1
|
Edwards W, Bussey OK, Conlon FL. The Tbx20-TLE interaction is essential for the maintenance of the second heart field. Development 2023; 150:dev201677. [PMID: 37756602 PMCID: PMC10629681 DOI: 10.1242/dev.201677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
T-box transcription factor 20 (Tbx20) plays a multifaceted role in cardiac morphogenesis and controls a broad gene regulatory network. However, the mechanism by which Tbx20 activates and represses target genes in a tissue-specific and temporal manner remains unclear. Studies show that Tbx20 directly interacts with the Transducin-like Enhancer of Split (TLE) family of proteins to mediate transcriptional repression. However, a function for the Tbx20-TLE transcriptional repression complex during heart development has yet to be established. We created a mouse model with a two amino acid substitution in the Tbx20 EH1 domain, thereby disrupting the Tbx20-TLE interaction. Disruption of this interaction impaired crucial morphogenic events, including cardiac looping and chamber formation. Transcriptional profiling of Tbx20EH1Mut hearts and analysis of putative direct targets revealed misexpression of the retinoic acid pathway and cardiac progenitor genes. Further, we show that altered cardiac progenitor development and function contribute to the severe cardiac defects in our model. Our studies indicate that TLE-mediated repression is a primary mechanism by which Tbx20 controls gene expression.
Collapse
Affiliation(s)
- Whitney Edwards
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological & Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Olivia K. Bussey
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological & Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Frank L. Conlon
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological & Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Taha M, Awny N, Ismail S, Ashaat EA, Senousy MA. Screening and evaluation of TBX20 and CITED2 mutations in children with congenital cardiac septal defects: Correlation with cardiac troponin T and caspase-3. Gene 2023; 882:147660. [PMID: 37481008 DOI: 10.1016/j.gene.2023.147660] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Congenital cardiac septal defect (CCSD) is the main type of congenital heart disease and owns a very high mortality rate among newborns. CCSD is controlled by specific transcription factors, including T-box transcription factor 20 (TBX20) and Cbp/P300 interacting transactivator with Glu/Asp rich carboxy-terminal domain 2 (CITED2) which are key molecular actors in heart development. Here, we screened for mutations in TBX20 and CITED2 genes in Egyptian children with CCSD and assessed their association with CCSD susceptibility and with cardiac troponin T (cTnT) and the apoptotic marker caspase-3 as biochemical markers for CCSD. Thirty unrelated newborns and children affected with CCSD and 30 matched healthy controls with no personal history of cardiac diseases were recruited. Selection criteria were children (<18 years) with any age diagnosed with CCSD using ECHO. Mutational analysis and genotyping were done using PCR-Sanger DNA sequencing technique. Serum cTnT and caspase-3 were analyzed using ELISA. Sequencing analysis identified 2 TBX20 variants (c.766T>C and c.39T>C) in the CCSD and control groups and 2 CITED2 variants (c.12T>C and c.9C>T) in one CCSD patient, while were absent in controls. In silico analysis identified TBX20 c.766T>C (rs3999941) as a missense (F256L) pathogenic variant and the other three variants as synonymous and benign. Compared with controls, TBX20 c.766T>C TC genotype and minor C allele were candidate high-risk factors for CCSD. Besides, serum cTnT and caspase-3 were dramatically elevated in CCSD children compared to controls. TBX20 c.766T>C TC genotype was associated with high cTnT in CCSD children. Conclusively, we advocate TBX20 c.766T>C variant as a potential genetic marker for CCSD which might associate with high cTnT levels. CITED2 genetic variants might have rare incidence among Egyptian CCSD children. Serum cTnT and caspase-3 are useful markers for ascertaining CCSD in children. These data could be exploited in prenatal genetic counseling, pre-implantation genotyping, and therapy of CCSD.
Collapse
Affiliation(s)
- Mohamed Taha
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Nourhan Awny
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Giza, Egypt
| | - Somaia Ismail
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Giza, Egypt
| | - Engy A Ashaat
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Giza, Egypt
| | - Mahmoud A Senousy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo 11786, Egypt
| |
Collapse
|
3
|
Chaithra S, Agarwala S, Ramachandra NB. High-risk genes involved in common septal defects of congenital heart disease. Gene 2022; 840:146745. [PMID: 35863714 DOI: 10.1016/j.gene.2022.146745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/21/2022] [Accepted: 07/14/2022] [Indexed: 11/04/2022]
Abstract
The septation defect is one of the main categories of congenital heart disease (CHD). They can affect the septation of the atria leading to atrial septal defect (ASD), septation of ventricles leading to ventricular septal defect (VSD), and formation of the central part of the heart leading to atrioventricular septal defect (AVSD). Disruption of critical genetic factors involved in the proper development of the heart structure leads to CHD manifestation. Because of this, to identify the high-risk genes involved in common septal defects, a comprehensive search of the literature with the help of databases and the WebGestalt analysis tool was performed. The high-risk genes identified in the analysis were checked in 16 Indian whole-exome sequenced samples, including 13 VSD and three Tetralogy of Fallot for in silico validation. This data revealed three variations in GATA4, i.e., c.C1223A at exon 6: c.C602A and c.C1220A at exon 7; and one variation in MYH6, i.e., c.G3883C at exon 28 in two VSD cases. This study supports previously published studies that suggested GATA4 and MYH6 as the high-risk genes responsible for septal defects. Thus, this study contributes to a better understanding of the genes involved in heart development by identifying the high-risk genes and interacting proteins in the pathway.
Collapse
Affiliation(s)
- S Chaithra
- Department of Studies in Genetics and Genomics, University of Mysore, Manasagangotri, Mysuru 570 006, India
| | - Swati Agarwala
- Department of Studies in Genetics and Genomics, University of Mysore, Manasagangotri, Mysuru 570 006, India
| | - N B Ramachandra
- Department of Studies in Genetics and Genomics, University of Mysore, Manasagangotri, Mysuru 570 006, India.
| |
Collapse
|
4
|
Wang E, Fan X, Nie Y, Zheng Z, Hu S. Single-Nucleotide Polymorphisms in Exonic and Promoter Regions of Transcription Factors of Second Heart Field Associated with Sporadic Congenital Cardiac Anomalies. Balkan J Med Genet 2021; 24:39-47. [PMID: 36249516 PMCID: PMC9524169 DOI: 10.2478/bjmg-2021-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multiple second heart field (SHF) transcription factors are involved in cardiac development. In this article we evaluate the relationship between SHF transcription factor polymorphisms and congenital heart disease (CHD). Ten polymorphisms were used for genotyping, and three of these were used for the luciferase assay. The risk of CHD was increased 4.31 times and 1.54 times in the C allele of GATA5: rs6061243 G>C and G allele of TBX20: rs336283 A>G, respectively. The minor alleles of SMYD1: rs1542088 T>G, MEF2C: rs80043958 A>G and GATA5: rs6587239 T>C increased the risk of the simple types of CHD. The minor alleles of GATA5: rs41305803 G>A and MEF2C: rs304154 A>G increased the risk of tetralogy of Fallot (TOF). The minor alleles of TBX20: rs336284 A>G and SMYD1: rs88387557 T>G only increased the risk of a single ventricle (SV). Luciferase assays revealed that the minor alleles of rs304154 and rs336284 decreased the transcriptional levels of MEF2C and TBX20, respectively (p<0.01). When combined with HLTF, the G promoter showed a higher expression level than the A promoter in rs80043958 (p<0.01). Our findings suggest that minor alleles of SNPs in the exonic and promoter regions of transcription factors in the SHF can increase the risks of sporadic CHD.
Collapse
Affiliation(s)
- E Wang
- Cardiac Surgery Department, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - X Fan
- Clinical Laboratory Center, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing, 100029, China
| | - Y Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Z Zheng
- Cardiac Surgery Department, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - S Hu
- Cardiac Surgery Department, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| |
Collapse
|
5
|
Boogerd CJ, Zhu X, Aneas I, Sakabe N, Zhang L, Sobreira DR, Montefiori L, Bogomolovas J, Joslin AC, Zhou B, Chen J, Nobrega MA, Evans SM. Tbx20 Is Required in Mid-Gestation Cardiomyocytes and Plays a Central Role in Atrial Development. Circ Res 2019; 123:428-442. [PMID: 29903739 PMCID: PMC6092109 DOI: 10.1161/circresaha.118.311339] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Supplemental Digital Content is available in the text. Rationale: Mutations in the transcription factor TBX20 (T-box 20) are associated with congenital heart disease. Germline ablation of Tbx20 results in abnormal heart development and embryonic lethality by embryonic day 9.5. Because Tbx20 is expressed in multiple cell lineages required for myocardial development, including pharyngeal endoderm, cardiogenic mesoderm, endocardium, and myocardium, the cell type–specific requirement for TBX20 in early myocardial development remains to be explored. Objective: Here, we investigated roles of TBX20 in midgestation cardiomyocytes for heart development. Methods and Results: Ablation of Tbx20 from developing cardiomyocytes using a doxycycline inducible cTnTCre transgene led to embryonic lethality. The circumference of developing ventricular and atrial chambers, and in particular that of prospective left atrium, was significantly reduced in Tbx20 conditional knockout mutants. Cell cycle analysis demonstrated reduced proliferation of Tbx20 mutant cardiomyocytes and their arrest at the G1-S phase transition. Genome-wide transcriptome analysis of mutant cardiomyocytes revealed differential expression of multiple genes critical for cell cycle regulation. Moreover, atrial and ventricular gene programs seemed to be aberrantly regulated. Putative direct TBX20 targets were identified using TBX20 ChIP-Seq (chromatin immunoprecipitation with high throughput sequencing) from embryonic heart and included key cell cycle genes and atrial and ventricular specific genes. Notably, TBX20 bound a conserved enhancer for a gene key to atrial development and identity, COUP-TFII/Nr2f2 (chicken ovalbumin upstream promoter transcription factor 2/nuclear receptor subfamily 2, group F, member 2). This enhancer interacted with the NR2F2 promoter in human cardiomyocytes and conferred atrial specific gene expression in a transgenic mouse in a TBX20-dependent manner. Conclusions: Myocardial TBX20 directly regulates a subset of genes required for fetal cardiomyocyte proliferation, including those required for the G1-S transition. TBX20 also directly downregulates progenitor-specific genes and, in addition to regulating genes that specify chamber versus nonchamber myocardium, directly activates genes required for establishment or maintenance of atrial and ventricular identity. TBX20 plays a previously unappreciated key role in atrial development through direct regulation of an evolutionarily conserved COUPT-FII enhancer.
Collapse
Affiliation(s)
- Cornelis J. Boogerd
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences (C.J.B., X.Z., L.Z., S.M.E.)
| | - Xiaoming Zhu
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences (C.J.B., X.Z., L.Z., S.M.E.)
| | - Ivy Aneas
- University of California, San Diego, La Jolla; Department of Human Genetics, University of Chicago, IL (I.A., N.S., D.R.S., L.M., A.C.J., M.A.N.)
| | - Noboru Sakabe
- University of California, San Diego, La Jolla; Department of Human Genetics, University of Chicago, IL (I.A., N.S., D.R.S., L.M., A.C.J., M.A.N.)
| | - Lunfeng Zhang
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences (C.J.B., X.Z., L.Z., S.M.E.)
| | - Debora R. Sobreira
- University of California, San Diego, La Jolla; Department of Human Genetics, University of Chicago, IL (I.A., N.S., D.R.S., L.M., A.C.J., M.A.N.)
| | - Lindsey Montefiori
- University of California, San Diego, La Jolla; Department of Human Genetics, University of Chicago, IL (I.A., N.S., D.R.S., L.M., A.C.J., M.A.N.)
| | - Julius Bogomolovas
- Department of Medicine (J.B., J.C., S.M.E.)
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J.B.)
| | - Amelia C. Joslin
- University of California, San Diego, La Jolla; Department of Human Genetics, University of Chicago, IL (I.A., N.S., D.R.S., L.M., A.C.J., M.A.N.)
| | - Bin Zhou
- Department of Genetics, Medicine and Pediatrics, Albert Einstein College of Medicine of Yeshiva University, New York, NY (B.Z.)
| | - Ju Chen
- Department of Medicine (J.B., J.C., S.M.E.)
| | - Marcelo A. Nobrega
- University of California, San Diego, La Jolla; Department of Human Genetics, University of Chicago, IL (I.A., N.S., D.R.S., L.M., A.C.J., M.A.N.)
| | - Sylvia M. Evans
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences (C.J.B., X.Z., L.Z., S.M.E.)
- Department of Medicine (J.B., J.C., S.M.E.)
- Department of Pharmacology (S.M.E.)
| |
Collapse
|
6
|
Guo B, Xiao J, Li L, Wang S, Wang L, Liu S. Clinical study of prenatal ultrasonography combined with T‑box transcription factor 1 as a biomarker for the diagnosis of congenital heart disease. Mol Med Rep 2018; 17:7346-7350. [PMID: 29568912 DOI: 10.3892/mmr.2018.8742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 05/18/2017] [Indexed: 11/05/2022] Open
Abstract
Congenital heart disease (CHD) seriously threatens fetal health. Therefore, prenatal examination to detect deformity is extremely important. The present study aimed to investigate the clinical application value of prenatal ultrasonography combined with molecular biology methods in the diagnosis of fetal CHD. A total of 1,000 pregnant women who had received fetal ultrasonography to examine fetal CHD were enrolled. Ultrasounds were performed for fetal heart examination and diagnosis, mainly on fetal heart position, size, structure and function, and heart valve morphology and function. These indexes were tested again 2 weeks after birth. Blood samples were collected from pregnant women with fetal CHD. Polymerase chain reaction (PCR) and western blotting were performed to detect the association between heart development and T‑box transcription factor 1 (TBX1) expression. The results revealed that 10 fetuses had CHD (1%), of which ultrasound detected 9 cases. The specificity and sensitivity of ultrasounds were 100 and 90%, respectively. Of the 9 cases were identified by prenatal ultrasound screening, including 2 cases had endocardial cushion defect, 1 case had pulmonary stenosis combined with right ventricular dysplasia, 1 case had tetralogy of Fallot combined with a cleft lip and palate, 2 cases had ventricular septal defect, 1 case had a single ventricle defect, 1 case had Ebstein and 1 case had a triatrial heart. One case of ventricular septal defect was missed prior to delivery. PCR and western blotting demonstrated that TBX1 expression may be associated with CHD. Therefore, ultrasonography combined with laboratory examinations represent efficient, economic and safe methods for fetal CHD detection. These methods may be significant to improve the rate of CHD diagnosis, and require further investigation.
Collapse
Affiliation(s)
- Bingcheng Guo
- Department of Ultrasound, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Jing Xiao
- Department of Ultrasound, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Long Li
- Department of Ultrasound, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Shuanglong Wang
- Department of Ultrasound, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Lijuan Wang
- Department of Ultrasound, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Shuyong Liu
- Department of Hand and Foot Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
7
|
Huang RT, Wang J, Xue S, Qiu XB, Shi HY, Li RG, Qu XK, Yang XX, Liu H, Li N, Li YJ, Xu YJ, Yang YQ. TBX20 loss-of-function mutation responsible for familial tetralogy of Fallot or sporadic persistent truncus arteriosus. Int J Med Sci 2017; 14:323-332. [PMID: 28553164 PMCID: PMC5436474 DOI: 10.7150/ijms.17834] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022] Open
Abstract
Congenital heart disease (CHD), the most common form of developmental abnormality in humans, remains a leading cause of morbidity and mortality in neonates. Genetic defects have been recognized as the predominant causes of CHD. Nevertheless, CHD is of substantial genetic heterogeneity and the genetic defects underlying CHD in most cases remain unclear. In the current study, the coding regions and splicing junction sites of the TBX20 gene, which encodes a T-box transcription factor key to cardiovascular morphogenesis, were sequenced in 175 unrelated patients with CHD, and a novel heterozygous TBX20 mutation, p.K274X, was identified in an index patient with tetralogy of Fallot (TOF). Genetic analysis of the proband's available family members showed that his father, elder brother and son had also TOF. In addition, his father and elder brother had also atrial septal defect, and his niece had persistent truncus arteriosus and ventricular septal defect. Analysis of the pedigree revealed that the mutation co-segregated with CHD transmitted in an autosomal dominant fashion, with complete penetrance. The nonsense mutation, which was absent in the 800 control chromosomes, was predicted to produce a truncated protein with only the amino terminus and partial T-box domain left. Functional analyses by using a dual-luciferase reporter assay system showed that the mutant TBX20 lost the ability to transactivate the target gene ANF. Furthermore, the mutation reduced the synergistic activation between TBX20 and NKX2.5 as well as GATA4, two other transcriptional factors previously associated with various CHD, encompassing TOF. This study firstly links TBX20 loss-of-function mutation to familial TOF or sporadic persistent truncus arteriosus, providing novel insight into the molecular pathogenesis of CHD.
Collapse
Affiliation(s)
- Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China
| | - Juan Wang
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Hong-Yu Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Xin-Kai Qu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Xiao-Xiao Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Hua Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Ning Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Yan-Jie Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
- Department of Cardiovascular Research Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| |
Collapse
|
8
|
Repair Injured Heart by Regulating Cardiac Regenerative Signals. Stem Cells Int 2016; 2016:6193419. [PMID: 27799944 PMCID: PMC5075315 DOI: 10.1155/2016/6193419] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 01/10/2023] Open
Abstract
Cardiac regeneration is a homeostatic cardiogenic process by which the sections of malfunctioning adult cardiovascular tissues are repaired and renewed employing a combination of both cardiomyogenesis and angiogenesis. Unfortunately, while high-quality regeneration can be performed in amphibians and zebrafish hearts, mammalian hearts do not respond in kind. Indeed, a long-term loss of proliferative capacity in mammalian adult cardiomyocytes in combination with dysregulated induction of tissue fibrosis impairs mammalian endogenous heart regenerative capacity, leading to deleterious cardiac remodeling at the end stage of heart failure. Interestingly, several studies have demonstrated that cardiomyocyte proliferation capacity is retained in mammals very soon after birth, and cardiac regeneration potential is correspondingly preserved in some preadolescent vertebrates after myocardial infarction. There is therefore great interest in uncovering the molecular mechanisms that may allow heart regeneration during adult stages. This review will summarize recent findings on cardiac regenerative regulatory mechanisms, especially with respect to extracellular signals and intracellular pathways that may provide novel therapeutics for heart diseases. Particularly, both in vitro and in vivo experimental evidences will be presented to highlight the functional role of these signaling cascades in regulating cardiomyocyte proliferation, cardiomyocyte growth, and maturation, with special emphasis on their responses to heart tissue injury.
Collapse
|
9
|
CASZ1 loss-of-function mutation associated with congenital heart disease. Gene 2016; 595:62-68. [PMID: 27693370 DOI: 10.1016/j.gene.2016.09.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/21/2016] [Accepted: 09/27/2016] [Indexed: 11/23/2022]
Abstract
As the most common form of birth defect in humans, congenital heart disease (CHD) is associated with substantial morbidity and mortality in both children and adults. Increasing evidence demonstrates that genetic defects play a pivotal role in the pathogenesis of CHD. However, CHD is of great heterogeneity, and in an overwhelming majority of cases, the genetic determinants underpinning CHD remain elusive. In the present investigation, the coding exons and flanking introns of the CASZ1 gene, which codes for a zinc finger transcription factor essential for the cardiovascular morphogenesis, were sequenced in 172 unrelated patients with CHD. As a result, a novel heterozygous CASZ1 mutation, p.L38P, was identified in an index patient with congenital ventricular septal defect (VSD). Genetic scanning of the mutation carrier's available family members revealed that the mutation was present in all affected patients but absent in unaffected individuals. Analysis of the proband's pedigree showed that the mutation co-segregated with VSD, which was transmitted as an autosomal dominant trait with complete penetrance. The missense mutation, which altered the amino acid that was highly conserved evolutionarily, was absent in 200 unrelated, ethnically-matched healthy subjects used as controls. Functional deciphers by using a dual-luciferase reporter assay system unveiled that the mutant CASZ1 had significantly reduced transcriptional activity as compared with its wild-type counterpart. To the best of our knowledge, the current study firstly identifies CASZ1 as a new gene predisposing to CHD in humans, which provides novel insight into the molecular mechanisms underlying CHD and a potential therapeutic target for CASZ1-associated CHD, suggesting potential implications for personalized prophylaxis and therapy of CHD.
Collapse
|
10
|
Zhou YM, Dai XY, Huang RT, Xue S, Xu YJ, Qiu XB, Yang YQ. A novel TBX20 loss-of-function mutation contributes to adult-onset dilated cardiomyopathy or congenital atrial septal defect. Mol Med Rep 2016; 14:3307-14. [DOI: 10.3892/mmr.2016.5609] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 07/22/2016] [Indexed: 11/06/2022] Open
|
11
|
Abstract
T-box (Tbx) genes encode an ancient group of transcription factors that play important roles in patterning, specification, proliferation, and differentiation programs in vertebrate organogenesis. This is testified by severe organ malformation syndromes in mice homozygous for engineered null alleles of specific T-box genes and by the large number of human inherited organ-specific diseases that have been linked to mutations in these genes. One of the organ systems that has not been associated with loss of specific T-box gene function in human disease for long is the excretory system. However, this has changed with the finding that mutations in TBX18, a member of a vertebrate-specific subgroup within the Tbx1-subfamily of T-box transcription factor genes, cause congenital anomalies of the kidney and urinary tract, predominantly hydroureter and ureteropelvic junction obstruction. Gene expression analyses, loss-of-function studies, and lineage tracing in the mouse suggest a primary role for this transcription factor in specifying the ureteric mesenchyme in the common anlage of the kidney, the ureter, and the bladder. We review the function of Tbx18 in ureterogenesis and discuss the body of evidence that Tbx18 and other members of the T-box gene family, namely, Tbx1, Tbx2, Tbx3, and Tbx20, play additional roles in development and homeostasis of other components of the excretory system in vertebrates.
Collapse
|
12
|
The Ultrasonic Microsurgical Anatomical Comparative Study of the CHD Fetuses and Their Clinical Significance. BIOMED RESEARCH INTERNATIONAL 2015; 2015:520394. [PMID: 26640788 PMCID: PMC4657069 DOI: 10.1155/2015/520394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/03/2015] [Accepted: 06/07/2015] [Indexed: 12/03/2022]
Abstract
The aim of our study was to increase the detection rate of fetal cardiac malformations for congenital heart disease (CHD). The ultrasonic and microanatomical methods were combined to study the CHD cases firstly, which could provide the microsurgical anatomical basis to the prenatal ultrasonic diagnosis which was used in suspected CHD and help the sonographer to improve the quality of fetal cardiac diagnosis. We established the ultrasonic standard section of the 175 complex CHD cases and collected the fetal echocardiography image files. The induced/aborted fetuses were fixed by 4% paraformaldehyde and dissected by the ultrasonic microsurgical anatomy. This research could obtain the fetal cardiac anatomic cross-sectional images which was consistent with the ultrasonic standard section and could clearly show the internal structure of the vascular malformation that optimized the ultrasound examination individually. This method could directly display the variation of the CHD fetal heart clearly and comprehensively help us to understand the complex fetal cardiac malformation from the internal structure of the vascular malformation which was consolidated by the anatomical basis of the fetal heart. This study could improve the integrity and accuracy of the prenatal cardiac ultrasound examination tremendously.
Collapse
|
13
|
Yoshida A, Morisaki H, Nakaji M, Kitano M, Kim KS, Sagawa K, Ishikawa S, Satokata I, Mitani Y, Kato H, Hamaoka K, Echigo S, Shiraishi I, Morisaki T. Genetic mutation analysis in Japanese patients with non-syndromic congenital heart disease. J Hum Genet 2015; 61:157-62. [DOI: 10.1038/jhg.2015.126] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/01/2015] [Accepted: 09/23/2015] [Indexed: 12/22/2022]
|