1
|
Zhu X, Ren J, Xu D, Cheng D, Wang W, Ren J, Xiao Z, Jiang H, Ding Y, Tan Y. Upregulation of Translationally Controlled Tumor Protein Is Associated With Cervical Cancer Progression. Front Mol Biosci 2021; 8:686718. [PMID: 34589516 PMCID: PMC8473787 DOI: 10.3389/fmolb.2021.686718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/11/2021] [Indexed: 12/24/2022] Open
Abstract
Outside a few affluent countries with adequate vaccination and screening coverage, cervical cancer remains the leading cause of cancer-related deaths in women in many countries. Currently, a major problem is that a substantial proportion of patients are already at an advanced cancer stage when diagnosed. There is increasing evidence that indicates the involvement of translationally controlled tumor protein 1 (TPT1) overexpression in cancer development, but little is known about its implication in cervical cancer. We assessed the levels of TPT1 in surgical tissue and sera of patients with cervicitis, cervical intraepithelial neoplasia III, and cervical cancer, as well as in normal and cancerous cervical cell lines. Gene sets, pathways, and functional protein interactions associated with TPT1 were identified using the TCGA data cohort of cervical cancer. We found that the TPT1 expression was significantly increased in cervical cancer tissue compared to all nonmalignant cervical tissues, including samples of cervicitis, cervical intraepithelial neoplasia III, and normal controls. Serum level of TPT1 was also increased in cervical cancer patients compared to healthy subjects. Furthermore, elevated TPT1 expression was significantly correlated with lymph node metastasis and a low differentiation degree of the cancer. In the cancerous tissues and cell lines, selective markers of PI3K/AKT/mTOR pathway over-activation, apoptosis repression, and EMT were detected, and their interaction with TPT1 was supported by biometrics analyses. Our results, for the first time, demonstrate a strong correlation of upregulated TPT1 expression with cervical cancer progression, suggesting that TPT1 might provide a potential biomarker for cervical cancer progression.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- School of Laboratory Medicine, Guizhou Medical University, Guiyang, China
| | - Ji Ren
- School of Laboratory Medicine, Guizhou Medical University, Guiyang, China
| | - Dianqin Xu
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Di Cheng
- Affiliated Oncology Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Wang
- Affiliated Oncology Hospital of Guizhou Medical University, Guiyang, China
| | - Jie Ren
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ziwen Xiao
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hongmei Jiang
- School of Laboratory Medicine, Guizhou Medical University, Guiyang, China
| | - Yan Ding
- Taihe Hospital, Affiliated to Hubei Medical University, Shiyan, China
| | - Yujie Tan
- School of Laboratory Medicine, Guizhou Medical University, Guiyang, China.,Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
2
|
AMG900 as novel inhibitor of the translationally controlled tumor protein. Chem Biol Interact 2020; 334:109349. [PMID: 33259807 DOI: 10.1016/j.cbi.2020.109349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/26/2020] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Cancer is one of the leading causes of death worldwide. Classical cytotoxic chemotherapy exerts high side effects and low tumor selectivity. Translationally controlled tumor protein (TCTP) is a target for differentiation therapy, a promising, new therapeutic approach, which is expected to be more selective and less toxic than cytotoxic chemotherapy. The aim of the present investigation was to identify novel TCTP inhibitors. METHODS We performed in silico screening and molecular docking using a chemical library of more than 31,000 compounds to identify a novel inhibitor of TCTP. We tested AMG900 in vitro for binding to TCTP by microscale thermophoresis and co-immunoprecipitation. Additionally, we examined the effect of TCTP blockade on cell cycle progression by flow cytometry and Western blotting and cancer cell survival by resazurin assays in MCF-7, SK-OV3 and MOLT-4 cell lines. RESULTS We identified AMG900 as new inhibitor of TCTP. AMG900 bound to the p53 binding site of TCTP with a free binding energy of -9.63 ± 0.01 kcal/mol. This compound decreased TCTP expression to 23.4 ± 1.59% and increased p53 expression to 194.29 ± 24.27%. Furthermore, AMG900 induced G0/G1 arrest as shown by flow cytometry and Western blot of relevant cell cycle proteins. AMG900 decreased CDK2, CDK4, CDK6, cyclin D1 and cyclin D3 expression, whereas p18, p21 and p27 expression increased. Moreover, AMG900 disturbed TCTP-p53 complexation as shown by co-immunoprecipitation and increased expression of free p53. DISCUSSION AMG900 may serve as novel lead compound for the development of differentiation therapy approaches against cancer.
Collapse
|
3
|
Boia-Ferreira M, Basílio AB, Hamasaki AE, Matsubara FH, Appel MH, Da Costa CRV, Amson R, Telerman A, Chaim OM, Veiga SS, Senff-Ribeiro A. TCTP as a therapeutic target in melanoma treatment. Br J Cancer 2017; 117:656-665. [PMID: 28751755 PMCID: PMC5572181 DOI: 10.1038/bjc.2017.230] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/27/2017] [Accepted: 06/23/2017] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Translationally controlled tumour protein (TCTP) is an antiapoptotic protein highly conserved through phylogeny. Translationally controlled tumour protein overexpression was detected in several tumour types. Silencing TCTP was shown to induce tumour reversion. There is a reciprocal repression between TCTP and P53. Sertraline interacts with TCTP and decreases its cellular levels. METHODS We evaluate the role of TCTP in melanoma using sertraline and siRNA. Cell viability, migration, and clonogenicity were assessed in human and murine melanoma cells in vitro. Sertraline was evaluated in a murine melanoma model and was compared with dacarbazine, a major chemotherapeutic agent used in melanoma treatment. RESULTS Inhibition of TCTP levels decreases melanoma cell viability, migration, clonogenicity, and in vivo tumour growth. Human melanoma cells treated with sertraline show diminished migration properties and capacity to form colonies. Sertraline was effective in inhibiting tumour growth in a murine melanoma model; its effect was stronger when compared with dacarbazine. CONCLUSIONS Altogether, these results indicate that sertraline could be effective against melanoma and TCTP can be a target for melanoma therapy.
Collapse
Affiliation(s)
- M Boia-Ferreira
- Department of Cell Biology, Centro Politécnico, Federal University of Paraná, UFPR, Jardim das Américas, CEP 81531-990, Curitiba, Paraná, Brazil
| | - A B Basílio
- Department of Cell Biology, Centro Politécnico, Federal University of Paraná, UFPR, Jardim das Américas, CEP 81531-990, Curitiba, Paraná, Brazil
| | - A E Hamasaki
- Department of Cell Biology, Centro Politécnico, Federal University of Paraná, UFPR, Jardim das Américas, CEP 81531-990, Curitiba, Paraná, Brazil
| | - F H Matsubara
- Department of Cell Biology, Centro Politécnico, Federal University of Paraná, UFPR, Jardim das Américas, CEP 81531-990, Curitiba, Paraná, Brazil
| | - M H Appel
- Department of Structural, Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - C R V Da Costa
- Department of Cell Biology, Centro Politécnico, Federal University of Paraná, UFPR, Jardim das Américas, CEP 81531-990, Curitiba, Paraná, Brazil
| | - R Amson
- Institute Gustave Roussy, Unité Inserm U981, Bâtiment B2M, Villejuif, France
| | - A Telerman
- Institute Gustave Roussy, Unité Inserm U981, Bâtiment B2M, Villejuif, France
| | - O M Chaim
- Department of Cell Biology, Centro Politécnico, Federal University of Paraná, UFPR, Jardim das Américas, CEP 81531-990, Curitiba, Paraná, Brazil
| | - S S Veiga
- Department of Cell Biology, Centro Politécnico, Federal University of Paraná, UFPR, Jardim das Américas, CEP 81531-990, Curitiba, Paraná, Brazil
| | - A Senff-Ribeiro
- Department of Cell Biology, Centro Politécnico, Federal University of Paraná, UFPR, Jardim das Américas, CEP 81531-990, Curitiba, Paraná, Brazil
| |
Collapse
|
4
|
Bommer UA. The Translational Controlled Tumour Protein TCTP: Biological Functions and Regulation. Results Probl Cell Differ 2017; 64:69-126. [PMID: 29149404 DOI: 10.1007/978-3-319-67591-6_4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Translational Controlled Tumour Protein TCTP (gene symbol TPT1, also called P21, P23, Q23, fortilin or histamine-releasing factor, HRF) is a highly conserved protein present in essentially all eukaryotic organisms and involved in many fundamental cell biological and disease processes. It was first discovered about 35 years ago, and it took an extended period of time for its multiple functions to be revealed, and even today we do not yet fully understand all the details. Having witnessed most of this history, in this chapter, I give a brief overview and review the current knowledge on the structure, biological functions, disease involvements and cellular regulation of this protein.TCTP is able to interact with a large number of other proteins and is therefore involved in many core cell biological processes, predominantly in the response to cellular stresses, such as oxidative stress, heat shock, genotoxic stress, imbalance of ion metabolism as well as other conditions. Mechanistically, TCTP acts as an anti-apoptotic protein, and it is involved in DNA-damage repair and in cellular autophagy. Thus, broadly speaking, TCTP can be considered a cytoprotective protein. In addition, TCTP facilitates cell division through stabilising the mitotic spindle and cell growth through modulating growth signalling pathways and through its interaction with the proteosynthetic machinery of the cell. Due to its activities, both as an anti-apoptotic protein and in promoting cell growth and division, TCTP is also essential in the early development of both animals and plants.Apart from its involvement in various biological processes at the cellular level, TCTP can also act as an extracellular protein and as such has been involved in modulating whole-body defence processes, namely in the mammalian immune system. Extracellular TCTP, typically in its dimerised form, is able to induce the release of cytokines and other signalling molecules from various types of immune cells. There are also several examples, where TCTP was shown to be involved in antiviral/antibacterial defence in lower animals. In plants, the protein appears to have a protective effect against phytotoxic stresses, such as flooding, draught, too high or low temperature, salt stress or exposure to heavy metals. The finding for the latter stress condition is corroborated by earlier reports that TCTP levels are considerably up-regulated upon exposure of earthworms to high levels of heavy metals.Given the involvement of TCTP in many biological processes aimed at maintaining cellular or whole-body homeostasis, it is not surprising that dysregulation of TCTP levels may promote a range of disease processes, foremost cancer. Indeed a large body of evidence now supports a role of TCTP in at least the most predominant types of human cancers. Typically, this can be ascribed to both the anti-apoptotic activity of the protein and to its function in promoting cell growth and division. However, TCTP also appears to be involved in the later stages of cancer progression, such as invasion and metastasis. Hence, high TCTP levels in tumour tissues are often associated with a poor patient outcome. Due to its multiple roles in cancer progression, TCTP has been proposed as a potential target for the development of new anti-cancer strategies in recent pilot studies. Apart from its role in cancer, TCTP dysregulation has been reported to contribute to certain processes in the development of diabetes, as well as in diseases associated with the cardiovascular system.Since cellular TCTP levels are highly regulated, e.g. in response to cell stress or to growth signalling, and because deregulation of this protein contributes to many disease processes, a detailed understanding of regulatory processes that impinge on TCTP levels is required. The last section of this chapter summarises our current knowledge on the mechanisms that may be involved in the regulation of TCTP levels. Essentially, expression of the TPT1 gene is regulated at both the transcriptional and the translational level, the latter being particularly advantageous when a rapid adjustment of cellular TCTP levels is required, for example in cell stress responses. Other regulatory mechanisms, such as protein stability regulation, may also contribute to the regulation of overall TCTP levels.
Collapse
Affiliation(s)
- Ulrich-Axel Bommer
- School of Medicine, Graduate Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|