1
|
Andreazzoli F, Bonucci M. Integrative Hematology: State of the Art. Int J Mol Sci 2023; 24:ijms24021732. [PMID: 36675247 PMCID: PMC9864076 DOI: 10.3390/ijms24021732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Blood cancers are a group of diseases with thus far frequently poor prognosis. Although many new drugs, including target therapies, have been developed in recent years, there is still a need to expand our therapeutic armamentarium to better deal with these diseases. Integrative hematology was conceived as a discipline that enriches the patient's therapeutic possibilities with the use of supplements, vitamins and a nutritional approach aiming at improving the response to therapies and the clinical outcome. We will analyze the substances that have proved most useful in preclinical and clinical studies in some of the most frequent blood diseases or in those where these studies are more numerous; the importance of the nutritional approach and the role of the intestinal microbiota will also be emphasized.
Collapse
Affiliation(s)
- Francesca Andreazzoli
- Department of Hematology, Versilia’s Hospital, Viale Aurelia, 335, 55049 Camaiore, Italy
- Correspondence:
| | - Massimo Bonucci
- Association for Research on Integrative Oncology Therapies (ARTOI), Via Ludovico Micara, 73, 00165 Rome, Italy
| |
Collapse
|
2
|
Belyaeva E, Rubenstein A, Pierson SK, Dalldorf D, Frank D, Lim MS, Fajgenbaum DC. Bone Marrow Findings of Idiopathic Multicentric Castleman Disease: A Histopathologic Analysis and Systematic Literature Review. Hematol Oncol 2022; 40:191-201. [PMID: 35104370 DOI: 10.1002/hon.2969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 11/12/2022]
Abstract
Idiopathic multicentric Castleman disease (iMCD) is a polyclonal lymphoproliferative disorder characterized by constitutional symptoms, generalized lymphadenopathy, cytopenias, and multi-organ dysfunction due to excessive cytokines, notably Interleukin-6. iMCD is often sub-classified into iMCD-TAFRO, which is associated with thrombocytopenia (T), anasarca (A), fever/elevated C-reactive protein (F), renal dysfunction (R), and organomegaly (O), and iMCD-NOS, which is typically associated with thrombocytosis and hypergammaglobulinemia. The diagnosis of iMCD is challenging as consensus clinico-pathological diagnostic criteria were only recently established and include several non-specific lymph node histopathological features. Identification of further clinico-pathological features commonly found in iMCD could contribute to more accurate and timely diagnoses. We set out to characterize bone marrow (BM) histopathological features in iMCD, assess differences between iMCD-TAFRO and iMCD-NOS, and determine if these findings are specific to iMCD. Examination of BM specimens from 24 iMCD patients revealed a high proportion with hypercellularity, megakaryocytic atypia, reticulin fibrosis, and plasmacytosis across patients with both iMCD-NOS and iMCD-TAFRO with significantly more megakaryocytic hyperplasia (p=0.001) in the iMCD-TAFRO cases. These findings were also consistent with bone marrow findings from 185 published cases of iMCD-NOS and iMCD-TAFRO. However, these findings are relatively nonspecific as they can be seen in various other infectious, malignant, and autoimmune diseases. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Elizaveta Belyaeva
- Department of Pathology and Laboratory Medicine, Tulane University, New Orleans, Usa, 70112
| | - Ayelet Rubenstein
- Department of Medicine, Center for Cytokine Storm Treatment & Laboratory, University of Pennsylvania, Philadelphia, Usa, 19104
| | - Sheila K Pierson
- Department of Medicine, Center for Cytokine Storm Treatment & Laboratory, University of Pennsylvania, Philadelphia, Usa, 19104
| | - Delaney Dalldorf
- Castleman Disease Collaborative Network, Philadelphia, Usa, 19104
| | - Dale Frank
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Usa, 19104
| | - Megan S Lim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Usa, 19104
| | - David C Fajgenbaum
- Department of Medicine, Center for Cytokine Storm Treatment & Laboratory, University of Pennsylvania, Philadelphia, Usa, 19104
| |
Collapse
|
3
|
Hsieh CC, Chan MJ, Su YJ, Fu JF, Wang IK, Chen CY, Weng CH, Huang WH, Hsu CW, Yen TH. Bone Marrow Hypocellularity in Patients with End-Stage Kidney Disease. Healthcare (Basel) 2021; 9:1452. [PMID: 34828498 PMCID: PMC8621268 DOI: 10.3390/healthcare9111452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/12/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Anemia and pancytopenia are not uncommon in patients with chronic kidney disease (CKD). Nevertheless, there is insufficient literature analyzing bone marrow pathology in patients with CKD or end-stage kidney disease (ESKD) receiving dialysis. METHODS This observational cohort study included 22 patients with ESKD and 23 patients with CKD that received bone marrow biopsy and aspiration at Chang Gung Memorial Hospital. Demographic, hematological, and biochemical data were collected at the time of bone marrow study for analysis. RESULTS Bone marrow aspiration demonstrated that patients with ESKD had a lower percentage of blasts than patients with CKD (0.52 ± 0.84 versus 1.06 ± 0.78 %, p = 0.033). Bone marrow biopsy revealed that the overall incidence of hypocellular bone marrow was 55.6%. Furthermore, patients with ESKD had higher proportion of hypocellular bone marrow than patients with CKD (72.7% versus 39.1%, p = 0.023). In a multivariate logistic regression model, it was revealed that ESKD status (odds ratio 9.43, 95% confidence interval 1.66-53.63, p = 0.011) and megakaryocyte count within bone marrow (odds ratio 0.48, 95% confidence interval 0.29-0.79, p = 0.004) were significant predictors for bone marrow hypocellularity. CONCLUSION Bone marrow hypocellularity is common in patients with kidney dysfunction. Hypocellular marrow occurs more frequently in patients with ESKD than patients with CKD.
Collapse
Affiliation(s)
- Chia-Chen Hsieh
- Clinical Poison Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou 333, Taiwan; (C.-C.H.); (M.-J.C.); (C.-Y.C.); (C.-H.W.); (W.-H.H.); (C.-W.H.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Ming-Jen Chan
- Clinical Poison Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou 333, Taiwan; (C.-C.H.); (M.-J.C.); (C.-Y.C.); (C.-H.W.); (W.-H.H.); (C.-W.H.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Yi-Jiun Su
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou 333, Taiwan;
| | - Jen-Fen Fu
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Medical Research, Chang Gung Memorial Hospital, Linkou 333, Taiwan
| | - I-Kuan Wang
- Department of Nephrology, China Medical University Hospital, Taichung 404, Taiwan;
- College of Medicine, China Medical University, Taichung 406, Taiwan
| | - Chao-Yu Chen
- Clinical Poison Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou 333, Taiwan; (C.-C.H.); (M.-J.C.); (C.-Y.C.); (C.-H.W.); (W.-H.H.); (C.-W.H.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Cheng-Hao Weng
- Clinical Poison Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou 333, Taiwan; (C.-C.H.); (M.-J.C.); (C.-Y.C.); (C.-H.W.); (W.-H.H.); (C.-W.H.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Wen-Hung Huang
- Clinical Poison Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou 333, Taiwan; (C.-C.H.); (M.-J.C.); (C.-Y.C.); (C.-H.W.); (W.-H.H.); (C.-W.H.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Ching-Wei Hsu
- Clinical Poison Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou 333, Taiwan; (C.-C.H.); (M.-J.C.); (C.-Y.C.); (C.-H.W.); (W.-H.H.); (C.-W.H.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Tzung-Hai Yen
- Clinical Poison Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou 333, Taiwan; (C.-C.H.); (M.-J.C.); (C.-Y.C.); (C.-H.W.); (W.-H.H.); (C.-W.H.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| |
Collapse
|
4
|
Chen Y, Zheng J, Gan D, Chen Y, Zhang N, Chen Y, Lin Z, Wang W, Chen H, Lin D, Hu J. E35 ablates acute leukemia stem and progenitor cells in vitro and in vivo. J Cell Physiol 2020; 235:8023-8034. [PMID: 31960417 PMCID: PMC7540425 DOI: 10.1002/jcp.29457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022]
Abstract
Leukemia stem cells (LSCs) have critical functions in acute leukemia (AL) pathogenesis, participating in its initiation and relapse. Thus, identifying new molecules to eradicate LSCs represents a high priority for AL management. This work identified E35, a novel Emodin derivative, which strongly inhibited growth and enhanced apoptosis of AL stem cell lines, and primary stem and progenitor cells from AL cases, while sparing normal hematopoietic cells. Furthermore, functional assays in cultured cells and animals suggested that E35 preferentially ablated primitive leukemia cell populations without impairing their normal counterparts. Moreover, molecular studies showed that E35 remarkably downregulated drug-resistant gene and dramatically inhibited the Akt/mammalian target of rapamycin signaling pathway. Notably, the in vivo anti-LSC activity of E35 was further confirmed in murine xenotransplantation models. Collectively, these findings indicate E35 constitutes a novel therapeutic candidate for AL, potentially targeting leukemia stem and progenitor cells.
Collapse
Affiliation(s)
- Yingyu Chen
- Department of HematologyFujian Institute of HematologyFujian Medical University Union HospitalFuzhouFujianChina
| | - Jing Zheng
- Department of HematologyFujian Institute of HematologyFujian Medical University Union HospitalFuzhouFujianChina
| | - Donghui Gan
- Department of HematologyFujian Institute of HematologyFujian Medical University Union HospitalFuzhouFujianChina
- Department of HematologyThe Affiliated Hospital of Putian UniversityPutianFujianChina
| | - Yanxin Chen
- Department of HematologyFujian Institute of HematologyFujian Medical University Union HospitalFuzhouFujianChina
| | - Na Zhang
- Department of HematologyFujian Institute of HematologyFujian Medical University Union HospitalFuzhouFujianChina
| | - Yuwen Chen
- Department of HematologyFujian Institute of HematologyFujian Medical University Union HospitalFuzhouFujianChina
| | - Zhenxing Lin
- Department of HematologyFujian Institute of HematologyFujian Medical University Union HospitalFuzhouFujianChina
| | - Wenfeng Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of ChemistryFuzhou UniversityFuzhouFujianChina
| | - Haijun Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of ChemistryFuzhou UniversityFuzhouFujianChina
| | - Donghong Lin
- Department of Clinical LaboratorySchool of Medical Technology and EngineeringFujian Medical UniversityFujianChina
| | - Jianda Hu
- Department of HematologyFujian Institute of HematologyFujian Medical University Union HospitalFuzhouFujianChina
| |
Collapse
|
5
|
Curcumin, a Multifaceted Hormetic Agent, Mediates an Intricate Crosstalk between Mitochondrial Turnover, Autophagy, and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3656419. [PMID: 32765806 PMCID: PMC7387956 DOI: 10.1155/2020/3656419] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/01/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023]
Abstract
Curcumin has extensive therapeutic potential because of its antioxidant, anti-inflammatory, and antiproliferative properties. Multiple preclinical studies in vitro and in vivo have proven curcumin to be effective against various cancers. These potent effects are driven by curcumin's ability to induce G2/M cell cycle arrest, induce autophagy, activate apoptosis, disrupt molecular signaling, inhibit invasion and metastasis, and increase the efficacy of current chemotherapeutics. Here, we focus on the hormetic behavior of curcumin. Frequently, low doses of natural chemical products activate an adaptive stress response, whereas high doses activate acute responses like autophagy and cell death. This phenomenon is often referred to as hormesis. Curcumin causes cell death and primarily initiates an autophagic step (mitophagy). At higher doses, cells undergo mitochondrial destabilization due to calcium release from the endoplasmic reticulum, and die. Herein, we address the complex crosstalk that involves mitochondrial biogenesis, mitochondrial destabilization accompanied by mitophagy, and cell death.
Collapse
|
6
|
Panyajai P, Tima S, Chiampanichayakul S, Anuchapreeda S. Dietary Turmeric Bisdemethoxycurcumin Suppresses Wilms’ Tumor 1 and CD34 Protein Expressions in KG-1a Leukemic Stem Cells. Nutr Cancer 2019; 71:1189-1200. [DOI: 10.1080/01635581.2019.1598565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Pawaret Panyajai
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Singkome Tima
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
| | - Sawitree Chiampanichayakul
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Songyot Anuchapreeda
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
7
|
Ding Y, Yang Z, Ge W, Kuang B, Xu J, Yang J, Chen Y, Zhang Q. Synthesis and biological evaluation of dithiocarbamate esters of parthenolide as potential anti-acute myelogenous leukaemia agents. J Enzyme Inhib Med Chem 2018; 33:1376-1391. [PMID: 30208745 PMCID: PMC6136352 DOI: 10.1080/14756366.2018.1490734] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A series of dithiocarbamate esters of parthenolide (PTL) was designed, synthesised, and evaluated for their anti- acute myelogenous leukaemia (AML) activities. The most promising compound 7l showed greatly improved potency against AML progenitor cell line KG1a with IC50 value of 0.7 μM, and the efficacy was 8.7-folds comparing to that of PTL (IC50 = 6.1 μM). Compound 7l induced apoptosis of total primary human AML cells and leukaemia stem cell (LSCs) of primary AML cells while sparing normal cells. Furthermore, 7l suppressed the colony formation of primary human leukaemia cells. Moreover, compound 12, the salt form of 7l, prolonged the lifespan of mice in two patient-derived xenograft models and had no observable toxicity. The preliminary molecular mechanism study revealed that 7l-mediated apoptosis is associated with mitogen-activated protein kinase signal pathway. On the basis of these investigations, we propose that 12 might be a promising drug candidate for ultimate discovery of anti-LSCs drug.
Collapse
Affiliation(s)
- Yahui Ding
- a State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin , People's Republic of China
| | - Zhongjin Yang
- a State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin , People's Republic of China.,b School of Pharmaceutical Sciences , Guangzhou Medical University , Guangzhou , People's Republic of China
| | - Weizhi Ge
- a State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin , People's Republic of China
| | - Beijia Kuang
- a State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin , People's Republic of China
| | - Junqing Xu
- c Department of Hematology , Yantai Yuhuangding Hospital, Qingdao University Medical College , Yantai , People's Republic of China
| | - Juan Yang
- a State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin , People's Republic of China
| | - Yue Chen
- a State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin , People's Republic of China
| | - Quan Zhang
- a State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin , People's Republic of China
| |
Collapse
|
8
|
Orsini M, Morceau F, Dicato M, Diederich M. Autophagy as a pharmacological target in hematopoiesis and hematological disorders. Biochem Pharmacol 2018; 152:347-361. [PMID: 29656115 DOI: 10.1016/j.bcp.2018.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022]
Abstract
Autophagy is involved in many cellular processes, including cell homeostasis, cell death/survival balance and differentiation. Autophagy is essential for hematopoietic stem cell survival, quiescence, activation and differentiation. The deregulation of this process is associated with numerous hematological disorders and pathologies, including cancers. Thus, the use of autophagy modulators to induce or inhibit autophagy emerges as a potential therapeutic approach for treating these diseases and could be particularly interesting for differentiation therapy of leukemia cells. This review presents therapeutic strategies and pharmacological agents in the context of hematological disorders. The pros and cons of autophagy modulators in therapy will also be discussed.
Collapse
Affiliation(s)
- Marion Orsini
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Franck Morceau
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Marc Diederich
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
9
|
|
10
|
Polyalthia longifolia Methanolic Leaf Extracts (PLME) induce apoptosis, cell cycle arrest and mitochondrial potential depolarization by possibly modulating the redox status in hela cells. Biomed Pharmacother 2017; 89:499-514. [DOI: 10.1016/j.biopha.2017.02.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 12/23/2022] Open
|
11
|
Owen HC, Appiah S, Hasan N, Ghali L, Elayat G, Bell C. Phytochemical Modulation of Apoptosis and Autophagy: Strategies to Overcome Chemoresistance in Leukemic Stem Cells in the Bone Marrow Microenvironment. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 135:249-278. [PMID: 28807161 DOI: 10.1016/bs.irn.2017.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Advances in scientific research and targeted treatment regimes have improved survival rates for many cancers over the past few decades. However, for some types of leukemia, including acute lymphoblastic and acute myeloid leukemia, mortality rates have continued to rise, with chemoresistance in leukemic stem cells (LSCs) being a major contributing factor. Most cancer drug therapies act by inducing apoptosis in dividing cells but are ineffective in targeting quiescent LSCs. Niches in the bone marrow, known as leukemic niches, behave as "sanctuaries" where LSCs acquire drug resistance. This review explores the role of the bone marrow environment in the maintenance of LSCs and its contribution to chemoresistance and considers current research on the potential use of phytochemicals to overcome chemoresistance through the modulation of signaling pathways involved in the survival and death of leukemic clonal cells and/or leukemic stem cells. Phytochemicals from traditional Chinese medicine, namely baicalein, chrysin, wogonin (constituents of Scutellaria baicalensis; huáng qín; ), curcumin (a constituent of Curcuma longa, jiāng huáng, ), and resveratrol (a constituent of Polygonum cuspidatum; hŭ zhàng, ) have been shown to induce apoptosis in leukemic cell lines, with curcumin and resveratrol also causing cell death via the induction of autophagy (a nonapoptotic pathway). In order to be effective in eliminating LSCs, it is important to target signaling pathways (such as Wnt/β-catenin, Notch, and Hedgehog). Resveratrol has been reported to induce apoptosis in leukemic cells through the inhibition of the Notch and Sonic hedgehog signaling pathways, therefore showing potential to affect LSCs. While these findings are of interest, there is a lack of reported research on the modulatory effect of phytochemicals on the autophagic cell death pathway in leukemia, and on the signaling pathways involved in the maintenance of LSCs, highlighting the need for further work in these areas.
Collapse
Affiliation(s)
- Helen C Owen
- Faculty of Science and Technology, Middlesex University, The Burroughs, Hendon, London, United Kingdom.
| | - Sandra Appiah
- Faculty of Science and Technology, Middlesex University, The Burroughs, Hendon, London, United Kingdom.
| | - Noor Hasan
- Faculty of Science and Technology, Middlesex University, The Burroughs, Hendon, London, United Kingdom
| | - Lucy Ghali
- Faculty of Science and Technology, Middlesex University, The Burroughs, Hendon, London, United Kingdom
| | - Ghada Elayat
- Faculty of Science and Technology, Middlesex University, The Burroughs, Hendon, London, United Kingdom
| | - Celia Bell
- Faculty of Science and Technology, Middlesex University, The Burroughs, Hendon, London, United Kingdom
| |
Collapse
|
12
|
Yang Z, Kuang B, Kang N, Ding Y, Ge W, Lian L, Gao Y, Wei Y, Chen Y, Zhang Q. Synthesis and anti-acute myeloid leukemia activity of C-14 modified parthenolide derivatives. Eur J Med Chem 2017; 127:296-304. [DOI: 10.1016/j.ejmech.2016.12.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/17/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
|
13
|
Ding Y, Gao H, Zhang Y, Li Y, Vasdev N, Gao Y, Chen Y, Zhang Q. Alantolactone selectively ablates acute myeloid leukemia stem and progenitor cells. J Hematol Oncol 2016; 9:93. [PMID: 27658462 PMCID: PMC5034521 DOI: 10.1186/s13045-016-0327-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/16/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The poor outcomes for patients diagnosed with acute myeloid leukemia (AML) are largely attributed to leukemia stem cells (LSCs) which are difficult to eliminate with conventional therapy and responsible for relapse. Thus, new therapeutic strategies which could selectively target LSCs in clinical leukemia treatment and avoid drug resistance are urgently needed. However, only a few small molecules have been reported to show anti-LSCs activity. METHODS The aim of the present study was to identify alantolactone as novel agent that can ablate acute myeloid leukemia stem and progenitor cells from AML patient specimens and evaluate the anticancer activity of alantolactone in vitro and in vivo. RESULTS The present study is the first to demonstrate that alantolactone, a prominent eudesmane-type sesquiterpene lactone, could specifically ablate LSCs from AML patient specimens. Furthermore, in comparison to the conventional chemotherapy drug, cytosine arabinoside (Ara-C), alantolactone showed superior effects of leukemia cytotoxicity while sparing normal hematopoietic cells. Alantolactone induced apoptosis with a dose-dependent manner by suppression of NF-kB and its downstream target proteins. DMA-alantolactone, a water-soluble prodrug of alantolactone, could suppress tumor growth in vivo. CONCLUSIONS Based on these results, we propose that alantolactone may represent a novel LSCs-targeted therapy and eudesmane-type sesquiterpene lactones offer a new scaffold for drug discovery towards anti-LSCs agents.
Collapse
Affiliation(s)
- Yahui Ding
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Huier Gao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, People's Republic of China
| | - Ye Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, 02114, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Yingdai Gao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, People's Republic of China
| | - Yue Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Quan Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.
| |
Collapse
|
14
|
Curcumin, mitochondrial biogenesis, and mitophagy: Exploring recent data and indicating future needs. Biotechnol Adv 2016; 34:813-826. [DOI: 10.1016/j.biotechadv.2016.04.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/11/2016] [Accepted: 04/28/2016] [Indexed: 11/23/2022]
|
15
|
Islam A, Rodrigues BL, Marzano IM, Perreira-Maia EC, Dittz D, Paz Lopes MT, Ishfaq M, Frézard F, Demicheli C. Cytotoxicity and apoptotic activity of novel organobismuth(V) and organoantimony(V) complexes in different cancer cell lines. Eur J Med Chem 2016; 109:254-67. [DOI: 10.1016/j.ejmech.2016.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/02/2016] [Accepted: 01/05/2016] [Indexed: 01/20/2023]
|