1
|
Dilweg MA, Mocking TAM, Maragkoudakis P, van Westen GJP, Heitman LH, IJzerman AP, Jespers W, van der Es D. Stereochemical optimization of N,2-substituted cycloalkylamines as norepinephrine reuptake inhibitors. RSC Med Chem 2024:d4md00521j. [PMID: 39345718 PMCID: PMC11428037 DOI: 10.1039/d4md00521j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
The norepinephrine transporter (NET), encoded by the SLC6A2 gene, is one of three key monoamine neurotransmitter transporters. Inhibition of NET-mediated reuptake of norepinephrine by monoamine reuptake inhibitors has been the main therapeutic strategy to treat disorders such as depression, ADHD and Parkinson's disease. Nevertheless, lack of efficacy as well as risk of adverse effects are still common for these treatments underscoring the necessity to improve drug discovery efforts for this target. In this study, we developed new inhibitors based on 4-((2-(3,4-dichlorophenyl)cyclopentyl)amino)butan-1-ol (8), a potent NET inhibitor, which emerged from earlier virtual screening efforts using a predictive proteochemometric model. Hence, we optimized the N,2-substituted cycloalkylamine scaffold in three regions to design twenty new derivatives. To establish structure-activity relationships for these NET inhibitors, all novel compounds were tested utilizing an impedance-based 'transporter activity through receptor activation' assay. Moreover, all stereoisomers of the most potent compound (27) were synthesized and evaluated for their inhibitory potencies. Initial screening indicated that modifications in the cyclopentylamine moiety and phenyl substitutions decreased NET inhibition compared to 8, emphasizing the importance of the five-membered ring, secondary amine and dichloro-substitution pattern in NET binding. Substituting the original butylalcohol at the R 2 position with a rigid cyclohexanol yielded lead compound 27, with potency similar to reference inhibitor nisoxetine. Pharmacological characterization of all eight stereoisomers of 27 revealed varying inhibitory potencies, favoring a trans-orientation of the N,2-substituted cyclopentyl moiety. Molecular docking highlighted key interactions and the impact of a hydrophilic region in the binding pocket. This study presents a novel set of moderate to highly potent NET inhibitors, elucidating the influence of molecular orientation in the NET binding pocket and offering valuable insights into drug discovery efforts for monoamine transport-related treatments.
Collapse
Affiliation(s)
- Majlen A Dilweg
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Tamara A M Mocking
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Pantelis Maragkoudakis
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Gerard J P van Westen
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Laura H Heitman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
- Oncode Institute 2333 CC Leiden The Netherlands
| | - Adriaan P IJzerman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Willem Jespers
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Daan van der Es
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
2
|
Chepke C, Brunner E, Cutler AJ. Serotonergic Drugs for the Treatment of Attention-Deficit/Hyperactivity Disorder: A Review of Past Development, Pitfalls and Failures, and a Look to the Future. PSYCHOPHARMACOLOGY BULLETIN 2024; 54:45-80. [PMID: 39263202 PMCID: PMC11385260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Serotonin has been implicated in the neurobiology of attention-deficit/hyperactivity disorder (ADHD) due to its association with impulsivity, attention, and emotional regulation. Many compounds with serotonergic properties have been evaluated in ADHD, but few have been approved by regulatory authorities. Utilizing a search of public databases, we identified interventions studied in ADHD. Prescribing information and peer-reviewed and gray literature helped us to determine which compounds had an underlying mechanism of action associated with changing serotonin levels. Of the 24 compounds that met the search criteria, 16 had either failed clinical studies in an ADHD population or had been discontinued from future development. The available evidence was assessed to identify the developmental history of drugs with serotonergic activity and the outlook for new ADHD drug candidates targeting serotonin. Several treatment candidates floundered due to an inability to balance effectiveness with safety, underscoring the potential importance of potency, and selectivity. Ongoing drug development includes compounds with multimodal mechanisms of action targeting neurotransmission across serotonin, norepinephrine, and dopamine pathways; it appears likely that treatment which balances competing and complementary monoamine effects may provide improved outcomes for patients. It is hoped that continuing research into ADHD treatment will produce new therapeutic options targeting the serotonergic system, which can positively impact a wide range of symptoms, including mood, anxiety, and sleep as well as attention and hyperactivity.
Collapse
Affiliation(s)
- Craig Chepke
- Chepke, MD, DFAPA, Excel Psychiatric Associates, Huntersville, NC; Atrium Health, Charlotte, NC
| | - Elizabeth Brunner
- Brunner, MD, Otsuka Pharmaceutical Development & Commercialization, Inc., Princeton, NJ
| | - Andrew J Cutler
- Cutler, MD, SUNY Upstate Medical University, Lakewood Ranch, FL
| |
Collapse
|
3
|
Wilson L, Lee CA, Mason CF, Khodjaniyazova S, Flores KB, Muddiman DC, Sombers LA. Simultaneous Measurement of Striatal Dopamine and Hydrogen Peroxide Transients Associated with L-DOPA Induced Rotation in Hemiparkinsonian Rats. ACS MEASUREMENT SCIENCE AU 2022; 2:120-131. [PMID: 36785724 PMCID: PMC9838821 DOI: 10.1021/acsmeasuresciau.1c00030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder commonly treated with levodopa (L-DOPA), which eventually induces abnormal involuntary movements (AIMs). The neurochemical contributors to these dyskinesias are unknown; however, several lines of evidence indicate an interplay of dopamine (DA) and oxidative stress. Here, DA and hydrogen peroxide (H2O2) were simultaneously monitored at discrete recording sites in the dorsal striata of hemiparkinsonian rats using fast-scan cyclic voltammetry. Mass spectrometry imaging validated the lesions. Hemiparkinsonian rats exhibited classic L-DOPA-induced AIMs and rotations as well as increased DA and H2O2 tone over saline controls after 1 week of treatment. By week 3, DA tone remained elevated beyond that of controls, but H2O2 tone was largely normalized. At this time point, rapid chemical transients were time-locked with spontaneous bouts of rotation. Striatal H2O2 rapidly increased with the initiation of contraversive rotational behaviors in lesioned L-DOPA animals, in both hemispheres. DA signals simultaneously decreased with rotation onset. The results support a role for these striatal neuromodulators in the adaptive changes that occur with L-DOPA treatment in PD and reveal a precise interplay between DA and H2O2 in the initiation of involuntary locomotion.
Collapse
Affiliation(s)
- Leslie
R. Wilson
- Department
of Chemistry, Department of Mathematics, Molecular Education, Technology,
and Research Innovation Center (METRIC), Center for Research in Scientific
Computation, and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - Christie A. Lee
- Department
of Chemistry, Department of Mathematics, Molecular Education, Technology,
and Research Innovation Center (METRIC), Center for Research in Scientific
Computation, and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - Catherine F. Mason
- Department
of Chemistry, Department of Mathematics, Molecular Education, Technology,
and Research Innovation Center (METRIC), Center for Research in Scientific
Computation, and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - Sitora Khodjaniyazova
- Department
of Chemistry, Department of Mathematics, Molecular Education, Technology,
and Research Innovation Center (METRIC), Center for Research in Scientific
Computation, and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - Kevin B. Flores
- Department
of Chemistry, Department of Mathematics, Molecular Education, Technology,
and Research Innovation Center (METRIC), Center for Research in Scientific
Computation, and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - David C. Muddiman
- Department
of Chemistry, Department of Mathematics, Molecular Education, Technology,
and Research Innovation Center (METRIC), Center for Research in Scientific
Computation, and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - Leslie A. Sombers
- Department
of Chemistry, Department of Mathematics, Molecular Education, Technology,
and Research Innovation Center (METRIC), Center for Research in Scientific
Computation, and Comparative Medicine Institute, North Carolina
State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
4
|
A New Method for the Visualization of Living Dopaminergic Neurons and Prospects for Using It to Develop Targeted Drug Delivery to These Cells. Int J Mol Sci 2022; 23:ijms23073678. [PMID: 35409040 PMCID: PMC8998426 DOI: 10.3390/ijms23073678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
This is the first study aiming to develop a method for the long-term visualization of living nigrostriatal dopaminergic neurons using 1-(2-(bis(4-fluorophenyl)methoxy)ethyl)-4-(3-phenylpropyl)piperazine-BODIPY (GBR-BP), the original fluorescent substance, which is a derivative of GBR-12909, a dopamine uptake inhibitor. This method is based on the authors’ hypothesis about the possibility of specifically internalizing into dopaminergic neurons substances with a high affinity for the dopamine transporter (DAT). Using a culture of mouse embryonic mesencephalic and LUHMES cells (human embryonic mesencephalic cells), as well as slices of the substantia nigra of adult mice, we have obtained evidence that GBR-BP is internalized specifically into dopaminergic neurons in association with DAT via a clathrin-dependent mechanism. Moreover, GBR-BP has been proven to be nontoxic. As we have shown in a primary culture of mouse metencephalon, GBR-BP is also specifically internalized into some noradrenergic and serotonergic neurons, but is not delivered to nonmonoaminergic neurons. Our data hold great promise for visualization of dopaminergic neurons in a mixed cell population to study their functioning, and can also be considered a new approach for the development of targeted drug delivery to dopaminergic neurons in pathology, including Parkinson’s disease.
Collapse
|
5
|
Abdanipour A, Nikfar A, Nikbakht Rad M, Jafari Anarkooli I, Mansouri M. Neuroprotective effect of L-deprenyl on the expression level of the Mst1 gene and inhibition of apoptosis in rat-model spinal cord injury. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:53-59. [PMID: 35656451 PMCID: PMC9118276 DOI: 10.22038/ijbms.2022.58031.12894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 12/26/2021] [Indexed: 11/06/2022]
Abstract
Objectives After primary tissue damage as a result of spinal cord injury (SCI), there is a period of secondary damage, which includes several cellular and inflammatory biochemical cascades. As a novel pro-apoptotic kinase, Mst1 (serine/threonine kinase 4) promotes programmed cell death in an inflammatory disease model. This study aimed to evaluate Mst1 gene expression levels in rats with spinal cord injury treated with L- deprenyl. Materials and Methods The rats were divided into control (contusion), laminectomy, sham-operated (contused rats received 1 ml normal saline intraperitoneal), and treatment (contused rats received 5 mg/kg of L-deprenyl intraperitoneal; once a day for 7 days). The BBB (Basso, Beattie, and Bresnahan) scales were performed to assess motor function following SCI. Rats were sacrificed 28 days after SCI and the spinal cord lesion area was removed. Apoptosis and cavity formation in the spinal cord were determined by H&E staining and TUNEL assay, respectively. The mRNA levels of the Mst1, Nrf2, Bcl-2, and PGC1 α genes were analyzed using real-time quantitative PCR. Results The results showed significant improvement in motor function in the L- deprenyl group compared with the untreated group. Histological analysis showed a significant reduction in the number of tunnel-positive cells after injection of L-deprenyl, as well as a decrease in the volume of the cavity. In addition, L-deprenyl treatment increased the expression of the Nrf2, Bcl-2, and PGC1 α genes, while reducing the expression of the Mst1 gene in the spinal nerves. Conclusion These results suggest that L-deprenyl is a promising treatment for spinal cord injury.
Collapse
Affiliation(s)
- Alireza Abdanipour
- Department of Anatomy, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran,Corresponding author: Alireza Abdanipour. Department of Anatomy, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran. Tel: +98-2433018632; Fax: +98-24-33449553. ;
| | - Ali Nikfar
- Department of Genetics and Molecular Medicine, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahsa Nikbakht Rad
- Department of Anatomy, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Iraj Jafari Anarkooli
- Department of Anatomy, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mojdeh Mansouri
- Department of Genetics and Molecular Medicine, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
6
|
Lavrova AV, Gretskaya NM, Bezuglov VV. Role of Oxidative Stress in the Etiology of Parkinson’s Disease: Advanced Therapeutic Products. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Winter MJ, Pinion J, Tochwin A, Takesono A, Ball JS, Grabowski P, Metz J, Trznadel M, Tse K, Redfern WS, Hetheridge MJ, Goodfellow M, Randall AD, Tyler CR. Functional brain imaging in larval zebrafish for characterising the effects of seizurogenic compounds acting via a range of pharmacological mechanisms. Br J Pharmacol 2021; 178:2671-2689. [PMID: 33768524 DOI: 10.1111/bph.15458] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/17/2021] [Accepted: 03/14/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND PURPOSE Functional brain imaging using genetically encoded Ca2+ sensors in larval zebrafish is being developed for studying seizures and epilepsy as a more ethical alternative to rodent models. Despite this, few data have been generated on pharmacological mechanisms of action other than GABAA antagonism. Assessing larval responsiveness across multiple mechanisms is vital to test the translational power of this approach, as well as assessing its validity for detecting unwanted drug-induced seizures and testing antiepileptic drug efficacy. EXPERIMENTAL APPROACH Using light-sheet imaging, we systematically analysed the responsiveness of 4 days post fertilisation (dpf; which are not considered protected under European animal experiment legislation) transgenic larval zebrafish to treatment with 57 compounds spanning more than 12 drug classes with a link to seizure generation in mammals, alongside eight compounds with no such link. KEY RESULTS We show 4dpf zebrafish are responsive to a wide range of mechanisms implicated in seizure generation, with cerebellar circuitry activated regardless of the initiating pharmacology. Analysis of functional connectivity revealed compounds targeting cholinergic and monoaminergic reuptake, in particular, showed phenotypic consistency broadly mapping onto what is known about neurotransmitter-specific circuitry in the larval zebrafish brain. Many seizure-associated compounds also exhibited altered whole brain functional connectivity compared with controls. CONCLUSIONS AND IMPLICATIONS This work represents a significant step forward in understanding the translational power of 4dpf larval zebrafish for use in neuropharmacological studies and for studying the events driving transition from small-scale pharmacological activation of local circuits, to the large network-wide abnormal synchronous activity associated with seizures.
Collapse
Affiliation(s)
- Matthew J Winter
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon, UK
| | - Joseph Pinion
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon, UK
| | - Anna Tochwin
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon, UK
| | - Aya Takesono
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon, UK
| | - Jonathan S Ball
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon, UK
| | - Piotr Grabowski
- Data Science and Artificial Intelligence, Clinical Pharmacology & Safety Sciences, AstraZeneca R&D, Cambridge, UK
| | - Jeremy Metz
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon, UK
| | - Maciej Trznadel
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon, UK
| | - Karen Tse
- Safety & Mechanistic Pharmacology, Clinical Pharmacology & Safety Sciences, AstraZeneca R&D, Cambridge, UK
- Sovereign House, GW Pharmaceuticals plc, Cambridge, UK
| | - Will S Redfern
- Safety & Mechanistic Pharmacology, Clinical Pharmacology & Safety Sciences, AstraZeneca R&D, Cambridge, UK
- Simcyp Division, Certara UK Limited, Sheffield, UK
| | - Malcolm J Hetheridge
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon, UK
| | - Marc Goodfellow
- Department of Mathematics & Living Systems Institute and EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, Devon, UK
| | - Andrew D Randall
- University of Exeter Medical School, University of Exeter, Exeter, Devon, UK
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon, UK
| |
Collapse
|
8
|
Pizzagalli MD, Bensimon A, Superti‐Furga G. A guide to plasma membrane solute carrier proteins. FEBS J 2021; 288:2784-2835. [PMID: 32810346 PMCID: PMC8246967 DOI: 10.1111/febs.15531] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
This review aims to serve as an introduction to the solute carrier proteins (SLC) superfamily of transporter proteins and their roles in human cells. The SLC superfamily currently includes 458 transport proteins in 65 families that carry a wide variety of substances across cellular membranes. While members of this superfamily are found throughout cellular organelles, this review focuses on transporters expressed at the plasma membrane. At the cell surface, SLC proteins may be viewed as gatekeepers of the cellular milieu, dynamically responding to different metabolic states. With altered metabolism being one of the hallmarks of cancer, we also briefly review the roles that surface SLC proteins play in the development and progression of cancer through their influence on regulating metabolism and environmental conditions.
Collapse
Affiliation(s)
- Mattia D. Pizzagalli
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Ariel Bensimon
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Giulio Superti‐Furga
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Center for Physiology and PharmacologyMedical University of ViennaAustria
| |
Collapse
|
9
|
Fridjonsdottir E, Shariatgorji R, Nilsson A, Vallianatou T, Odell LR, Schembri LS, Svenningsson P, Fernagut PO, Crossman AR, Bezard E, Andrén PE. Mass spectrometry imaging identifies abnormally elevated brain l-DOPA levels and extrastriatal monoaminergic dysregulation in l-DOPA-induced dyskinesia. SCIENCE ADVANCES 2021; 7:7/2/eabe5948. [PMID: 33523980 PMCID: PMC7787486 DOI: 10.1126/sciadv.abe5948] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/10/2020] [Indexed: 05/20/2023]
Abstract
l-DOPA treatment for Parkinson's disease frequently leads to dyskinesias, the pathophysiology of which is poorly understood. We used MALDI-MSI to map the distribution of l-DOPA and monoaminergic pathways in brains of dyskinetic and nondyskinetic primates. We report elevated levels of l-DOPA, and its metabolite 3-O-methyldopa, in all measured brain regions of dyskinetic animals and increases in dopamine and metabolites in all regions analyzed except the striatum. In dyskinesia, dopamine levels correlated well with l-DOPA levels in extrastriatal regions, such as hippocampus, amygdala, bed nucleus of the stria terminalis, and cortical areas, but not in the striatum. Our results demonstrate that l-DOPA-induced dyskinesia is linked to a dysregulation of l-DOPA metabolism throughout the brain. The inability of extrastriatal brain areas to regulate the formation of dopamine during l-DOPA treatment introduces the potential of dopamine or even l-DOPA itself to modulate neuronal signaling widely across the brain, resulting in unwanted side effects.
Collapse
Affiliation(s)
- Elva Fridjonsdottir
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Reza Shariatgorji
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, National Resource for Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| | - Anna Nilsson
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, National Resource for Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| | - Theodosia Vallianatou
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Luke R Odell
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Luke S Schembri
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, National Resource for Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| | - Per Svenningsson
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Pierre-Olivier Fernagut
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
- Université de Poitiers, INSERM, U0-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | | | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
- Motac Neuroscience, Manchester M15 6WE, UK
| | - Per E Andrén
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
- Science for Life Laboratory, National Resource for Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Xue W, Fu T, Zheng G, Tu G, Zhang Y, Yang F, Tao L, Yao L, Zhu F. Recent Advances and Challenges of the Drugs Acting on Monoamine Transporters. Curr Med Chem 2020; 27:3830-3876. [DOI: 10.2174/0929867325666181009123218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/30/2018] [Accepted: 10/03/2018] [Indexed: 01/06/2023]
Abstract
Background:
The human Monoamine Transporters (hMATs), primarily including hSERT,
hNET and hDAT, are important targets for the treatment of depression and other behavioral disorders
with more than the availability of 30 approved drugs.
Objective:
This paper is to review the recent progress in the binding mode and inhibitory mechanism of
hMATs inhibitors with the central or allosteric binding sites, for the benefit of future hMATs inhibitor
design and discovery. The Structure-Activity Relationship (SAR) and the selectivity for hit/lead compounds
to hMATs that are evaluated by in vitro and in vivo experiments will be highlighted.
Methods:
PubMed and Web of Science databases were searched for protein-ligand interaction, novel
inhibitors design and synthesis studies related to hMATs.
Results:
Literature data indicate that since the first crystal structure determinations of the homologous
bacterial Leucine Transporter (LeuT) complexed with clomipramine, a sizable database of over 100 experimental
structures or computational models has been accumulated that now defines a substantial degree
of structural variability hMATs-ligands recognition. In the meanwhile, a number of novel hMATs
inhibitors have been discovered by medicinal chemistry with significant help from computational models.
Conclusion:
The reported new compounds act on hMATs as well as the structures of the transporters
complexed with diverse ligands by either experiment or computational modeling have shed light on the
poly-pharmacology, multimodal and allosteric regulation of the drugs to transporters. All of the studies
will greatly promote the Structure-Based Drug Design (SBDD) of structurally novel scaffolds with high
activity and selectivity for hMATs.
Collapse
Affiliation(s)
- Weiwei Xue
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, China
| | - Tingting Fu
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, China
| | - Guoxun Zheng
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, China
| | - Gao Tu
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, China
| | - Yang Zhang
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, China
| | - Fengyuan Yang
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, China
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, School of Medicine, Hangzhou Normal University, Hangzhou 310036, China
| | - Lixia Yao
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, United States
| | - Feng Zhu
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, China
| |
Collapse
|
11
|
Zheng J, Zhang X, Zhen X. Development of Adenosine A 2A Receptor Antagonists for the Treatment of Parkinson's Disease: A Recent Update and Challenge. ACS Chem Neurosci 2019; 10:783-791. [PMID: 30199223 DOI: 10.1021/acschemneuro.8b00313] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with significant unmet medical needs. The current dopamine-centered treatments aim to restore motor functions of patients without slowing the disease progression. Long-term usage of these drugs is associated with diminished efficacy, motor fluctuation, and dyskinesia. Furthermore, the nonmotor features associated with PD such as sleep disorder, pain, and psychiatric symptoms are poorly addressed by the dopaminergic treatments. Adenosine receptor A2A antagonists have emerged as potential treatment for PD in the past decade. Here we summarize the recent work (2015-2018) on adenosine receptor A2A antagonists and discuss the challenge and opportunity for the treatment of PD.
Collapse
Affiliation(s)
- Jiyue Zheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Su Zhou, Jiangsu 215021, P. R. China
| | - Xiaohu Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Su Zhou, Jiangsu 215021, P. R. China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Su Zhou, Jiangsu 215021, P. R. China
| |
Collapse
|
12
|
Castellana MC, Castellar Montes A, Sprague JE, Mahfouz TM. A high‐quality homology model for the human dopamine transporter validated for drug design purposes. Chem Biol Drug Des 2019; 93:700-711. [DOI: 10.1111/cbdd.13495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/04/2019] [Accepted: 01/19/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Matthew C. Castellana
- Department of Biological and Allied Health SciencesOhio Northern University Ada Ohio
| | | | - Jon E. Sprague
- Center for the Future of Forensic SciencesBowling Green State University Bowling Green Ohio
| | - Tarek M. Mahfouz
- Department of Pharmaceutical and Biomedical SciencesRaabe College of PharmacyOhio Northern University Ada Ohio
| |
Collapse
|
13
|
Dallé E, Mabandla MV. Early Life Stress, Depression And Parkinson's Disease: A New Approach. Mol Brain 2018; 11:18. [PMID: 29551090 PMCID: PMC5858138 DOI: 10.1186/s13041-018-0356-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 02/27/2018] [Indexed: 12/20/2022] Open
Abstract
This review aims to shed light on the relationship that involves exposure to early life stress, depression and Parkinson's disease (PD). A systematic literature search was conducted in Pubmed, MEDLINE, EBSCOHost and Google Scholar and relevant data were submitted to a meta-analysis . Early life stress may contribute to the development of depression and patients with depression are at risk of developing PD later in life. Depression is a common non-motor symptom preceding motor symptoms in PD. Stimulation of regions contiguous to the substantia nigra as well as dopamine (DA) agonists have been shown to be able to attenuate depression. Therefore, since PD causes depletion of dopaminergic neurons in the substantia nigra, depression, rather than being just a simple mood disorder, may be part of the pathophysiological process that leads to PD. It is plausible that the mesocortical and mesolimbic dopaminergic pathways that mediate mood, emotion, and/or cognitive function may also play a key role in depression associated with PD. Here, we propose that a medication designed to address a deficiency in serotonin is more likely to influence motor symptoms of PD associated with depression. This review highlights the effects of an antidepressant, Fluvoxamine maleate, in an animal model that combines depressive-like symptoms and Parkinsonism.
Collapse
Affiliation(s)
- Ernest Dallé
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000 South Africa
| | - Musa V. Mabandla
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000 South Africa
| |
Collapse
|
14
|
Allen SA, Rednour S, Shepard S, Pond BB. A simple and sensitive high-performance liquid chromatography-electrochemical detection assay for the quantitative determination of monoamines and respective metabolites in six discrete brain regions of mice. Biomed Chromatogr 2017; 31. [PMID: 28474759 DOI: 10.1002/bmc.3998] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/21/2017] [Accepted: 04/28/2017] [Indexed: 11/09/2022]
Abstract
A rapid, sensitive, and reproducible assay is described for the quantitative determination of the monoamine neurotransmitters dopamine, norepinephrine and serotonin, their metabolites, and the internal standard 3,4-dihydroxybenzlyamine hydro-bromide in mouse brain homogenate using high-performance liquid chromatography with electrochemical detection. The method was validated in the following brain areas: frontal cortex, striatum, nucleus accumbens, hippocampus, substantia nigra pars compacta and ventral tegmental area. Biogenic amines and relevant metabolites were extracted from discrete brain regions using a simple protein precipitation procedure, and the chromatography was achieved using a C18 column. The method was accurate over the linear range of 0.300-30 ng/mL (r = 0.999) for dopamine and 0.300-15 ng/mL (r = 0.999) for norepinephrine, 3,4-dihydroxybenzlyamine hydro-bromide, homovanillic acid and 5-hydroxyindolacetic acid, with detection limits of ~0.125 ng/mL (5 pg on column) for each of these analytes. Accuracy and linearity for serotonin were observed throughout the concentration range of 0.625-30 ng/mL (r = 0.998) with an analytical detection limit of ~0.300 ng/mL (12 pg on column). Relative recoveries for all analytes were approximately ≥90% and the analytical run time was <10 min. The described method utilized minimal sample preparation procedures and was optimized to provide the sensitivity limits required for simultaneous monoamine and metabolite analysis in small, discrete brain tissue samples.
Collapse
Affiliation(s)
- Serena A Allen
- Bill Gatton College of Pharmacy, Pharmaceutical Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Stephanie Rednour
- Bill Gatton College of Pharmacy, Pharmaceutical Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Samantha Shepard
- Bill Gatton College of Pharmacy, Pharmaceutical Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Brooks Barnes Pond
- Bill Gatton College of Pharmacy, Pharmaceutical Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| |
Collapse
|
15
|
Su P, Liu F. A peptide disrupting the D2R-DAT interaction protects against dopamine neurotoxicity. Exp Neurol 2017; 295:176-183. [PMID: 28579325 DOI: 10.1016/j.expneurol.2017.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/02/2017] [Accepted: 05/24/2017] [Indexed: 01/11/2023]
Abstract
Dopamine reuptake from extracellular space to cytosol leads to accumulation of dopamine, which triggers neurotoxicity in dopaminergic neurons. Previous studies have shown that both dopamine D2 receptor (D2R) and dopamine transporter (DAT) are involved in dopamine neurotoxicity. However, blockade of either D2R or DAT causes side effects due to antagonism of other physiological functions of these two proteins. We previously found that DAT can form a protein complex with D2R and its cell surface expression is facilitated via D2R-DAT interaction, which regulates dopamine reuptake and intracellular dopamine levels. Here we found that an interfering peptide (DAT-S1) disrupting the D2R-DAT interaction protects neurons against dopamine neurotoxicity, and this effect is mediated by inhibiting DAT cell surface expression and inhibiting both caspase-3 and PARP-1 cleavage. This study demonstrates the role of the D2R-DAT complex in dopamine neurotoxicity and investigated the potential mechanisms, which might help better understand the mechanisms of dopamine neurotoxicity. The peptide may provide some insights to improve treatments for dopamine neurotoxicity and related diseases, such as Parkinson's disease, as well as methamphetamine- and 3,4-methsylenedioxy methamphetamine-induced neurotoxicity.
Collapse
Affiliation(s)
- Ping Su
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada
| | - Fang Liu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada.
| |
Collapse
|
16
|
Nishijima H, Tomiyama M. What Mechanisms Are Responsible for the Reuptake of Levodopa-Derived Dopamine in Parkinsonian Striatum? Front Neurosci 2016; 10:575. [PMID: 28018168 PMCID: PMC5156842 DOI: 10.3389/fnins.2016.00575] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/01/2016] [Indexed: 12/18/2022] Open
Abstract
Levodopa is the most effective medication for motor symptoms in Parkinson's disease. However, various motor and non-motor complications are associated with levodopa treatment, resulting from altered levodopa-dopamine metabolism with disease progression and long-term use of the drug. The present review emphasizes the role of monoamine transporters other than the dopamine transporter in uptake of extracellular dopamine in the dopamine-denervated striatum. When dopaminergic neurons are lost and dopamine transporters decreased, serotonin and norepinephrine transporters compensate by increasing uptake of excessive extracellular dopamine in the striatum. Organic cation transporter-3 and plasma membrane monoamine transporter, low affinity, and high capacity transporters, also potentially uptake dopamine when high-affinity transporters do not work normally. Selective serotonin reuptake inhibitors and serotonin norepinephrine reuptake inhibitors are often administered to patients with Parkinson's disease presenting with depression, pain or other non-motor symptoms. Thus, it is important to address the potential of these drugs to modify dopamine metabolism and uptake through blockade of the compensatory function of these transporters, which could lead to changes in motor symptoms of Parkinson's disease.
Collapse
Affiliation(s)
- Haruo Nishijima
- Department of Neurology, Aomori Prefectural Central HospitalAomori, Japan; Department of Neurophysiology, Institute of Brain Science, Hirosaki University Graduate School of MedicineHirosaki, Japan
| | - Masahiko Tomiyama
- Department of Neurology, Aomori Prefectural Central HospitalAomori, Japan; Department of Neurophysiology, Institute of Brain Science, Hirosaki University Graduate School of MedicineHirosaki, Japan
| |
Collapse
|
17
|
Babayeva M, Assefa H, Basu P, Chumki S, Loewy Z. Marijuana Compounds: A Nonconventional Approach to Parkinson's Disease Therapy. PARKINSON'S DISEASE 2016; 2016:1279042. [PMID: 28050308 PMCID: PMC5165161 DOI: 10.1155/2016/1279042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/29/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder, is the second most common neurological illness in United States. Neurologically, it is characterized by the selective degeneration of a unique population of cells, the nigrostriatal dopamine neurons. The current treatment is symptomatic and mainly involves replacement of dopamine deficiency. This therapy improves only motor symptoms of Parkinson's disease and is associated with a number of adverse effects including dyskinesia. Therefore, there is unmet need for more comprehensive approach in the management of PD. Cannabis and related compounds have created significant research interest as a promising therapy in neurodegenerative and movement disorders. In this review we examine the potential benefits of medical marijuana and related compounds in the treatment of both motor and nonmotor symptoms as well as in slowing the progression of the disease. The potential for cannabis to enhance the quality of life of Parkinson's patients is explored.
Collapse
Affiliation(s)
- Mariana Babayeva
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Haregewein Assefa
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Paramita Basu
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Sanjeda Chumki
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Zvi Loewy
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| |
Collapse
|
18
|
Rae CL, Nombela C, Rodríguez PV, Ye Z, Hughes LE, Jones PS, Ham T, Rittman T, Coyle-Gilchrist I, Regenthal R, Sahakian BJ, Barker RA, Robbins TW, Rowe JB. Atomoxetine restores the response inhibition network in Parkinson's disease. Brain 2016; 139:2235-48. [PMID: 27343257 PMCID: PMC4958901 DOI: 10.1093/brain/aww138] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 01/03/2023] Open
Abstract
Parkinson's disease impairs the inhibition of responses, and whilst impulsivity is mild for some patients, severe impulse control disorders affect ∼10% of cases. Based on preclinical models we proposed that noradrenergic denervation contributes to the impairment of response inhibition, via changes in the prefrontal cortex and its subcortical connections. Previous work in Parkinson's disease found that the selective noradrenaline reuptake inhibitor atomoxetine could improve response inhibition, gambling decisions and reflection impulsivity. Here we tested the hypotheses that atomoxetine can restore functional brain networks for response inhibition in Parkinson's disease, and that both structural and functional connectivity determine the behavioural effect. In a randomized, double-blind placebo-controlled crossover study, 19 patients with mild-to-moderate idiopathic Parkinson's disease underwent functional magnetic resonance imaging during a stop-signal task, while on their usual dopaminergic therapy. Patients received 40 mg atomoxetine or placebo, orally. This regimen anticipates that noradrenergic therapies for behavioural symptoms would be adjunctive to, not a replacement for, dopaminergic therapy. Twenty matched control participants provided normative data. Arterial spin labelling identified no significant changes in regional perfusion. We assessed functional interactions between key frontal and subcortical brain areas for response inhibition, by comparing 20 dynamic causal models of the response inhibition network, inverted to the functional magnetic resonance imaging data and compared using random effects model selection. We found that the normal interaction between pre-supplementary motor cortex and the inferior frontal gyrus was absent in Parkinson's disease patients on placebo (despite dopaminergic therapy), but this connection was restored by atomoxetine. The behavioural change in response inhibition (improvement indicated by reduced stop-signal reaction time) following atomoxetine correlated with structural connectivity as measured by the fractional anisotropy in the white matter underlying the inferior frontal gyrus. Using multiple regression models, we examined the factors that influenced the individual differences in the response to atomoxetine: the reduction in stop-signal reaction time correlated with structural connectivity and baseline performance, while disease severity and drug plasma level predicted the change in fronto-striatal effective connectivity following atomoxetine. These results suggest that (i) atomoxetine increases sensitivity of the inferior frontal gyrus to afferent inputs from the pre-supplementary motor cortex; (ii) atomoxetine can enhance downstream modulation of frontal-subcortical connections for response inhibition; and (iii) the behavioural consequences of treatment are dependent on fronto-striatal structural connections. The individual differences in behavioural responses to atomoxetine highlight the need for patient stratification in future clinical trials of noradrenergic therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Charlotte L Rae
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK 2 Medical Research Council Cognition and Brain Sciences Unit, Cambridge, CB2 7EF, UK
| | - Cristina Nombela
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| | | | - Zheng Ye
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Laura E Hughes
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK 2 Medical Research Council Cognition and Brain Sciences Unit, Cambridge, CB2 7EF, UK
| | - P Simon Jones
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Timothy Ham
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Timothy Rittman
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Ian Coyle-Gilchrist
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Ralf Regenthal
- 3 Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, 04107, Germany
| | - Barbara J Sahakian
- 4 Behavioural and Clinical Neuroscience Institute, Cambridge, CB2 3EB, UK 5 Department of Psychiatry, University of Cambridge, CB2 0SZ, Cambridge, UK
| | - Roger A Barker
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Trevor W Robbins
- 4 Behavioural and Clinical Neuroscience Institute, Cambridge, CB2 3EB, UK 6 Department of Experimental Psychology, University of Cambridge, CB2 3EB, Cambridge, UK
| | - James B Rowe
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK 2 Medical Research Council Cognition and Brain Sciences Unit, Cambridge, CB2 7EF, UK 4 Behavioural and Clinical Neuroscience Institute, Cambridge, CB2 3EB, UK
| |
Collapse
|
19
|
Anti-parkinsonian effects of fluvoxamine maleate in maternally separated rats. Int J Dev Neurosci 2016; 53:26-34. [PMID: 27338206 DOI: 10.1016/j.ijdevneu.2016.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 11/21/2022] Open
Abstract
Exposure to early life stress has been shown to result in anxiety-like symptoms and exacerbates degeneration of dopaminergic neurons in a rat model of Parkinson's disease (PD). First line treatment for anxiety disorders includes the use of Fluvoxamine maleate (FM). In this study, we investigated whether treating anxiety-like symptoms with FM has an effect in alleviating the neurotoxic effects of 6-OHDA in a parkinsonian rat model. Early maternal separation was used to create a rat model that depicts anxiety-like symptoms. Maternally separated adult Sprague-Dawley rats were treated with FM prior to and following lesion with 6-hydroxydopamine (6-OHDA). The elevated plus-maze (EPM) and the forelimb akinesia tests were used to evaluate anxiety-like symptoms and motor impairment respectively. Blood plasma was used to measure corticosterone concentration, and striatal tissue was collected for dopamine (DA) and serotonin (5-HT) analysis. Our results show that animals exposed to early life stress displayed increased anxiety-like symptoms and elevated basal plasma corticosterone concentration which were attenuated by treatment with FM. A 6-OHDA lesion effect was evidenced by impairment in the forelimb akinesia test as well as decreased DA and 5-HT concentrations in the lesioned striatum. These effects were attenuated on DA neurons by FM treatment in the pre-lesion treated as opposed to the post-lesion treated rats. This study suggests that early treatment of anxiety-like behavior decreases the vulnerability of DA neurons to neurotoxic insults later in life thus slowing down DA degeneration in PD.
Collapse
|
20
|
Nishijima H, Ueno T, Ueno S, Tomiyama M. Duloxetine increases the effects of levodopa in a rat model of Parkinson's disease. ACTA ACUST UNITED AC 2016. [DOI: 10.1111/ncn3.12051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haruo Nishijima
- Department of Neurology Aomori Prefectural Central Hospital AomoriJapan
- Department of Neurophysiology Institute of Brain Science Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Tatsuya Ueno
- Department of Neurology Aomori Prefectural Central Hospital AomoriJapan
- Department of Neurophysiology Institute of Brain Science Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Shinya Ueno
- Department of Neurophysiology Institute of Brain Science Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Masahiko Tomiyama
- Department of Neurology Aomori Prefectural Central Hospital AomoriJapan
- Department of Neurophysiology Institute of Brain Science Hirosaki University Graduate School of Medicine Hirosaki Japan
| |
Collapse
|
21
|
Conti MM, Goldenberg AA, Kuberka A, Mohamed M, Eissa S, Lindenbach D, Bishop C. Effect of tricyclic antidepressants on L-DOPA-induced dyskinesia and motor improvement in hemi-parkinsonian rats. Pharmacol Biochem Behav 2016; 142:64-71. [DOI: 10.1016/j.pbb.2016.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 11/26/2022]
|
22
|
Hussain SA, Sulaiman AA, Alhaddad H, Alhadidi Q. Natural polyphenols: Influence on membrane transporters. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2016; 5:97-104. [PMID: 27069731 PMCID: PMC4805155 DOI: 10.5455/jice.20160118062127] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/18/2016] [Indexed: 02/02/2023]
Abstract
Accumulated evidence has focused on the use of natural polyphenolic compounds as nutraceuticals since they showed a wide range of bioactivities and exhibited protection against variety of age-related disorders. Polyphenols have variable potencies to interact, and hence alter the activities of various transporter proteins, many of them classified as anion transporting polypeptide-binding cassette transporters like multidrug resistance protein and p-glycoprotein. Some of the efflux transporters are, generally, linked with anticancer and antiviral drug resistance; in this context, polyphenols may be beneficial in modulating drug resistance by increasing the efficacy of anticancer and antiviral drugs. In addition, these effects were implicated to explain the influence of dietary polyphenols on drug efficacy as result of food-drug interactions. However, limited data are available about the influence of these components on uptake transporters. Therefore, the objective of this article is to review the potential efficacies of polyphenols in modulating the functional integrity of uptake transporter proteins, including those terminated the effect of neurotransmitters, and their possible influence in neuropharmacology.
Collapse
Affiliation(s)
- Saad Abdulrahman Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Amal Ajaweed Sulaiman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Hasan Alhaddad
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Qasim Alhadidi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| |
Collapse
|
23
|
Sharma H, Santra S, Dutta A. Triple reuptake inhibitors as potential next-generation antidepressants: a new hope? Future Med Chem 2015; 7:2385-406. [PMID: 26619226 PMCID: PMC4976848 DOI: 10.4155/fmc.15.134] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The current therapy for depression is less than ideal with remission rates of only 25-35% and a slow onset of action with other associated side effects. The persistence of anhedonia originating from depressed dopaminergic activity is one of the most treatment-resistant symptoms of depression. Therefore, it has been hypothesized that triple reuptake inhibitors (TRIs) with potency to block dopamine reuptake in addition to serotonin and norepinephrine transporters should produce higher efficacy. The current review comprehensively describes the development of TRIs and discusses the importance of evaluation of in vivo transporter occupancy of TRIs, which should correlate with efficacy in humans.
Collapse
Affiliation(s)
- Horrick Sharma
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Soumava Santra
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Aloke Dutta
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|