1
|
Schneider MF, Fallah MA, Mess C, Obser T, Schneppenheim R, Alexander-Katz A, Schneider SW, Huck V. Platelet adhesion and aggregate formation controlled by immobilised and soluble VWF. BMC Mol Cell Biol 2020; 21:64. [PMID: 32917131 PMCID: PMC7488753 DOI: 10.1186/s12860-020-00309-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 08/26/2020] [Indexed: 11/21/2022] Open
Abstract
Background It has been demonstrated that von Willebrand factor (VWF) mediated platelet-endothelium and platelet-platelet interactions are shear dependent. The VWF’s mobility under dynamic conditions (e.g. flow) is pivotal to platelet adhesion and VWF-mediated aggregate formation in the cascade of VWF-platelet interactions in haemostasis. Results Combining microfluidic tools with fluorescence and reflection interference contrast microscopy (RICM), here we show, that specific deletions in the A-domains of the biopolymer VWF affect both, adhesion and aggregation properties independently. Intuitively, the deletion of the A1-domain led to a significant decrease in both adhesion and aggregate formation of platelets. Nevertheless, the deletion of the A2-domain revealed a completely different picture, with a significant increase in formation of rolling aggregates (gain of function). We predict that the A2-domain effectively ‘masks’ the potential between the platelet glycoprotein (GP) Ib and the VWF A1-domain. Furthermore, the deletion of the A3-domain led to no significant variation in either of the two functional characteristics. Conclusions These data demonstrate that the macroscopic functional properties i.e. adhesion and aggregate formation cannot simply be assigned to the properties of one particular domain, but have to be explained by cooperative phenomena. The absence or presence of molecular entities likewise affects the properties (thermodynamic phenomenology) of its neighbours, therefore altering the macromolecular function.
Collapse
Affiliation(s)
- Matthias F Schneider
- Department of Physics, Medical and Biological Physics, Technical University Dortmund, Emil-Figge-Str. 50, 44227, Dortmund, Germany
| | - Mohammad A Fallah
- Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78457, Constance, Germany
| | - Christian Mess
- University Medical Centre Hamburg-Eppendorf, Centre for Internal Medicine, Martinistr. 52, 20246, Hamburg, Germany
| | - Tobias Obser
- Department of Paediatric Haematology and Oncology, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Reinhard Schneppenheim
- Department of Paediatric Haematology and Oncology, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineerin, Massachusetts Institute of Technology, 400 Technology Sq. (NE46-605), Cambridge, MA, 02139, USA
| | - Stefan W Schneider
- University Medical Centre Hamburg-Eppendorf, Centre for Internal Medicine, Martinistr. 52, 20246, Hamburg, Germany
| | - Volker Huck
- University Medical Centre Hamburg-Eppendorf, Centre for Internal Medicine, Martinistr. 52, 20246, Hamburg, Germany. .,Heidelberg University, Medical Faculty Mannheim, Experimental Dermatology, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| |
Collapse
|