1
|
Ueno M, Iwata S, Yamagata K, Todoroki Y, Sonomoto K, Nagayasu A, Miyagawa I, Kubo S, Miyazaki Y, Miyata H, Kanda R, Aritomi T, Nakayamada S, Tanaka Y. Induction of interleukin 21 receptor expression via enhanced intracellular metabolism in B cells and its relevance to the disease activity in systemic lupus erythematosus. RMD Open 2024; 10:e004567. [PMID: 39740932 PMCID: PMC11749818 DOI: 10.1136/rmdopen-2024-004567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 11/26/2024] [Indexed: 01/02/2025] Open
Abstract
OBJECTIVE To elucidate the association between the changes in intracellular metabolism in the early stage of B cell activation and systemic lupus erythematosus (SLE) pathogenesis. METHODS CD19+ or CD19+CD27- (naïve) cells from the peripheral blood of healthy controls and lupus patients were cultured under different stimuli. The changes in intracellular metabolism and signalling pathways in these cells were evaluated. RESULTS Stimulation with CpG (Toll-like receptor 9 (TLR9) ligand) in vitro induced enhanced interleukin 21 (IL-21) receptor expression in CD19+CD27- cells after 24 hours. The addition of IL-21 to the CpG stimulation enhanced the extracellular acidification rate, which indicates glycolysis, within 30 min. IL-21 receptor (IL-21R) expression induced by CpG stimulation was selectively inhibited by 2-deoxy-D-glucose (hexokinase 2 (HK2) inhibitor) and heptelidic acid (glyceraldehyde 3-phosphate dehydrogenase (GAPDH) inhibitor). RNA immunoprecipitation with anti-GAPDH antibody revealed that CpG stimulation dissociated the binding between IL-21R messenger RNA (mRNA) and GAPDH under no stimulation. HK2 and GAPDH expression were higher in CD19+CD27- cells of lupus patients than in those of healthy controls, and GAPDH expression was correlated with the plasmocyte count and disease activity score. CONCLUSION IL-21R mRNA-GAPDH binding dissociation associated with rapid glycolytic enhancement by the TLR9 ligand in B cells may induce plasmocyte differentiation through IL-21 signals and be involved in exacerbating SLE.
Collapse
Affiliation(s)
- Masanobu Ueno
- The First Department of Internal Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Shigeru Iwata
- The First Department of Internal Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
- Department of Rheumatology and Clinical Immunology, Wakayama Medical University, Wakayama, Japan
| | - Kaoru Yamagata
- The First Department of Internal Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Yasuyuki Todoroki
- The First Department of Internal Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
- Department of Molecular Targeted Therapies, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Koshiro Sonomoto
- The First Department of Internal Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
- Department of Clinical Nursing, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Atsushi Nagayasu
- The First Department of Internal Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Ippei Miyagawa
- The First Department of Internal Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Satoshi Kubo
- The First Department of Internal Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
- Department of Molecular Targeted Therapies, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Yusuke Miyazaki
- The First Department of Internal Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Hiroko Miyata
- The First Department of Internal Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Ryuichiro Kanda
- The First Department of Internal Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Takafumi Aritomi
- The First Department of Internal Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Shingo Nakayamada
- The First Department of Internal Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| |
Collapse
|
2
|
Pati A, Das BK, Panda AK. Elevated toll-like receptor 9 is associated with disease severity and kidney involvement in systemic lupus erythematosus. Hum Immunol 2024; 85:111104. [PMID: 39255560 DOI: 10.1016/j.humimm.2024.111104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/22/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
OBJECTIVES Systemic lupus erythematosus (SLE) is associated with the activation of both innate and adaptive immune system. Infection is a significant environmental factor that is responsible for the development of SLE. Toll-like receptors (TLRs) are responsible for recognizing pathogens, and the expression of TLRs has been found to differ in SLE patients. Additionally, various infections have been reported to influence TLR expression. This study aimed to explore the relationship between TLRs and the onset, severity, and symptoms of SLE in the eastern Indian population. METHODS The study included 70 SLE patients and a control group matched for age and sex. RT-PCR was used to evaluate mRNA expression of TLRs 2, 4, 7, and 9. Statistical analyses were performed using GraphPad Prism software v.10.2.3. RESULTS Patients with SLE expressed significantly higher levels of TLR2 (p < 0.0001) and TLR9 (p = 0.012) than healthy controls. In lupus nephritis, TLR9 expression was higher than in SLE patients without kidney involvement (p = 0.037). Furthermore, a significant relationship was found between TLR9 expression and systemic lupus erythematosus disease activity index (SLEDAI) scores (p < 0.0001, Spearman's r = 0.47), implying the potential role of TLRs in SLE development. However, mRNA expression of TLR4 and TLR7 was not associated with SLE, clinical indices, or disease severity. CONCLUSIONS TLR9 is associated with SLE pathogenesis and clinical severity, making it a promising molecule for targeted therapy in SLE management.
Collapse
Affiliation(s)
- Abhijit Pati
- ImmGen EvSys Laboratory, Department of Biotechnology, Berhampur University, Odisha 767007, India
| | - Bidyut K Das
- Department of Clinical Immunology and Rheumatology, SCB Medical College Cuttack, Odisha 753007, India
| | - Aditya K Panda
- ImmGen EvSys Laboratory, Department of Biotechnology, Berhampur University, Odisha 767007, India; Centre of Excellence on Bioprospecting of "Ethnopharmaceuticals of Southern Odisha" (CoE-BESO), Berhampur University, Bhanja Bihar, Berhampur, Odisha 760007, India.
| |
Collapse
|
3
|
Sun W, Zhu C, Li Y, Wu X, Shi X, Liu W. B cell activation and autoantibody production in autoimmune diseases. Best Pract Res Clin Rheumatol 2024; 38:101936. [PMID: 38326197 DOI: 10.1016/j.berh.2024.101936] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024]
Abstract
B cells are central players in the immune system, responsible for producing antibodies and modulating immune responses. This review explores the intricate relationship between aberrant B cell activation and the development of autoimmune diseases, emphasizing the essential role of B cells in these conditions. We also summarize B cell receptor signaling and Toll-like receptor signaling in B cell activation, as well as their association with autoimmune diseases, shedding light on the molecular mechanisms behind these associations. Additionally, we explore the clinical observations involving B cell activation and their significance in autoimmune disease management. Various clinical studies related to B cell-targeted therapies are also discussed, offering insights into potential avenues for improving treatment strategies. Overall, this review serves as a resource for researchers and clinicians in the field of immunology and autoimmune diseases, providing a general view of B cell signaling and its role in autoimmunity.
Collapse
Affiliation(s)
- Wenbo Sun
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, No. 1, Qinghua Yuan, New Biology Bldg, Haidian District, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China; The First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei, 230032, China.
| | - Can Zhu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, No. 1, Qinghua Yuan, New Biology Bldg, Haidian District, Beijing, 100084, China.
| | - Yuxin Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, No. 1, Qinghua Yuan, New Biology Bldg, Haidian District, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| | - Xinfeng Wu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guanlin Road, 471000, Luoyang, China.
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, No. 636, Guanlin Road, 471000, Luoyang, China.
| | - Wanli Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, China Ministry of Education Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, No. 1, Qinghua Yuan, New Biology Bldg, Haidian District, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China; The First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
4
|
Liu Y, Wei FZ, Zhan YW, Wang R, Mo BY, Lin SD. TLR9 regulates the autophagy-lysosome pathway to promote dendritic cell maturation and activation by activating the TRAF6-cGAS-STING pathway. Kaohsiung J Med Sci 2023; 39:1200-1212. [PMID: 37850718 DOI: 10.1002/kjm2.12769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
Dysregulated maturation and activation of dendritic cells (DCs) play a significant role in the progression of systemic lupus erythematosus (SLE). The autophagy-lysosome pathway has been identified as a potential mechanism to inhibit DC activation and maturation, but its precise workings remain unclear. We investigated the role and regulatory mechanism of TLR9 in modulating the autophagy-lysosome pathway and DCs activation. The mRNA and protein expressions were assessed using qRT-PCR and/or western blot. NZBW/F1 mice was used to construct a lupus nephritis (LN) model in vivo. Cell apoptosis was analyzed by TUNEL staining. Flow cytometry was adopted to analyze DCs surface markers. Lyso-tracker red staining was employed to analyze lysosome acidification. Levels of anti-dsDNA, cytokines, C3, C4, urine protein and urine creatinine were examined by ELISA. The results showed that TLR9 was markedly increased in SLE patients, and its expression was positively correlated with SLEDAI scores and dsDNA level. Conversely, TLR9 expression showed a negative correlation with C3 and C4 levels. Loss-of function experiments demonstrated that TLR9 depletion exerted a substantial inhibition of renal injury, inflammation, and DCs numbers. Additionally, upregulation of TLR9 promoted DCs maturation and activation through activation of autophagy and lysosome acidification. Further investigation revealed that TLR9 targeted TRAF6 to activate the cGAS-STING pathway. Rescue experiments revealed that inactivation of the cGAS/STING signaling pathway could reverse the promoting effects of TLR9 upregulation on DCs maturation, activation, and autophagy-lysosome pathway. Overall, our findings suggested that TLR9 activated the autophagy-lysosome pathway to promote DCs maturation and activation by activating TRAF6-cGAS-STING pathway, thereby promoting SLE progression.
Collapse
Affiliation(s)
- Ying Liu
- Department of Rheumatology & Immunology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, People's Republic of China
| | - Fang-Zhi Wei
- Traditional Chinese Medicine Department, Boao Yiling Life Care Center, Qionghai, Hainan Province, People's Republic of China
| | - Yu-Wei Zhan
- Department of Rheumatology & Immunology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, People's Republic of China
| | - Ru Wang
- Experimental Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, People's Republic of China
| | - Bi-Yao Mo
- Department of Rheumatology & Immunology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, People's Republic of China
| | - Shu-Dian Lin
- Department of Rheumatology & Immunology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, People's Republic of China
| |
Collapse
|
5
|
Wen L, Zhang B, Wu X, Liu R, Fan H, Han L, Zhang Z, Ma X, Chu CQ, Shi X. Toll-like receptors 7 and 9 regulate the proliferation and differentiation of B cells in systemic lupus erythematosus. Front Immunol 2023; 14:1093208. [PMID: 36875095 PMCID: PMC9975558 DOI: 10.3389/fimmu.2023.1093208] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune illness marked by the loss of immune tolerance and the production of autoantibodies against nucleic acids and other nuclear antigens (Ags). B lymphocytes are important in the immunopathogenesis of SLE. Multiple receptors control abnormal B-cell activation in SLE patients, including intrinsic Toll-like receptors (TLRs), B-cell receptors (BCRs), and cytokine receptors. The role of TLRs, notably TLR7 and TLR9, in the pathophysiology of SLE has been extensively explored in recent years. When endogenous or exogenous nucleic acid ligands are recognized by BCRs and internalized into B cells, they bind TLR7 or TLR9 to activate related signalling pathways and thus govern the proliferation and differentiation of B cells. Surprisingly, TLR7 and TLR9 appear to play opposing roles in SLE B cells, and the interaction between them is still poorly understood. In addition, other cells can enhance TLR signalling in B cells of SLE patients by releasing cytokines that accelerate the differentiation of B cells into plasma cells. Therefore, the delineation of how TLR7 and TLR9 regulate the abnormal activation of B cells in SLE may aid the understanding of the mechanisms of SLE and provide directions for TLR-targeted therapies for SLE.
Collapse
Affiliation(s)
- Luyao Wen
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Bei Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Xinfeng Wu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Rongzeng Liu
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Hua Fan
- Office of Research & Innovation, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Lei Han
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Zhibo Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Xin Ma
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Cong-Qiu Chu
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University and VA Portland Health Care System, Portland, OR, United States
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
6
|
Kang N, Liu X, You X, Sun W, Haneef K, Sun X, Liu W. Aberrant B-Cell Activation in Systemic Lupus Erythematosus. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:437-445. [PMID: 36590680 PMCID: PMC9798842 DOI: 10.1159/000527213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/07/2022] [Indexed: 11/05/2022]
Abstract
Background B lymphocytes (B cells) are essential in humoral response, and their activation is an important first step for the production of antibodies. However, aberrant B-cell activation is common in the development and progression of autoimmune diseases including systemic lupus erythematosus (SLE), which is characterized by the generation of superfluous autoantibodies. SLE exhibits clinical manifestation such as excessive inflammation and tissue damage. This review aims to summarize the recent emerging studies on aberrant B-cell activation and the associated concurrent therapeutic targets in SLE. Summary Aberrant B-cell activation is closely associated with the pathogenesis of SLE. Among a variety of mechanisms, dysregulations of B-cell receptor (BCR), toll-like receptor (TLR), and B-cell activating factor receptor (BAFF-R) pathways are the common and dominating factors involved in aberrant B-cell activation. These aberrant signaling transductions play diverse and integrated roles in the development and the pathogenesis of SLE. Therapies targeting aberrant B-cell activation have shown promising efficacy in achieving the clinical alleviation of SLE, suggesting the discovery of new drug targets from these aberrant signaling pathways is imminent. Here, an integrated survey or review of published high-throughput sequencing database covering RNAs of B cells from SLE versus criteria-matched healthy controls highlights that reported signaling molecules in BCR pathway (VAV2, PLC-γ2), TLR pathway (TLR9, P105, IRF7, TAB1), and BAFF-R pathway (SDF-1α) are attitudinally upregulated in SLE patients. This review thus suggests the concurrent and future therapeutic targets and potential biomarkers in both basic and clinical studies of SLE. Key Messages This review focuses on core B-cell signaling pathways, discussing the progress in the role of aberrant B-cell activation during the pathogenesis of SLE. This review also highlights the signaling molecules from published studies and database for the possible prevention and treatment targets serving the future clinical treatments of SLE.
Collapse
Affiliation(s)
- Na Kang
- Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xiaohang Liu
- Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xujie You
- Department of Rheumatology, National Centre for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Wenbo Sun
- Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Kabeer Haneef
- Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Beijing Key Lab for Rheumatism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Wanli Liu
- Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
7
|
Saber MM, Monir N, Awad AS, Elsherbiny ME, Zaki HF. TLR9: A friend or a foe. Life Sci 2022; 307:120874. [PMID: 35963302 DOI: 10.1016/j.lfs.2022.120874] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 10/15/2022]
Abstract
The innate immune system is a primary protective line in our body. It confers its protection through different pattern recognition receptors (PRRs), especially toll like receptors (TLRs). Toll like receptor 9 (TLR9) is an intracellular TLR, expressed in different immunological and non-immunological cells. Release of cellular components, such as proteins, nucleotides, and DNA confers a beneficial inflammatory response and maintains homeostasis for removing cellular debris during normal physiological conditions. However, during pathological cellular damage and stress signals, engagement between mtDNA and TLR9 acts as an alarm for starting inflammatory and autoimmune disorders. The controversial role of TLR9 in different diseases baffled scientists if it has a protective or deleterious effect after activation during insults. Targeting the immune system, especially the TLR9 needs further investigation to provide a therapeutic strategy to control inflammation and autoimmune disorders.
Collapse
Affiliation(s)
- Mona M Saber
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt.
| | - Nada Monir
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Azza S Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Marwa E Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| |
Collapse
|
8
|
Han VX, Jones HF, Patel S, Mohammad SS, Hofer MJ, Alshammery S, Maple-Brown E, Gold W, Brilot F, Dale RC. Emerging evidence of Toll-like receptors as a putative pathway linking maternal inflammation and neurodevelopmental disorders in human offspring: A systematic review. Brain Behav Immun 2022; 99:91-105. [PMID: 34562595 DOI: 10.1016/j.bbi.2021.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/21/2021] [Accepted: 09/18/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammation is increasingly recognised to play a major role in gene-environment interactions in neurodevelopmental disorders (NDDs). The effects of aberrant immune responses to environmental stimuli in the mother and in the child can affect neuroimmune signalling that is central to brain development. Toll-like receptors (TLR) are the best known innate immune pattern and danger recognition sensors to various environmental threats. In animal models, maternal immune activation (MIA), secondary to inflammatory factors including maternal gestational infection, obesity, diabetes, and stress activate the TLR pathway in maternal blood, placenta, and fetal brain, which correlate with offspring neurobehavioral abnormalities. Given the central role of TLR activation in animal MIA models, we systematically reviewed the human evidence for TLR activation and response to stimulation across the maternal-fetal interface. Firstly, we included 59 TLR studies performed in peripheral blood of adults in general population (outside of pregnancy) with six chronic inflammatory factors which have epidemiological evidence for increased risk of offspring NDDs, namely, obesity, diabetes mellitus, depression, low socio-economic status, autoimmune diseases, and asthma. Secondly, eight TLR studies done in human pregnancies with chronic inflammatory factors, involving maternal blood, placenta, and cord blood, were reviewed. Lastly, ten TLR studies performed in peripheral blood of individuals with NDDs were included. Despite these studies, there were no studies which examined TLR function in both the pregnant mother and their offspring. Increased TLR2 and TLR4 mRNA and/or protein levels in peripheral blood were common in obesity, diabetes mellitus, depression, autoimmune thyroid disease, and rheumatoid arthritis. To a lesser degree, TLR 3, 7, 8, and 9 activation were found in peripheral blood of humans with autoimmune diseases and depression. In pregnancy, increased TLR4 mRNA levels were found in the peripheral blood of women with diabetes mellitus and systemic lupus erythematosus. Placental TLR activation was found in mothers with obesity or diabetes. Postnatally, dysregulated TLR response to stimulation was found in peripheral blood of individuals with NDDs. This systematic review found emerging evidence that TLR activation may represent a mechanistic link between maternal inflammation and offspring NDD, however the literature is incomplete and longitudinal outcome studies are lacking. Identification of pathogenic mechanisms in MIA could create preventive and therapeutic opportunities to mitigate NDD prevalence and severity.
Collapse
Affiliation(s)
- Velda X Han
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Khoo-Teck Puat-National University Children's Medical Institute, National University Health System, Singapore; School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Hannah F Jones
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Department of Neuroservices, Starship Children's Hospital, Auckland, New Zealand
| | - Shrujna Patel
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Shekeeb S Mohammad
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Markus J Hofer
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, Sydney, Australia; The Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Sarah Alshammery
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; School of Medical Sciences, The University of Sydney, Sydney, Australia; Molecular Neurobiology Research Laboratory, Kids Research, Children's Hospital at Westmead, and The Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Emma Maple-Brown
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; School of Medical Sciences, The University of Sydney, Sydney, Australia; Molecular Neurobiology Research Laboratory, Kids Research, Children's Hospital at Westmead, and The Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Wendy Gold
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Molecular Neurobiology Research Laboratory, Kids Research, Children's Hospital at Westmead, and The Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Fabienne Brilot
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; School of Medical Sciences, The University of Sydney, Sydney, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Molecular Neurobiology Research Laboratory, Kids Research, Children's Hospital at Westmead, and The Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Russell C Dale
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; The Brain and Mind Centre, The University of Sydney, Sydney, Australia.
| |
Collapse
|
9
|
Mohammed SA, Al Kady LM, Boghdadi GS, Dawa GA, Gerges MA, El Shafai MA. Immunogenetic Relationship of HLA-G 14 bp Insertion/Deletion Polymorphism and Toll-Like Receptor 9 with Systemic Lupus Erythematosus in Egyptian Patients: A Case-Control Study. Int J Gen Med 2022; 15:661-674. [PMID: 35082516 PMCID: PMC8785136 DOI: 10.2147/ijgm.s344376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/10/2022] [Indexed: 12/18/2022] Open
Abstract
Introduction The level of expression of the immunoregulatory human leukocyte antigen-G (HLA-G) has been suggested to play a role in the immunopathogenesis of systemic lupus erythematosus (SLE). A 14 bp insertion/deletion (ins/del) polymorphism in the 3ˊuntranslated region of HLA-G gene may influence the level of expression. The role of Toll-like receptor 9 (TLR9) in the pathogenesis of SLE has been highlighted. Data among Egyptian patients are quite limited. Purpose To detect the association of HLA-G 14 bp ins/del gene polymorphism with the susceptibility to SLE and to correlate TLR9 serum level with disease activity among Egyptian patients. Patients and Methods A case-control study that included 102 SLE female patients and 102 healthy matched volunteers as controls was carried out. Disease activity in patients was determined using the modified Systemic Lupus Erythematosus Disease Activity Index (SLEDAI). HLA-G 14 bp ins/del genotype was detected by polymerase chain reaction (PCR). TLR9 serum level was estimated using enzyme-linked immunosorbent assay (ELISA) technique. Results The ins/ins genotype was significantly increased among SLE patients compared to healthy subjects (58.8% vs 9.8%; odds ratio [OR] = 11.79, P < 0.001). The 14 bp ins allele was significantly more frequent in SLE patients than in healthy subjects (65.7% vs 27.9%, respectively) and significantly associated with an increased risk of SLE (OR 4.94, P < 0.001). The mean TLR9 serum level showed a significant increase in SLE patients compared to healthy subjects (397.04±137.86 vs 195.22±45.14 ng/L, p < 0.001) and was significantly associated with disease activity as well as to patients’ HLA-G genotypes (p < 0.001). Conclusion Among Egyptian population, HLA-G 14 bp ins/ins homozygous genotype and ins allele may constitute a potential risk for SLE susceptibility, while TLR9 serum level is significantly associated with disease activity.
Collapse
Affiliation(s)
- Shrouk A Mohammed
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Laila M Al Kady
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ghada S Boghdadi
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ghada A Dawa
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Marian A Gerges
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
- Correspondence: Marian A Gerges, Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt, Tel +20 1003819530, Email
| | - Maher A El Shafai
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
10
|
A Squalene-Based Nanoemulsion for Therapeutic Delivery of Resiquimod. Pharmaceutics 2021; 13:pharmaceutics13122060. [PMID: 34959344 PMCID: PMC8706843 DOI: 10.3390/pharmaceutics13122060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/03/2022] Open
Abstract
Agonists for toll-like receptors (TLRs) have shown promising activities against cancer. In the present study, a squalene-based nanoemulsion (NE) was loaded with resiquimod, a TLR7/8 agonist for therapeutic delivery. R848 NE was developed and characterized for long-term stability. In vitro and in vivo antitumor immunity of R848 NE were also evaluated in combination with SD-101, a CpG-containing TLR9 agonist. In vitro studies demonstrated strong long-term stability and immune responses to R848 NE. When combined with SD-101, strong antitumor activity was observed in MC38 murine colon carcinoma model with over 80% tumor growth inhibition. The combination treatment showed a 4-fold increase in systemic TNFa production and a 2.6-fold increase in Cd8a expression in tumor tissues, suggesting strong cell-mediated immune responses against the tumor. The treatment not only demonstrated a strong antitumor immunity by TLR7/8 and TLR9 activations but also induced PD-L1 upregulation in tumors, suggesting a potential therapeutic synergy with immune checkpoint inhibitors.
Collapse
|
11
|
Qiu Y, Zhou X, Liu Y, Tan S, Li Y. The Role of Sirtuin-1 in Immune Response and Systemic Lupus Erythematosus. Front Immunol 2021; 12:632383. [PMID: 33981300 PMCID: PMC8110204 DOI: 10.3389/fimmu.2021.632383] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a potentially fatal multisystem inflammatory chronic disorder, the etiology and pathogenesis of which remain unclear. The loss of immune tolerance in SLE patients contributes to the production of autoantibodies that attack multiple organs and tissues, such as the skin, joints, and kidneys. Immune cells play important roles in the occurrence and progression of SLE through amplified immune responses. Sirtuin-1 (SIRT1), an NAD+-dependent histone deacetylase, has been shown to be a pivotal regulator in various physiological processes, including cell differentiation, apoptosis, metabolism, aging, and immune responses, via modulation of different signaling pathways, such as the nuclear factor κ-light-chain-enhancer of activated B cells and activator protein 1 pathways. Recent studies have provided evidence that SIRT1 could be a regulatory element in the immune system, whose altered functions are likely relevant to SLE development. This review aims to illustrate the functions of SIRT1 in different types of immune cells and the potential roles of SIRT1 in the SLE pathogenesis and its therapeutic perspectives.
Collapse
Affiliation(s)
- Yueqi Qiu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xingyu Zhou
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Liu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Siqi Tan
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yaping Li
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Matsuda Y, Hiramitsu T, Li XK, Watanabe T. Characteristics of Immunoglobulin M Type Antibodies of Different Origins from the Immunologic and Clinical Viewpoints and Their Application in Controlling Antibody-Mediated Allograft Rejection. Pathogens 2020; 10:pathogens10010004. [PMID: 33374617 PMCID: PMC7822424 DOI: 10.3390/pathogens10010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 12/25/2022] Open
Abstract
Antibody-mediated allograft rejection (AMR) hinders patient prognosis after organ transplantation. Current studies concerning AMR have mainly focused on the diagnostic value of immunoglobulin G (IgG)-type donor-specific antihuman leukocyte antigen antibodies (DSAs), primarily because of their antigen specificity, whereas the clinical significance of immunoglobulin M (IgM)-type DSAs has not been thoroughly investigated in the context of organ transplantation because of their nonspecificity against antigens. Although consensus regarding the clinical significance and role of IgM antibodies is not clear, as discussed in this review, recent findings strongly suggest that they also have a huge potential in novel diagnostic as well as therapeutic application for the prevention of AMR. Most serum IgM antibodies are known to comprise natural antibodies with low affinity toward antigens, and this is derived from B-1 cells (innate B cells). However, some of the serum IgM-type antibodies reportedly also produced by B-2 cells (conventional B cells). The latter are known to have a high affinity for donor-specific antigens. In this review, we initially discuss how IgM-type antibodies of different origins participate in the pathology of various diseases, directly or through cell surface receptors, complement activation, or cytokine production. Then, we discuss the clinical applicability of B-1 and B-2 cell-derived IgM-type antibodies for controlling AMR with reference to the involvement of IgM antibodies in various pathological conditions.
Collapse
Affiliation(s)
- Yoshiko Matsuda
- Division of Transplant Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan;
- Department of Advanced Technology for Transplantation, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Correspondence:
| | - Takahisa Hiramitsu
- Department of Transplant and Endocrine Surgery, Nagoya Daini Red Cross-Hospital, Aichi 466-8650, Japan;
| | - Xiao-kang Li
- Division of Transplant Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan;
| | - Takeshi Watanabe
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan;
| |
Collapse
|
13
|
Immunity augmentation in Botia dario (Hamilton, 1822) through carotenoid: a dietary approach. Mol Biol Rep 2019; 46:5931-5939. [PMID: 31401780 DOI: 10.1007/s11033-019-05027-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/07/2019] [Indexed: 10/26/2022]
Abstract
The immunity and health status of ornamental fish is an important aspect, as they are kept in a confined environment and various stressful conditions which lead to depletion of overall colourful appearance and mortality. The carotenoids can act as immunity boosters in captive aquarium system and may be supplemented in the feed as aquarium fish have no access to natural carotenoids. The study aimed to assess the role of carotenoid on the immunity of B. dario. Marigold petal meal is an important source of carotenoids and used in experimental diets. Four immunogenes namely IL20, TLR9, TRAIL, and Nramp in B. dario were characterized and also studied for their relative expression in the kidney after feeding the fish with marigold petal meal supplemented diet. The expression pattern of the genes was compared with the fish of nature. The IL20 and Nramp gene were upregulated significantly (p < 0.05) in the fish of nature as compared to the experimental fish at the 60th day of feeding carotenoid-rich diet. But the TLR9 and TRAIL gene was upregulated significantly (p < 0.05) in experimental fish as compared to nature. The haematological parameters of fish after feeding with the experimental enriched diet for 60 days also confirmed the role of carotenoids in immunity.
Collapse
|
14
|
Yuan Y, Zhao L, Ye Z, Ma H, Wang X, Jiang Z. Association of toll-like receptor 9 expression with prognosis of systemic lupus erythematosus. Exp Ther Med 2019; 17:3247-3254. [PMID: 30937000 DOI: 10.3892/etm.2019.7290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 07/20/2017] [Indexed: 11/05/2022] Open
Abstract
The current study assessed the association between toll-like receptor 9 (TLR9) and systemic lupus erythematosus (SLE) and subsequently determined the predictive value of TLR9 in assessing the prognosis of SLE. A total of 90 newly diagnosed patients with SLE and 49 healthy control subjects were enrolled in the current study. The expression of TLR9 mRNA was measured in whole blood samples from patients and controls. All patients were followed up for ≥2 years and their clinical parameters were recorded. After 2 years, 30 patients were randomly chosen from patient subgroups with high (n=20) or low (n=10) TLR9 levels and the expression of TLR9 mRNA were measured again. Cox proportional hazards regression was used to identify the risk factors of SLE prognosis. Patients with SLE and high SLE disease activity exhibited significantly increased TLR9 expression (P<0.05). Persistent proteinuria of >0.5 g/day [hazard ratio (HR), 6.314; 95% confidence interval (CI), 2.858-13.947], C-reactive protein levels (HR, 1.013; 95% CI, 1.007-1.019) and high-TLR9 mRNA expression (HR, 3.852; 95% CI, 1.931-7.684) were independent risk factors of poor prognosis during a 2-year follow-up period, whereas patient treatment with >1 immunosuppressant (HR, 0.374; 95% CI, 0.173-0.808) was a factor indicating favorable prognosis. Furthermore, the expression of TLR9 mRNA remained high in patients with poor prognosis at the end of a 2-year follow-up period but in patients with a favorable prognosis, TLR9 mRNA expression was significantly reduced compared with the levels measured at SLE onset (P<0.0001). Therefore, the expression of TLR9 mRNA in whole blood samples at SLE onset is associated with SLE disease activity and its expression may be used as an indicator of poor prognosis in patients with SLE.
Collapse
Affiliation(s)
- Yi Yuan
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China.,Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ling Zhao
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhuang Ye
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hongshuang Ma
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaosong Wang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhenyu Jiang
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
15
|
Molecular mechanisms of glucocorticoid resistance in systemic lupus erythematosus: A review. Life Sci 2018; 209:383-387. [PMID: 30125579 DOI: 10.1016/j.lfs.2018.08.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/14/2018] [Accepted: 08/14/2018] [Indexed: 12/23/2022]
Abstract
The treatment of systemic lupus erythematosus (SLE) with glucocorticoids (GCs) is quite effective; however, GC resistance or insensitivity is a major barrier to the treatment of SLE. Therefore, it is necessary to identify the underlying mechanisms that lead to GC resistance. Much evidence shows that the mechanism of GC resistance is very complicated. GC receptor is involved in the main mechanism of GC resistance and was illustrated by a lot of literature. Therefore, this paper focuses on the GC resistance mechanisms of non-glucocorticoids receptor, including P-gp, MIF, TLR9, and Th17 cells. These molecular mechanisms may help diagnose GC resistance and provide an alternative treatment strategy to reverse GC resistance by blocking the underlying mechanisms.
Collapse
|
16
|
Wang Q, Yan C, Xin M, Han L, Zhang Y, Sun M. Sirtuin 1 (Sirt1) Overexpression in BaF3 Cells Contributes to Cell Proliferation Promotion, Apoptosis Resistance and Pro-Inflammatory Cytokine Production. Med Sci Monit 2017; 23:1477-1482. [PMID: 28346398 PMCID: PMC5380195 DOI: 10.12659/msm.900754] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background B lymphocyte hyperactivity is a main characteristic of systemic lupus erythematosus (SLE), and B lymphocytes play a prominent pathogenic role in the development and progression of SLE. The aim of this study was to investigate the role of Sirtuin 1 (Sirt1) in B lymphocytes. Material/Methods Mouse B lymphocytes BaF3 was transfected with Sirt1 vector or shRNA against Sirt1. Then the transfected cells viability and apoptosis were respectively determined by MTT assay and flow cytometry. In addition, the mRNA levels of three pro-inflammatory cytokines and p53 were detected by RT-PCR. Furthermore, the expression levels of nuclear factor-kappa B (NF-κB) pathway proteins were measured by Western blot. Results Overexpression of Sirt1 significantly increased cell proliferation (p<0.05 or p<0.01) and significantly suppressed apoptosis (p<0.05). The mRNA level expressions of interleukin 1 (IL-1), IL-6, and tumor necrosis factor-α (TNF-α) were significantly upregulated (p<0.05 or p<0.01), whereas p53 was significantly downregulated (p<0.05) by Sirt1 overexpression. In addition, the inhibitory subunit of NF-κB (IκBα) and p65 were significantly activated and phosphorylated (p<0.01 or p<0.001), and B-Cell CLL/Lymphoma 3 (Bcl-3) was significantly upregulated (p<0.05) by Sirt1 overexpression. Conclusions These results suggested that Sirt1 overexpression could promote BaF3 cell proliferation, inhibit apoptosis, and upregulate pro-inflammatory cytokines. The NF-κB pathway might be involved in these effects of Sirt1 on BaF3 cells, and Sirt1 might be a potential risk factor of SLE.
Collapse
Affiliation(s)
- Qian Wang
- Department of Rheumatology and Clinical Immunology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Chao Yan
- Department of Rheumatology, Qilu Hospital of Shandong University (Qingdao Branch), Qingdao, Shandong, China (mainland)
| | - Miaomiao Xin
- Department of Rheumatology and Clinical Immunology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Li Han
- Department of Rheumatology and Clinical Immunology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Yunqing Zhang
- Department of Rheumatology, Qilu Hospital of Shandong University (Qingdao Branch), Qingdao, Shandong, China (mainland)
| | - Mingshu Sun
- Department of Rheumatology and Clinical Immunology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| |
Collapse
|