microbial fermentation based on the pentose phosphate pathway (PPP). However, this method suffers from a long synthetic pathway, severe growth defect of the host cell, and carbon catabolite repression (CCR). According to the Izumoring strategy, D-ribose can be produced from D-xylose through only three steps. Being not involved in the growth defect or CCR, this shortcut route is promising to produce D-ribose efficiently. However, this route has never been demonstrated in engineering practice, which hinders its application. In this study, we stepwise demonstrated this route and screened out higher active enzymes for each step. The first D-ribose production from D-xylose through the Izumoring route was achieved. By stepwise enzyme dosage tuning and process optimization, 6.87 g/L D-ribose was produced from 40 g/L D-xylose. Feeding D-xylose further improved the D-ribose titer to 9.55 g/L. Finally, we tested the coproduction of D-ribose and D-allose from corn stalk hydrolysate using the route engineered herein. In conclusion, this study demonstrated a pentose Izumoring route, complemented the engineering practices of the Izumoring strategy, paved the way to produce D-ribose from D-xylose, and provided an approach to comprehensively utilize the lignocellulosic sugars.
Collapse
Affiliation(s)
- Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450001, China
- Center for Lipid Engineering, Muyuan Laboratory, 110 Shangding Road, Zhengzhou, Henan 450016, China
| | - Hanyu Dong
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450001, China
- Center for Lipid Engineering, Muyuan Laboratory, 110 Shangding Road, Zhengzhou, Henan 450016, China
| | - Song Chen
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450001, China
| | - Jinmian Chang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450001, China
- Center for Lipid Engineering, Muyuan Laboratory, 110 Shangding Road, Zhengzhou, Henan 450016, China
| | - Weiping Zhang
- Bloomage Biotechnology Corporation Limited, 678 Tianchen Street, Jinan, Shandong 250101, China
| | - Anqi Zhao
- School of Life Sciences, Zhengzhou University, No.100 Science Avenue, Zhengzhou, Henan 450001, China
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450001, China
| | - Shilei Wang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450001, China
| | - Weigao Wang
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Shriram Center, Palo Alto, Stanford, California 94305, United States
| | - Jianguo Zhang
- NEW TUOYANG Bio-engineering Co., Ltd., No. 9 MoPing Road, Hebi, Henan 458000, China
| | - Yongkun Lv
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450001, China
- Center for Lipid Engineering, Muyuan Laboratory, 110 Shangding Road, Zhengzhou, Henan 450016, China
- NEW TUOYANG Bio-engineering Co., Ltd., No. 9 MoPing Road, Hebi, Henan 458000, China
| | - Peng Xu
- Center for Lipid Engineering, Muyuan Laboratory, 110 Shangding Road, Zhengzhou, Henan 450016, China
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), 241 Daxue Road, Shantou, Guangdong 515063, China
| |
Collapse
|
4
|
Ruchala J, Sibirny AA. Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts. FEMS Microbiol Rev 2020; 45:6034013. [PMID: 33316044 DOI: 10.1093/femsre/fuaa069] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Pentose sugars are widespread in nature and two of them, D-xylose and L-arabinose belong to the most abundant sugars being the second and third by abundance sugars in dry plant biomass (lignocellulose) and in general on planet. Therefore, it is not surprising that metabolism and bioconversion of these pentoses attract much attention. Several different pathways of D-xylose and L-arabinose catabolism in bacteria and yeasts are known. There are even more common and really ubiquitous though not so abundant pentoses, D-ribose and 2-deoxy-D-ribose, the constituents of all living cells. Thus, ribose metabolism is example of endogenous metabolism whereas metabolism of other pentoses, including xylose and L-arabinose, represents examples of the metabolism of foreign exogenous compounds which normally are not constituents of yeast cells. As a rule, pentose degradation by the wild-type strains of microorganisms does not lead to accumulation of high amounts of valuable substances; however, productive strains have been obtained by random selection and metabolic engineering. There are numerous reviews on xylose and (less) L-arabinose metabolism and conversion to high value substances; however, they mostly are devoted to bacteria or the yeast Saccharomyces cerevisiae. This review is devoted to reviewing pentose metabolism and bioconversion mostly in non-conventional yeasts, which naturally metabolize xylose. Pentose metabolism in the recombinant strains of S. cerevisiae is also considered for comparison. The available data on ribose, xylose, L-arabinose transport, metabolism, regulation of these processes, interaction with glucose catabolism and construction of the productive strains of high-value chemicals or pentose (ribose) itself are described. In addition, genome studies of the natural xylose metabolizing yeasts and available tools for their molecular research are reviewed. Metabolism of other pentoses (2-deoxyribose, D-arabinose, lyxose) is briefly reviewed.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | - Andriy A Sibirny
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| |
Collapse
|
5
|
Zhihua L, Xuetao H, Jiyong S, Xiaobo Z, Xiaowei H, Xucheng Z, Tahir HE, Holmes M, Povey M. Bacteria counting method based on polyaniline/bacteria thin film. Biosens Bioelectron 2016; 81:75-79. [PMID: 26921555 DOI: 10.1016/j.bios.2016.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
Abstract
A simple and rapid bacteria counting method based on polyaniline (PANI)/bacteria thin film was proposed. Since the negative effects of immobilized bacteria on the deposition of PANI on glass carbon electrode (GCE), PANI/bacteria thin films containing decreased amount of PANI would be obtained when increasing the bacteria concentration. The prepared PANI/bacteria film was characterized with cyclic voltammetry (CV) technique to provide quantitative index for the determination of the bacteria count, and electrochemical impedance spectroscopy (EIS) was also performed to further investigate the difference in the PANI/bacteria films. Good linear relationship of the peak currents of the CVs and the log total count of bacteria (Bacillus subtilis) could be established using the equation Y=-30.413X+272.560 (R(2)=0.982) over the range of 5.3×10(4) to 5.3×10(8)CFUmL(-1), which also showed acceptable stability, reproducibility and switchable ability. The proposed method was feasible for simple and rapid counting of bacteria.
Collapse
Affiliation(s)
- Li Zhihua
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hu Xuetao
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shi Jiyong
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zou Xiaobo
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Huang Xiaowei
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhou Xucheng
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | | | - Mel Holmes
- School of Food Science and Nutrition, the University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Malcolm Povey
- School of Food Science and Nutrition, the University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|