1
|
Sharma P, Rampersaud H, Shah PK. Repeated epidural stimulation modulates cervical spinal cord excitability in healthy adult rats. Exp Brain Res 2024; 243:22. [PMID: 39665849 DOI: 10.1007/s00221-024-06965-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/04/2024] [Indexed: 12/13/2024]
Abstract
Spinal evoked motor responses (SEMR) are utilized in longitudinal pre-clinical and human studies to reflect the in-vivo physiological changes in neural networks secondary to a spinal cord injury (SCI) or neuro-rehabilitative treatments utilizing epidural stimulation (ES). However, it remains unknown whether the repeated ES exposure during SEMR testing itself modulates spinal cord physiology and accompanying SEMR characteristics. To answer this, ES was delivered to the cervical spinal cord using standard stimulation paradigms during multiple SEMR data acquisition sessions (~ 17 h spanning across 100 days) in ten healthy adult rats. Cervical SEMR at rest and forelimb muscle activity during reaching and grasping task were collected before and after 100 days. We noted a persistent increase in SEMR activity relative to baseline, with prominent changes in the mono and poly-synaptic components of SEMR. The findings indicate increased spinal cord excitability. Increased spinal cord excitability translated into increased forelimb muscle activation during the reaching and grasping task. For the majority of SEMR and muscle activity increase, effect size was large or very large. Cervical SEMR are amenable to modulation by routine ES testing protocols, with prominent changes in the mono and poly-synaptic components of SEMR. Since repeated stimulation during multiple testing alone increases cord excitability, we recommend (1) SEMR may be used with caution to infer the physiological status of the spinal circuitry (2) utilizing appropriate control groups and motor behavioral correlates for meaningful functional interpretation in longitudinal neuromodulation studies involving multiple SEMR testing sessions following a SCI.
Collapse
Affiliation(s)
- Pawan Sharma
- Division of Rehabilitation Sciences, Department of Physical Therapy, School of Health Technology and Management, University of Louisville, Louisville, KY, USA.
- Kentucky Spinal Cord Injury Research Center, University of Louisville, 220 Abraham Flexner Way, Louisville, KY, 40202, USA.
| | - Hema Rampersaud
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, 11727, USA
| | - Prithvi K Shah
- Division of Rehabilitation Sciences, Department of Physical Therapy, School of Health Technology and Management, University of Louisville, Louisville, KY, USA
| |
Collapse
|
2
|
Shou Z, Li Z, Wang X, Chen M, Bai Y, Di H. Non-invasive brain intervention techniques used in patients with disorders of consciousness. Int J Neurosci 2020; 131:390-404. [PMID: 32238043 DOI: 10.1080/00207454.2020.1744598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aim of the study: With the development of emergency medicine and intensive care technology, the number of people who survive with disorders of consciousness (DOC) has dramatically increased. The diagnosis and treatment of such patients have attracted much attention from the medical community. From the latest evidence-based guidelines, non-invasive brain intervention (NIBI) techniques may be valuable and promising in the diagnosis and conscious rehabilitation of DOC patients.Methods: This work reviews the studies on NIBI techniques for the assessment and intervention of DOC patients.Results: A large number of studies have explored the application of NIBI techniques in DOC patients. The NIBI techniques include transcranial magnetic stimulation, transcranial electric stimulation, music stimulation, near-infrared laser stimulation, focused shock wave therapy, low-intensity focused ultrasound pulsation and transcutaneous auricular vagus nerve stimulation.Conclusions: NIBI techniques present numerous advantages such as being painless, safe and inexpensive; having adjustable parameters and targets; and having broad development prospects in treating DOC patients.
Collapse
Affiliation(s)
- Zeyu Shou
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Zhilong Li
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xueying Wang
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Miaoyang Chen
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yang Bai
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Haibo Di
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
3
|
Quilgars C, Bertrand SS. Activity-dependent synaptic dynamics in motor circuits of the spinal cord. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2018.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
4
|
Rocchi L, Suppa A, Leodori G, Celletti C, Camerota F, Rothwell J, Berardelli A. Plasticity Induced in the Human Spinal Cord by Focal Muscle Vibration. Front Neurol 2018; 9:935. [PMID: 30450077 PMCID: PMC6225532 DOI: 10.3389/fneur.2018.00935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/16/2018] [Indexed: 12/18/2022] Open
Abstract
The spinal cord spinal cord has in the past been considered a hardwired system which responds to inputs in a stereotyped way. A growing body of data have instead demonstrated its ability to retain information and modify its effector capabilities, showing activity-dependent plasticity. Whereas, plasticity in the spinal cord is well documented after different forms of physical exercise, whether exogenous stimulation can induce similar changes is still a matter of debate. This issue is both of scientific and clinical relevance, since at least one form of stimulation, i.e., focal muscle vibration (fMV), is currently used as a treatment for spasticity. The aim of the present study was to assess whether fMV can induce plasticity at the SC level when applied to different muscles of the upper limb. Changes in different electrophysiological measures, such as H-reflex testing homonymous and heteronymous pathways, reciprocal inhibition and somatosensory evoked potentials were used as outcomes. We found that fMV was able to induce long-term depression-like plasticity in specific spinal cord circuits depending on the muscle vibrated. These findings helped understand the basic mechanisms underlying the effects of fMV and might help to develop more advanced stimulation protocols.
Collapse
Affiliation(s)
- Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.,Department of Clinical Neurophysiology, IRCCS Neuromed Institute, Pozzilli, Italy
| | - Giorgio Leodori
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.,Department of Clinical Neurophysiology, IRCCS Neuromed Institute, Pozzilli, Italy
| | - Claudia Celletti
- Physical Medicine and Rehabilitation Division, Sapienza University of Rome, Rome, Italy
| | - Filippo Camerota
- Physical Medicine and Rehabilitation Division, Sapienza University of Rome, Rome, Italy
| | - John Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.,Department of Clinical Neurophysiology, IRCCS Neuromed Institute, Pozzilli, Italy
| |
Collapse
|
5
|
Jimenez S, Mordillo-Mateos L, Dileone M, Campolo M, Carrasco-Lopez C, Moitinho-Ferreira F, Gallego-Izquierdo T, Siebner HR, Valls-Solé J, Aguilar J, Oliviero A. Effects of patterned peripheral nerve stimulation on soleus spinal motor neuron excitability. PLoS One 2018; 13:e0192471. [PMID: 29451889 PMCID: PMC5815584 DOI: 10.1371/journal.pone.0192471] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 01/03/2018] [Indexed: 11/24/2022] Open
Abstract
Spinal plasticity is thought to contribute to sensorimotor recovery of limb function in several neurological disorders and can be experimentally induced in animals and humans using different stimulation protocols. In healthy individuals, electrical continuous Theta Burst Stimulation (TBS) of the median nerve has been shown to change spinal motoneuron excitability in the cervical spinal cord as indexed by a change in mean H-reflex amplitude in the flexor carpi radialis muscle. It is unknown whether continuous TBS of a peripheral nerve can also shift motoneuron excitability in the lower limb. In 26 healthy subjects, we examined the effects of electrical TBS given to the tibial nerve in the popliteal fossa on the excitability of lumbar spinal motoneurons as measured by H-reflex amplitude of the soleus muscle evoked by tibial nerve stimulation. Continuous TBS was given at 110% of H-reflex threshold intensity and compared to non-patterned regular electrical stimulation at 15 Hz. To disclose any pain-induced effects, we also tested the effects of TBS at individual sensory threshold. Moreover, in a subgroup of subjects we evaluated paired-pulse inhibition of H-reflex. Continuous TBS at 110% of H-reflex threshold intensity induced a short-term reduction of H-reflex amplitude. The other stimulation conditions produced no after effects. Paired-pulse H-reflex inhibition was not modulated by continuous TBS or non-patterned repetitive stimulation at 15 Hz. An effect of pain on the results obtained was discarded, since non-patterned 15 Hz stimulation at 110% HT led to pain scores similar to those induced by EcTBS at 110% HT, but was not able to induce any modulation of the H reflex amplitude. Together, the results provide first time evidence that peripheral continuous TBS induces a short-lasting change in the excitability of spinal motoneurons in lower limb circuitries. Future studies need to investigate how the TBS protocol can be optimized to produce a larger and longer effect on spinal cord physiology and whether this might be a useful intervention in patients with excessive excitability of the spinal motorneurons.
Collapse
Affiliation(s)
- Samuel Jimenez
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
- Physiotherapy Department, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
- Physiotherapy Department, Alcalá de Henares University, Alcalá de Henares Spain
| | | | - Michele Dileone
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
- CINAC, HM Puerta del Sur, Hospitales de Madrid, Móstoles, Spain
| | - Michela Campolo
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
- EMG and Motor Control Section, Neurology Department, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | | | - Fabricia Moitinho-Ferreira
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
- Sarah Network of Rehabilitation Hospitals, Salvador de Bahia, Brazil
| | | | - Hartwig R. Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Hvidovre, Hvidovre, Denmark
- Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Josep Valls-Solé
- EMG and Motor Control Section, Neurology Department, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Juan Aguilar
- Experimental Neurophysiology Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| |
Collapse
|