1
|
Lin Q, Kumar S, Kariyawasam U, Yang X, Yang W, Skinner JT, Gao WD, Johns RA. Human Resistin Induces Cardiac Dysfunction in Pulmonary Hypertension. J Am Heart Assoc 2023; 12:e027621. [PMID: 36927008 PMCID: PMC10111547 DOI: 10.1161/jaha.122.027621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 03/18/2023]
Abstract
Background Cardiac failure is the primary cause of death in most patients with pulmonary arterial hypertension (PH). As pleiotropic cytokines, human resistin (Hresistin) and its rodent homolog, resistin-like molecule α, are mechanistically critical to pulmonary vascular remodeling in PH. However, it is still unclear whether activation of these resistin-like molecules can directly cause PH-associated cardiac dysfunction and remodeling. Methods and Results In this study, we detected Hresistin protein in right ventricular (RV) tissue of patients with PH and elevated resistin-like molecule expression in RV tissues of rodents with RV hypertrophy and failure. In a humanized mouse model, cardiac-specific Hresistin overexpression was sufficient to cause cardiac dysfunction and remodeling. Dilated hearts exhibited reduced force development and decreased intracellular Ca2+ transients. In the RV tissues overexpressing Hresistin, the impaired contractility was associated with the suppression of protein kinase A and AMP-activated protein kinase. Mechanistically, Hresistin activation triggered the inflammation mediated by signaling of the key damage-associated molecular pattern molecule high-mobility group box 1, and subsequently induced pro-proliferative Ki67 in RV tissues of the transgenic mice. Intriguingly, an anti-Hresistin human antibody that we generated protected the myocardium from hypertrophy and failure in the rodent PH models. Conclusions Our data indicate that Hresistin is expressed in heart tissues and plays a role in the development of RV dysfunction and maladaptive remodeling through its immunoregulatory activities. Targeting this signaling to modulate cardiac inflammation may offer a promising strategy to treat PH-associated RV hypertrophy and failure in humans.
Collapse
Affiliation(s)
- Qing Lin
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMD
| | - Santosh Kumar
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMD
| | - Udeshika Kariyawasam
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMD
| | - Xiaomei Yang
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMD
- Department of AnesthesiologyQilu Hospital, Cheeloo College of Medicine, Shandong UniversityJinanChina
| | - Wei Yang
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMD
- Department of Cardiovascular MedicineXiangya Hospital, Central South UniversityChangshaChina
| | - John T. Skinner
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMD
| | - Wei Dong Gao
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMD
| | - Roger A. Johns
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMD
| |
Collapse
|
2
|
Taverne YJHJ, Sadeghi A, Bartelds B, Bogers AJJC, Merkus D. Right ventricular phenotype, function, and failure: a journey from evolution to clinics. Heart Fail Rev 2020; 26:1447-1466. [PMID: 32556672 PMCID: PMC8510935 DOI: 10.1007/s10741-020-09982-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The right ventricle has long been perceived as the "low pressure bystander" of the left ventricle. Although the structure consists of, at first glance, the same cardiomyocytes as the left ventricle, it is in fact derived from a different set of precursor cells and has a complex three-dimensional anatomy and a very distinct contraction pattern. Mechanisms of right ventricular failure, its detection and follow-up, and more specific different responses to pressure versus volume overload are still incompletely understood. In order to fully comprehend right ventricular form and function, evolutionary biological entities that have led to the specifics of right ventricular physiology and morphology need to be addressed. Processes responsible for cardiac formation are based on very ancient cardiac lineages and within the first few weeks of fetal life, the human heart seems to repeat cardiac evolution. Furthermore, it appears that most cardiogenic signal pathways (if not all) act in combination with tissue-specific transcriptional cofactors to exert inductive responses reflecting an important expansion of ancestral regulatory genes throughout evolution and eventually cardiac complexity. Such molecular entities result in specific biomechanics of the RV that differs from that of the left ventricle. It is clear that sole descriptions of right ventricular contraction patterns (and LV contraction patterns for that matter) are futile and need to be addressed into a bigger multilayer three-dimensional picture. Therefore, we aim to present a complete picture from evolution, formation, and clinical presentation of right ventricular (mal)adaptation and failure on a molecular, cellular, biomechanical, and (patho)anatomical basis.
Collapse
Affiliation(s)
- Yannick J H J Taverne
- Department of Cardiothoracic Surgery, Erasmus University Medical Center, Room Rg627, Dr. Molewaterplein 40, 3015, GD, Rotterdam, The Netherlands. .,Division of Experimental Cardiology, Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands. .,Unit for Cardiac Morphology and Translational Electrophysiology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Amir Sadeghi
- Department of Cardiothoracic Surgery, Erasmus University Medical Center, Room Rg627, Dr. Molewaterplein 40, 3015, GD, Rotterdam, The Netherlands
| | - Beatrijs Bartelds
- Division of Pediatrics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ad J J C Bogers
- Department of Cardiothoracic Surgery, Erasmus University Medical Center, Room Rg627, Dr. Molewaterplein 40, 3015, GD, Rotterdam, The Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Hester J, Ventetuolo C, Lahm T. Sex, Gender, and Sex Hormones in Pulmonary Hypertension and Right Ventricular Failure. Compr Physiol 2019; 10:125-170. [PMID: 31853950 DOI: 10.1002/cphy.c190011] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pulmonary hypertension (PH) encompasses a syndrome of diseases that are characterized by elevated pulmonary artery pressure and pulmonary vascular remodeling and that frequently lead to right ventricular (RV) failure and death. Several types of PH exhibit sexually dimorphic features in disease penetrance, presentation, and progression. Most sexually dimorphic features in PH have been described in pulmonary arterial hypertension (PAH), a devastating and progressive pulmonary vasculopathy with a 3-year survival rate <60%. While patient registries show that women are more susceptible to development of PAH, female PAH patients display better RV function and increased survival compared to their male counterparts, a phenomenon referred to as the "estrogen paradox" or "estrogen puzzle" of PAH. Recent advances in the field have demonstrated that multiple sex hormones, receptors, and metabolites play a role in the estrogen puzzle and that the effects of hormone signaling may be time and compartment specific. While the underlying physiological mechanisms are complex, unraveling the estrogen puzzle may reveal novel therapeutic strategies to treat and reverse the effects of PAH/PH. In this article, we (i) review PH classification and pathophysiology; (ii) discuss sex/gender differences observed in patients and animal models; (iii) review sex hormone synthesis and metabolism; (iv) review in detail the scientific literature of sex hormone signaling in PAH/PH, particularly estrogen-, testosterone-, progesterone-, and dehydroepiandrosterone (DHEA)-mediated effects in the pulmonary vasculature and RV; (v) discuss hormone-independent variables contributing to sexually dimorphic disease presentation; and (vi) identify knowledge gaps and pathways forward. © 2020 American Physiological Society. Compr Physiol 10:125-170, 2020.
Collapse
Affiliation(s)
- James Hester
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Corey Ventetuolo
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Department of Health Services, Policy and Practice, Brown University School of Public Health, Providence, Rhode Island, USA
| | - Tim Lahm
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, Occupational and Sleep Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
4
|
Lin Q, Fan C, Gomez-Arroyo J, Van Raemdonck K, Meuchel LW, Skinner JT, Everett AD, Fang X, Macdonald AA, Yamaji-Kegan K, Johns RA. HIMF (Hypoxia-Induced Mitogenic Factor) Signaling Mediates the HMGB1 (High Mobility Group Box 1)-Dependent Endothelial and Smooth Muscle Cell Crosstalk in Pulmonary Hypertension. Arterioscler Thromb Vasc Biol 2019; 39:2505-2519. [PMID: 31597444 DOI: 10.1161/atvbaha.119.312907] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE HIMF (hypoxia-induced mitogenic factor; also known as FIZZ1 [found in inflammatory zone-1] or RELM [resistin-like molecule-α]) is an etiological factor of pulmonary hypertension (PH) in rodents, but its underlying mechanism is unclear. We investigated the immunomodulatory properties of HIMF signaling in PH pathogenesis. Approach and Results: Gene-modified mice that lacked HIMF (KO [knockout]) or overexpressed HIMF human homolog resistin (hResistin) were used for in vivo experiments. The pro-PH role of HIMF was verified in HIMF-KO mice exposed to chronic hypoxia or sugen/hypoxia. Mechanistically, HIMF/hResistin activation triggered the HMGB1 (high mobility group box 1) pathway and RAGE (receptor for advanced glycation end products) in pulmonary endothelial cells (ECs) of hypoxic mouse lungs in vivo and in human pulmonary microvascular ECs in vitro. Treatment with conditioned medium from hResistin-stimulated human pulmonary microvascular ECs induced an autophagic response, BMPR2 (bone morphogenetic protein receptor 2) defects, and subsequent apoptosis-resistant proliferation in human pulmonary artery (vascular) smooth muscle cells in an HMGB1-dependent manner. These effects were confirmed in ECs and smooth muscle cells isolated from pulmonary arteries of patients with idiopathic PH. HIMF/HMGB1/RAGE-mediated autophagy and BMPR2 impairment were also observed in pulmonary artery (vascular) smooth muscle cells of hypoxic mice, effects perhaps related to FoxO1 (forkhead box O1) dampening by HIMF. Experiments in EC-specific hResistin-overexpressing transgenic mice confirmed that EC-derived HMGB1 mediated the hResistin-driven pulmonary vascular remodeling and PH. CONCLUSIONS In HIMF-induced PH, HMGB1-RAGE signaling is pivotal for mediating EC-smooth muscle cell crosstalk. The humanized mouse data further support clinical implications for the HIMF/HMGB1 signaling axis and indicate that hResistin and its downstream pathway may constitute targets for the development of novel anti-PH therapeutics in humans.
Collapse
Affiliation(s)
- Qing Lin
- From the Department of Anesthesiology and Critical Care Medicine (Q.L., C.F., J.G.-A., K.V.R., L.W.M., J.T.S., X.F., A.A.M., K.Y.-K., R.A.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Chunling Fan
- From the Department of Anesthesiology and Critical Care Medicine (Q.L., C.F., J.G.-A., K.V.R., L.W.M., J.T.S., X.F., A.A.M., K.Y.-K., R.A.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jose Gomez-Arroyo
- From the Department of Anesthesiology and Critical Care Medicine (Q.L., C.F., J.G.-A., K.V.R., L.W.M., J.T.S., X.F., A.A.M., K.Y.-K., R.A.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Katrien Van Raemdonck
- From the Department of Anesthesiology and Critical Care Medicine (Q.L., C.F., J.G.-A., K.V.R., L.W.M., J.T.S., X.F., A.A.M., K.Y.-K., R.A.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lucas W Meuchel
- From the Department of Anesthesiology and Critical Care Medicine (Q.L., C.F., J.G.-A., K.V.R., L.W.M., J.T.S., X.F., A.A.M., K.Y.-K., R.A.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - John T Skinner
- From the Department of Anesthesiology and Critical Care Medicine (Q.L., C.F., J.G.-A., K.V.R., L.W.M., J.T.S., X.F., A.A.M., K.Y.-K., R.A.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Allen D Everett
- Division of Pediatric Cardiology, Department of Pediatrics (A.D.E.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Xia Fang
- From the Department of Anesthesiology and Critical Care Medicine (Q.L., C.F., J.G.-A., K.V.R., L.W.M., J.T.S., X.F., A.A.M., K.Y.-K., R.A.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Andrew A Macdonald
- From the Department of Anesthesiology and Critical Care Medicine (Q.L., C.F., J.G.-A., K.V.R., L.W.M., J.T.S., X.F., A.A.M., K.Y.-K., R.A.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kazuyo Yamaji-Kegan
- From the Department of Anesthesiology and Critical Care Medicine (Q.L., C.F., J.G.-A., K.V.R., L.W.M., J.T.S., X.F., A.A.M., K.Y.-K., R.A.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Roger A Johns
- From the Department of Anesthesiology and Critical Care Medicine (Q.L., C.F., J.G.-A., K.V.R., L.W.M., J.T.S., X.F., A.A.M., K.Y.-K., R.A.J.), Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
5
|
Tamosiuniene R, Manouvakhova O, Mesange P, Saito T, Qian J, Sanyal M, Lin YC, Nguyen LP, Luria A, Tu AB, Sante JM, Rabinovitch M, Fitzgerald DJ, Graham BB, Habtezion A, Voelkel NF, Aurelian L, Nicolls MR. Dominant Role for Regulatory T Cells in Protecting Females Against Pulmonary Hypertension. Circ Res 2018; 122:1689-1702. [PMID: 29545367 DOI: 10.1161/circresaha.117.312058] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 12/18/2022]
Abstract
RATIONALE Pulmonary arterial hypertension (PH) is a life-threatening condition associated with immune dysregulation and abnormal regulatory T cell (Treg) activity, but it is currently unknown whether and how abnormal Treg function differentially affects males and females. OBJECTIVE To evaluate whether and how Treg deficiency differentially affects male and female rats in experimental PH. METHODS AND RESULTS Male and female athymic rnu/rnu rats, lacking Tregs, were treated with the VEGFR2 (vascular endothelial growth factor receptor 2) inhibitor SU5416 or chronic hypoxia and evaluated for PH; some animals underwent Treg immune reconstitution before SU5416 administration. Plasma PGI2 (prostacyclin) levels were measured. Lung and right ventricles were assessed for the expression of the vasoprotective proteins COX-2 (cyclooxygenase 2), PTGIS (prostacyclin synthase), PDL-1 (programmed death ligand 1), and HO-1 (heme oxygenase 1). Inhibitors of these pathways were administered to athymic rats undergoing Treg immune reconstitution. Finally, human cardiac microvascular endothelial cells cocultured with Tregs were evaluated for COX-2, PDL-1, HO-1, and ER (estrogen receptor) expression, and culture supernatants were assayed for PGI2 and IL (interleukin)-10. SU5416-treatment and chronic hypoxia produced more severe PH in female than male athymic rats. Females were distinguished by greater pulmonary inflammation, augmented right ventricular fibrosis, lower plasma PGI2 levels, decreased lung COX-2, PTGIS, HO-1, and PDL-1 expression and reduced right ventricular PDL-1 levels. In both sexes, Treg immune reconstitution protected against PH development and raised levels of plasma PGI2 and cardiopulmonary COX-2, PTGIS, PDL-1, and HO-1. Inhibiting COX-2, HO-1, and PD-1 (programmed death 1)/PDL-1 pathways abrogated Treg protection. In vitro, human Tregs directly upregulated endothelial COX-2, PDL-1, HO-1, ERs and increased supernatant levels of PGI2 and IL-10. CONCLUSIONS In 2 animal models of PH based on Treg deficiency, females developed more severe PH than males. The data suggest that females are especially reliant on the normal Treg function to counteract the effects of pulmonary vascular injury leading to PH.
Collapse
Affiliation(s)
- Rasa Tamosiuniene
- From the Stanford University School of Medicine, Department of Medicine, CA (R.T., P.M., T.S., J.Q., M.S., L.P.N., A.L., M.R., A.H., L.A., M.R.N.)
| | - Olga Manouvakhova
- VA Palo Alto Health Care System, CA (O.M., Y.-C.L., A.L., A.B.T., J.M.S., M.R.N.)
| | - Paul Mesange
- From the Stanford University School of Medicine, Department of Medicine, CA (R.T., P.M., T.S., J.Q., M.S., L.P.N., A.L., M.R., A.H., L.A., M.R.N.)
| | - Toshie Saito
- From the Stanford University School of Medicine, Department of Medicine, CA (R.T., P.M., T.S., J.Q., M.S., L.P.N., A.L., M.R., A.H., L.A., M.R.N.)
| | - Jin Qian
- From the Stanford University School of Medicine, Department of Medicine, CA (R.T., P.M., T.S., J.Q., M.S., L.P.N., A.L., M.R., A.H., L.A., M.R.N.)
| | - Mrinmoy Sanyal
- From the Stanford University School of Medicine, Department of Medicine, CA (R.T., P.M., T.S., J.Q., M.S., L.P.N., A.L., M.R., A.H., L.A., M.R.N.)
| | - Yu-Chun Lin
- VA Palo Alto Health Care System, CA (O.M., Y.-C.L., A.L., A.B.T., J.M.S., M.R.N.)
| | - Linh P Nguyen
- From the Stanford University School of Medicine, Department of Medicine, CA (R.T., P.M., T.S., J.Q., M.S., L.P.N., A.L., M.R., A.H., L.A., M.R.N.)
| | - Amir Luria
- From the Stanford University School of Medicine, Department of Medicine, CA (R.T., P.M., T.S., J.Q., M.S., L.P.N., A.L., M.R., A.H., L.A., M.R.N.).,VA Palo Alto Health Care System, CA (O.M., Y.-C.L., A.L., A.B.T., J.M.S., M.R.N.)
| | - Allen B Tu
- VA Palo Alto Health Care System, CA (O.M., Y.-C.L., A.L., A.B.T., J.M.S., M.R.N.)
| | - Joshua M Sante
- VA Palo Alto Health Care System, CA (O.M., Y.-C.L., A.L., A.B.T., J.M.S., M.R.N.)
| | - Marlene Rabinovitch
- From the Stanford University School of Medicine, Department of Medicine, CA (R.T., P.M., T.S., J.Q., M.S., L.P.N., A.L., M.R., A.H., L.A., M.R.N.)
| | | | - Brian B Graham
- University of Colorado Denver, School of Medicine, Department of Medicine, Aurora (B.B.G.)
| | - Aida Habtezion
- From the Stanford University School of Medicine, Department of Medicine, CA (R.T., P.M., T.S., J.Q., M.S., L.P.N., A.L., M.R., A.H., L.A., M.R.N.)
| | - Norbert F Voelkel
- Virginia Commonwealth University School of Medicine, Department of Internal Medicine, Richmond (N.F.V.)
| | - Laure Aurelian
- From the Stanford University School of Medicine, Department of Medicine, CA (R.T., P.M., T.S., J.Q., M.S., L.P.N., A.L., M.R., A.H., L.A., M.R.N.).,University of Maryland School of Medicine, Baltimore (L.A.)
| | - Mark R Nicolls
- From the Stanford University School of Medicine, Department of Medicine, CA (R.T., P.M., T.S., J.Q., M.S., L.P.N., A.L., M.R., A.H., L.A., M.R.N.) .,VA Palo Alto Health Care System, CA (O.M., Y.-C.L., A.L., A.B.T., J.M.S., M.R.N.)
| |
Collapse
|