1
|
Sun XH, Chai YH, Bai XT, Li HX, Xi YM. Pharmacology, medical uses, and clinical translational challenges of Saikosaponin A: A review. Heliyon 2024; 10:e40427. [PMID: 39641011 PMCID: PMC11617869 DOI: 10.1016/j.heliyon.2024.e40427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Saikosaponin A (SSA), the primary active monomer derived from the Radix bupleuri, demonstrates a diverse array of pharmacological activities, including anti-inflammatory, antitumor, analgesic, anti-fibrotic, antidepressant, and immune-modulating properties. Despite its potential therapeutic impact on various human diseases, comprehensive studies exploring SSA's efficacy in these contexts remain limited. This review synthesizes the current research landscape regarding SSA's therapeutic applications across different diseases, highlighting critical insights to overcome existing limitations and clinical challenges. The findings underscore the importance of further investigations into SSA's mechanisms of action, facilitating the development of targeted therapeutic strategies and their translation into clinical practice.
Collapse
Affiliation(s)
- Xiao-Hong Sun
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Yi-Hong Chai
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Xiao-Teng Bai
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Hong-Xing Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Ya-Ming Xi
- Division of Hematology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
2
|
Zhu Y, Lv X, Li R, Gao Z, Lei C, Wang L, Li S. Saikosaponin-b2 Regulates the Proliferation and Apoptosis of Liver Cancer Cells by Targeting the MACC1/c-Met/Akt Signalling Pathway. Adv Pharmacol Pharm Sci 2024; 2024:2653426. [PMID: 39544485 PMCID: PMC11561180 DOI: 10.1155/2024/2653426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/15/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024] Open
Abstract
Saikosaponin-b2 (SS-b2), an active ingredient derived from the root of Radix Bupleuri, possesses antitumour, anti-inflammatory, antioxidative and hepatoprotective properties. We investigated the inhibition of tumour proliferation by SS-b2 and the underlying molecular mechanisms, including the MACC1/p-c-Met/p-Akt pathway expression in HepG2 liver cancer cells and H22 tumour-bearing mice. Animal experiments showed that SS-b2 significantly decreased the levels of MACC1, p-c-MET and p-Akt in tumour tissue transplanted with H22 liver cancer cells in mice, while it increased the expression of p-BAD. The results also revealed a concentration-dependent suppression of MACC1, p-c-Met and p-Akt expression in the SS-b2 treatment group compared with the control group. Additionally, the suppression of MACC1 activation by SS-b2 resulted in a reduction in the viability and proliferation of HepG2 liver cancer cells, and this reduction was comparable to that by doxorubicin (DOX). This suggests that SS-b2 has significant efficacy in liver cancer, comparable to DOX. Meanwhile, Annexin V-FITC/PI staining and western blot analysis of cleaved caspase 9 and cleaved caspase 3 demonstrated that SS-b2 induced apoptosis of HepG2 liver cancer cells. These findings provide experimental evidence suggesting that SS-b2 is a promising anticancer agent for liver cancer.
Collapse
Affiliation(s)
- Yanxue Zhu
- Department of Pharmacology, Basic Medicine and Forensic Medicine College, Henan University of Science and Technology, KaiYuan Road 263, Luoyang 471023, Henan, China
| | - Xingzhi Lv
- Department of Pharmacology, Basic Medicine and Forensic Medicine College, Henan University of Science and Technology, KaiYuan Road 263, Luoyang 471023, Henan, China
| | - Ruifang Li
- Department of Pharmacology, Basic Medicine and Forensic Medicine College, Henan University of Science and Technology, KaiYuan Road 263, Luoyang 471023, Henan, China
| | - Zihan Gao
- Department of Pharmacology, Basic Medicine and Forensic Medicine College, Henan University of Science and Technology, KaiYuan Road 263, Luoyang 471023, Henan, China
| | - Chanhao Lei
- Department of Pharmacology, Basic Medicine and Forensic Medicine College, Henan University of Science and Technology, KaiYuan Road 263, Luoyang 471023, Henan, China
| | - Lan Wang
- Department of Pharmacology, Basic Medicine and Forensic Medicine College, Henan University of Science and Technology, KaiYuan Road 263, Luoyang 471023, Henan, China
| | - Sanqiang Li
- Department of Pharmacology, Basic Medicine and Forensic Medicine College, Henan University of Science and Technology, KaiYuan Road 263, Luoyang 471023, Henan, China
| |
Collapse
|
3
|
Pan Y, Ke Z, Ye H, Sun L, Ding X, Shen Y, Zhang R, Yuan J. Saikosaponin C exerts anti-HBV effects by attenuating HNF1α and HNF4α expression to suppress HBV pgRNA synthesis. Inflamm Res 2019; 68:1025-1034. [PMID: 31531682 PMCID: PMC7079752 DOI: 10.1007/s00011-019-01284-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/03/2019] [Accepted: 09/07/2019] [Indexed: 02/06/2023] Open
Abstract
Objective Saikosaponin c (SSc), a compound purified from the traditional Chinese herb of Radix Bupleuri was previously identified to exhibit anti-HBV replication activity. However, the mechanism through which SSc acts against HBV remains unknown. In this study, we investigated the mechanism of SSc mediated anti-HBV activity. Methods HepG2.2.15 cells were cultured at 37 ℃ in the presence of 1–40 μg/mL of SSc or DMSO as a control. The expression profile of HBV markers, cytokines, HNF1α and HNF4α were investigated by real-time quantitative PCR, Elisa, Western blot and Dot blotting. Knockdown of HNF1α or HNF4α in HepG2.2.15 cells was mediated by two small siRNAs specifically targeting HNF1α or HNF4α. Results We found that SSc stimulates IL-6 expression, leading to attenuated HNF1α and HNF4α expression, which further mediates suppression of HBV pgRNA synthesis. Knockdown of HNF1α or HNF4α in HepG2.2.15 cells by RNA interference abrogates SSc’s anti-HBV role. Moreover, SSc is effective to both wild-type and drug-resistant HBV mutants. Conclusion SSc inhibits pgRNA synthesis by targeting HNF1α and HNF4α. These results indicate that SSc acts as a promising compound for modulating pgRNA transcription in the therapeutic strategies against HBV infection. Electronic supplementary material The online version of this article (10.1007/s00011-019-01284-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanchao Pan
- Diagnosis and Treatment of Infectious Diseases Research Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518112, China.
| | - Zhiyi Ke
- Diagnosis and Treatment of Infectious Diseases Research Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Hong Ye
- Anhui Academy of Medical Sciences, Hefei, 230061, China
| | - Lina Sun
- Diagnosis and Treatment of Infectious Diseases Research Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Xiaoyan Ding
- Diagnosis and Treatment of Infectious Diseases Research Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Yun Shen
- Diagnosis and Treatment of Infectious Diseases Research Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Runze Zhang
- Diagnosis and Treatment of Infectious Diseases Research Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Jing Yuan
- Diagnosis and Treatment of Infectious Diseases Research Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518112, China.
| |
Collapse
|
4
|
Yeom M, Kim EY, Kim JH, Jung HS, Sohn Y. High Doses of Bupleurum falcatum Partially Prevents Estrogen Deficiency-Induced Bone Loss With Anti-osteoclastogenic Activity Due to Enhanced iNOS/NO Signaling. Front Pharmacol 2018; 9:1314. [PMID: 30524278 PMCID: PMC6262412 DOI: 10.3389/fphar.2018.01314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/29/2018] [Indexed: 01/06/2023] Open
Abstract
Background and Objective:Bupleurum falcatum (BF) extract, a natural product with anti-inflammatory properties, has been traditionally used to treat menopausal symptoms, but its role in osteoporosis, another serious health concern of menopausal women, remains unknown. Here we investigated whether and how BF prevents estrogen deficiency-induced bone loss using both in vitro and in vivo models. Methods: Female Sprague-Dawley rats were ovariectomized (OVX) and subjected to oral BF treatment daily for 8 weeks. Additionally, pre-osteoclastic RAW 264.7 cells were employed to evaluate the effects of BF and its underlying mechanism on receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast formation in vitro. Results: A high dose of BF partially prevented ovariectomy (OVX)-induced bone loss and reduced the levels of tartrate-resistant acid phosphatase (TRAP) in serum and osteoclast numbers in femurs of OVX rats. Furthermore, BF clearly inhibited RANKL-induced osteoclast differentiation and bone resorption activity in RAW 264.7 cells. BF also inhibited the osteoclastogenic transcription factors c-Fos and nuclear factor of activated T cells c1 (NFATc1) and, consequently, downregulated the expression of osteoclast marker genes. Moreover, BF upregulated interferon-β (IFN-β)/inducible nitric oxide synthase (iNOS)/nitric oxide (NO) signaling, even though it had no impact on mitogen-activated protein kinases (MAPK) or NF-κB. The inhibition of osteoclast formation by BF was abrogated by iNOS-specific inhibitors. Consistent with cellular studies, BF upregulated iNOS protein expression in femurs from OVX rats. Conclusion: Taken together, our results indicate that BF partially prevented estrogen deficiency-induced bone loss with anti-osteoclastogenic activity potentially due to enhanced iNOS/NO signaling.
Collapse
Affiliation(s)
- Mijung Yeom
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Eun-Young Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jae-Hyun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyuk-Sang Jung
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
5
|
Pego ER, Fernández I, Núñez MJ. Molecular basis of the effect of MMP-9 on the prostate bone metastasis: A review. Urol Oncol 2018; 36:272-282. [PMID: 29650324 DOI: 10.1016/j.urolonc.2018.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 01/22/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
INTRODUCTION AND OBJECTIVE Prostate cancer (PCa) is the second most common cancer in men especially after 50 years old. The metastasis of said cancer involves a rise for morbidity, metastasizing 90% of the occasions on bone. Metalloproteinases (MMPs) are involved in the process of bone formation and they are postulated to be involved in the process of metastasizing, in particular MMP-9. This work is justified taking into account the scientific interest of the subject and the quality of the literature sources used. PCa generates a high morbidity and mortality in men, especially due to the process of metastasis, resulting in effects to health and socioeconomic level. METHODS This search was performed selecting articles published from 2003 to 2017. Items were selected and valued according to the Cochrane criteria (2011). FINDINGS AND CONCLUSIONS The selected articles (17) demonstrate the involvement of MMP-9 as a modulator of bone metastatic lesions either of osteoblast, osteoclast or mixed origin as well as the recognition of the major mechanisms or molecules involved in the regulation of expression gene of MMP-9 and finally establishing the MMP-9 as a therapeutic target for possible future drug development. Finally, this study evidences MMP-9 as an essential factor for the activation of the chain of the different MMPs and consequently in the genesis and development of bone metastasis of PCa due to its influence on bone osteoblastic and osteoclastic activity.
Collapse
Affiliation(s)
- Emilio Rubén Pego
- Department of Psychiatry and Public Health, University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Isaac Fernández
- University of Santiago de Compostela, External Collaborator (Researcher), Santiago de Compostela, Spain
| | - María Jesús Núñez
- Department of Psychiatry and Public Health, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
6
|
Yuan B, Yang R, Ma Y, Zhou S, Zhang X, Liu Y. A systematic review of the active saikosaponins and extracts isolated from Radix Bupleuri and their applications. PHARMACEUTICAL BIOLOGY 2017; 55:620-635. [PMID: 27951737 PMCID: PMC6130612 DOI: 10.1080/13880209.2016.1262433] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/08/2016] [Accepted: 11/15/2016] [Indexed: 05/18/2023]
Abstract
CONTEXT Radix Bupleuri has been used in traditional Chinese medicine for over 2000 years with functions of relieving exterior syndrome, clearing heat, regulating liver-qi, and lifting yang-qi. More natural active compounds, especially saikosaponins, have been isolated from Radix Bupleuri, which possess various valuable pharmacological activities. OBJECTIVE To summarize the current knowledge on pharmacological activities, mechanisms and applications of extracts and saikosaponins isolated from Radix Bupleuri, and obtain new insights for further research and development of Radix Bupleuri. METHODS PubMed, Web of Science, Science Direct, Research Gate, Academic Journals and Google Scholar were used as information sources through the inclusion of the search terms 'Radix Bupleuri', 'Bupleurum', 'saikosaponins', 'Radix Bupleuri preparation', and their combinations, mainly from the year 2008 to 2016 without language restriction. Clinical preparations containing Radix Bupleuri were collected from official website of China Food and Drug Administration (CFDA). RESULTS AND CONCLUSION 296 papers were searched and 128 papers were reviewed. A broad spectrum of in vitro and in vivo research has proved that Radix Bupleuri extracts, saikosaponin a, saikosaponin d, saikosaponin c, and saikosaponin b2, exhibit evident anti-inflammatory, antitumor, antiviral, anti-allergic, immunoregulation, and neuroregulation activities mainly through NF-κB, MAPK or other pathways. 15 clinical preparations approved by CFDA remarkably broaden the application of Radix Bupleuri. The main side effect of Radix Bupleuri is liver damage when the dosage is excess, which indicates that the maximum tolerated dose is critical for clinical use of Radix Bupleuri extract and purified compounds.
Collapse
Affiliation(s)
- Bochuan Yuan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Yang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Yongsheng Ma
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Shan Zhou
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaodong Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
- CONTACT Ying LiuSchool of Chinese Pharmacy, Beijing University of Chinese Medicine, Wangjing Zhonghuan South Street, Chaoyang District, Beijing100102, China
| |
Collapse
|