1
|
Huang Y, Wang Z. Therapeutic potential of SOX family transcription factors in osteoarthritis. Ann Med 2025; 57:2457520. [PMID: 39887675 PMCID: PMC11789227 DOI: 10.1080/07853890.2025.2457520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND As the worldwide population ages, osteoarthritis has significantly increased. This musculoskeletal condition has become a pressing global health issue and thus, prevention and treatment of osteoarthritis have become the primary focus of domestic and international research. Scholarly investigations of the molecular mechanisms that are related to the occurrence and development of osteoarthritis have shed light on the pathological causes of this condition to a certain extent, providing a foundation for its prevention and treatment. However, further research is necessary to fully understand the critical role of the transcription factor SOX9 in chondrocyte differentiation and the development of osteoarthritis. As a result, there has been widespread interest in SOX transcription factors. While SOX9 has been utilized as a biomarker to indicate the occurrence and prognosis of osteoarthritis, investigations into other members of the SOX family and the development of targeted treatments around SOX9 are still required. PURPOSE This article considers the impact of the SOX protein on the development and inhibition of osteoarthritis and highlights the need for therapeutic approaches targeting SOX9, as supported by existing research. RESULTS SOX9 can contribute to the process of osteoarthritis through acetylation and ubiquitination modifications. The regulation of the WNT signalling pathway, Nrf2/ARE signalling pathway, NF-κB signalling pathway and SOX9 is implicated in the emergence of osteoarthritis. Non-coding RNA may play a role in the onset and progression of osteoarthritis by modulating various SOX family members, including SOX2, SOX4, SOX5, SOX6, SOX8, SOX9 and SOX11. CONCLUSION SOX9 has the capability of mitigating the onset and progression of osteoarthritis through means such as medication therapy, stem cell therapy, recombinant adeno-associated virus (rAAV) vector therapy, physical therapy and other approaches.
Collapse
Affiliation(s)
- Yue Huang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Zhuo Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
2
|
Chen Z, Zhou L, Ge Y, Chen J, Du W, Xiao L, Tong P, Huang J, Shan L, Efferth T. Fuzi decoction ameliorates pain and cartilage degeneration of osteoarthritic rats through PI3K-Akt signaling pathway and its clinical retrospective evidence. PHYTOMEDICINE 2022; 100:154071. [PMID: 35378415 DOI: 10.1016/j.phymed.2022.154071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a difficult disease but the clinic lacks effective therapy. As a classic formula of traditional Chinese medicine (TCM), Fuzi decoction (FZD) has been clinically applied for treating OA-related syndromes, but its anti-OA efficacy and mechanism remain unclear. PURPOSE To experimentally and clinically determine the anti-OA efficacy of FZD and clarify the underlying mechanism. METHODS UPLC/MS/MS was applied to identify the main components of FZD. A monoiodoacetate (MIA)-induced OA rat model was employed to evaluate the in vivo efficacy of FZD against OA, by using pain behavior assessment, histopathological observation, and immunohistochemical analysis. Primary rat chondrocytes were isolated to determine the in vitro effects of FZD by using cell viability assay, wound healing assay, and real-time PCR (qPCR) analysis on anabolic/catabolic mRNA expressions. RNA sequencing (RNA-seq) and network pharmacology analysis were conducted and the overlapping data were used to predict the mechanism of FZD, followed by verification with qPCR and Western blot assays. Finally, a retrospective analysis was performed to confirm FZD's efficacy and safety in OA patients. RESULTS The UPLC/MS/MS result showed that FZD contained atractylenolide I, benzoylhypaconitine, benzoylmesaconitine, benzoylaconitine, hypaconitine, mesaconitine, aconitine, lobetyolin, paeoniflorin, and pachymic acid. The in vivo data showed that FZD restored the cartilage degeneration in MIA-induced OA rats by ameliorating pain behavior parameters, recovering histopathological alterations, benefitting cartilage anabolism (up-regulating Col2 expression), and suppressing catabolism (down-regulating MMP13 and Col10 expressions). The in vitro data showed that FZD increased cell viability and wound healing capacity of chondrocytes, and restored the altered expressions of anabolic and catabolic genes of chondrocytes. The overlapping results of RNA-seq and network pharmacology analysis suggested that PI3K/Akt signaling mediated the anti-OA mechanism of FZD, which was verified by qPCR and Western blot experiments. Clinically, the anti-OA efficacy and safety of FZD were confirmed by the retrospective analysis on OA patients. CONCLUSION The scientific innovation of this study was the determination of anti-OA efficacy of FZD by experimental and clinical evidence and the discovery of its mechanism by integrated RNA-seq, network pharmacology, and molecular experiments, which suggests FZD as a promising TCM agency for OA treatment.
Collapse
Affiliation(s)
- Zuxiang Chen
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Yanzhi Ge
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Junjie Chen
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Wenxi Du
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Luwei Xiao
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Peijian Tong
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Jiefeng Huang
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Mainz, 55128, Germany
| |
Collapse
|
3
|
MA Z, ZHOU J, JIANG H, YU P, DAI F, LIU J. Yiqi Huoxue Recipe alleviates intervertebral disc degeneration by suppressing interleukin-17, nucleus pulposus cell apoptosis and promoting SOX9/β-catenin pathway. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.86421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Zhijia MA
- Suzhou Hospital of Traditional Chinese Medicine, PR China
| | - Jingwen ZHOU
- Jiangsu Province Hospital of Traditional Chinese Medicine, P.R. China
| | - Hong JIANG
- Suzhou Hospital of Traditional Chinese Medicine, PR China
| | - Pengfei YU
- Suzhou Hospital of Traditional Chinese Medicine, PR China
| | - Feng DAI
- Suzhou Hospital of Traditional Chinese Medicine, PR China
| | - Jintao LIU
- Suzhou Hospital of Traditional Chinese Medicine, PR China
| |
Collapse
|
4
|
Wang P, Liu J, Zhang S, Zhu P, Xiong X, Yu C, Li A, Liu Z. Baicalin promotes chondrocyte viability and the synthesis of extracellular matrix through TGF-β/Smad3 pathway in chondrocytes. Am J Transl Res 2021; 13:10908-10921. [PMID: 34650772 PMCID: PMC8507001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is common in the elderly. Baicalin (BA) is a flavonoid monomer extracted from Scutellaria baicalensis Georgi, which has been reported to have anti-inflammatory, anti-deformation and anti-bacterial effects. METHODS Cultures of micromass and 3D alginate beads, Alcian blue and Safranin O (SO)/fast green staining were used to investigate chondrocyte viability and extracellular matrix (ECM) synthesis in chondrocytes of all groups. The expression of SOX9, Smad3, Aggrecan (ACAN), type II collagen (Col2α), matrix metallopetidase 9 (MMP9), MMP13 and ADAMTS5 in chondrocytes of all groups were detected by western blot or qRT-PCR. RESULTS The present study demonstrates that BA neutralized the IL-1β-induced downregulation of chondrocyte viability and ECM secretion, including ACAN and Col2α. The downregulation of SOX9, and the upregulation of MMP9, MMP13 and ADAMTS5 induced by IL-1β were reversed by BA treatment. Moreover, BA increased the nuclear translocation of Smad3 and SOX9 in chondrocytes cultured by micromass and 3D alginate beads. Interestingly, Smad3 inhibitor SIS3 reversed the promoting effect of BA on chondrocyte viability, ECM secretion, SOX9 and Smad3 nuclear translocation, and the inhibiting effect of BA on MMP9 and ADAMTS5 expressions. BA treatment also attenuated the decrease of Smad3 phosphorylation, SOX9 expression and the damage of cartilage integrity in mice which were induced by destabilization of the medial meniscus (DMM). CONCLUSION BA promotes chondrocyte viability and the cell matrix synthesis through TGF-β/Smad3 pathway in IL-1β-treated chondrocytes and DMM treated mice. BA is a potential therapeutic target for OA.
Collapse
Affiliation(s)
- Pengzhen Wang
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan UniversityGuangzhou 510220, Guangdong, China
| | - Jian Liu
- Burn and Plastic Surgery, Guangzhou Red Cross Hospital, Jinan UniversityGuangzhou 510220, Guangdong, China
| | - Shaoheng Zhang
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan UniversityGuangzhou 510220, Guangdong, China
| | - Pingping Zhu
- Department of Neurology, Guangzhou Red Cross Hospital, Jinan UniversityGuangzhou 510220, Guangdong, China
| | - Xifeng Xiong
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan UniversityGuangzhou 510220, Guangdong, China
| | - Chaosheng Yu
- Department of ENT (Ear-Nose-Throat), Guangzhou Red Cross Hospital, Jinan UniversityGuangzhou 510220, Guangdong, China
| | - Aiguo Li
- Department of Orthopaedics, Guangzhou Red Cross Hospital, Jinan UniversityGuangzhou 510220, Guangdong, China
| | - Zhihe Liu
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Jinan UniversityGuangzhou 510220, Guangdong, China
| |
Collapse
|
5
|
Pang KL, Chow YY, Leong LM, Law JX, Ghafar NA, Soelaiman IN, Chin KY. Establishing SW1353 Chondrocytes as a Cellular Model of Chondrolysis. Life (Basel) 2021; 11:272. [PMID: 33805920 PMCID: PMC8064306 DOI: 10.3390/life11040272] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/14/2021] [Accepted: 03/23/2021] [Indexed: 01/16/2023] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease characterised by chondrocyte cell death. An in vitro model of chondrocyte cell death may facilitate drug discovery in OA management. In this study, the cytotoxicity and mode of cell death of SW1353 chondrocytes treated with 24 h of OA inducers, including interleukin-1β (IL-1β), hydrogen peroxide (H2O2) and monosodium iodoacetate (MIA), were investigated. The microscopic features, oxidative (isoprostane) and inflammatory markers (tumour necrosis factor-alpha; TNF-α) for control and treated cells were compared. Our results showed that 24 h of H2O2 and MIA caused oxidative stress and a concentration-dependent reduction of SW1353 cell viability without TNF-α level upregulation. H2O2 primarily induced chondrocyte apoptosis with the detection of blebbing formation, cell shrinkage and cellular debris. MIA induced S-phase arrest on chondrocytes with a reduced number of attached cells but without significant cell death. On the other hand, 24 h of IL-1β did not affect the cell morphology and viability of SW1353 cells, with a significant increase in intracellular TNF-α levels without inducing oxidative stress. In conclusion, each OA inducer exerts differential effects on SW1353 chondrocyte cell fate. IL-1β is suitable in the inflammatory study but not for chondrocyte cell death. H2O2 and MIA are suitable for inducing chondrocyte cell death and growth arrest, respectively.
Collapse
Affiliation(s)
- Kok-Lun Pang
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (K.-L.P.); (I.N.S.)
| | - Yoke Yue Chow
- Department of Orthopaedic and Trauma Medicine, Deanery of Clinical Sciences, The University of Edinburgh, Edinburgh EH16 4SB, UK;
| | - Lek Mun Leong
- Prima Nexus Sdn. Bhd., Kuala Lumpur 50470, Malaysia;
- Department of Biomedical Science, Faculty of Science, Lincoln University College, Petaling Jaya 47301, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia;
| | - Norzana Abd Ghafar
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Ima Nirwana Soelaiman
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (K.-L.P.); (I.N.S.)
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (K.-L.P.); (I.N.S.)
| |
Collapse
|
6
|
Shen P, Yang Y, Liu G, Chen W, Chen J, Wang Q, Gao H, Fan S, Shen S, Zhao X. CircCDK14 protects against Osteoarthritis by sponging miR-125a-5p and promoting the expression of Smad2. Am J Cancer Res 2020; 10:9113-9131. [PMID: 32802182 PMCID: PMC7415803 DOI: 10.7150/thno.45993] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/28/2020] [Indexed: 01/15/2023] Open
Abstract
Rationale: Osteoarthritis (OA) is the most common joint disease worldwide. Previous studies have identified the imbalance between extracellular matrix (ECM) catabolism and anabolism in cartilage tissue as the main cause. To date, there is no cure for OA despite a few symptomatic treatments. This study aimed to investigate the role of CircCDK14, a novel circRNA factor, in the progression of OA, and to elucidate its underlying molecular mechanisms. Methods: The function of CircCDK14 in OA, as well as the interaction between CircCDK14 and its downstream target (miR-125a-5p) and mRNA target (Smad2), was evaluated by western blot (WB), immunofluorescence (IF), RNA immunoprecipitation (RIP), quantitative RT-PCR, luciferase assay and fluorescence in situ hybridization (FISH). Rabbit models were introduced to examine the function and mechanism of CircCDK14 in OA in vivo. Results: In our present study, we found that CircCDK14, while being down-regulated in the joint wearing position, regulated metabolism, inhibited apoptosis and promoted proliferation in the cartilage. Mechanically, the protective effect of CircCDK14 was mediated by miR-125a-5p sponging, which downregulated the Smad2 expression and led to the dysfunction of TGF-β signaling pathway. Intra-articular injection of adeno-associated virus-CircCDK14 also alleviated OA in the rabbit model. Conclusion: Our study revealed an important role of CircCDK14/miR-125a-5p/Smad2 axis in OA progression and provided a potential molecular therapeutic strategy for the treatment of OA.
Collapse
|
7
|
Morrovati F, Karimian Fathi N, Soleimani Rad J, Montaseri A. Mummy Prevents IL-1β-Induced Inflammatory Responses and Cartilage Matrix Degradation via Inhibition of NF-қB Subunits Gene Expression in Pellet Culture System. Adv Pharm Bull 2018; 8:283-289. [PMID: 30023330 PMCID: PMC6046416 DOI: 10.15171/apb.2018.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/12/2018] [Accepted: 04/30/2018] [Indexed: 01/17/2023] Open
Abstract
Purpose: In Persian traditional medicine, application of Mummy material has been advised since hundred years ago for treatment of different diseases as bone fracture, cutaneous wounds and joint inflammation. Regarding to the claim of indigenous people for application of this material in the treatment of joint inflammation, the present study was designed to evaluate whether Mummy can revoke the inflammatory responses in chondrocytes stimulated with interleukin 1-β (IL-1β). Methods: Isolated chondrocytes at the second passage were plated in 50 ml conical tubes at density of 1x106 for pellet culture or were plated in T75 culture flasks as monolayer. Cells in both groups were treated as control (receiving serum free culture medium), negative control (receiving IL-1β (10ng/ml for 24 hr)) and IL-1β pre-stimulated cells which treated with Mummy at concentrations of 500 and 1000µg/ml for 72hrs. After 72 hrs, to evaluate whether Mummy can revoke the inflammatory response in chondrocytes, cell in different groups were prepared for investigation of gene expression profile of collagen II, Cox-2, MMP-13, C-Rel and P65 using real-time RT-PCR. Results: Treatment of chondrocytes with IL-1β (10ng/ml) resulted in a significant increase in expression level of Cox-2, MMP-13, C-Rel and P65 in pellet culture system, while treatment of IL-1β-stimulated choncrocytes with Mummy at both concentrations of 500 and 1000µg/ml inhibited the expression level of above mentioned genes. Compared to the pellet culture, Mummy did not affect expression level of genes in monolayer condition. Conclusion: The obtained data from this investigation revealed that Mummy can be used as a potent factor for inhibiting the inflammatory responses induced by IL-1β in chondrocytes probably through inhibition of NF-қB subunits activation.
Collapse
Affiliation(s)
- Fereshteh Morrovati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahid Karimian Fathi
- Biochemistry Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azadeh Montaseri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Insights into the Action Mechanisms of Traditional Chinese Medicine in Osteoarthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:5190986. [PMID: 28203259 PMCID: PMC5292158 DOI: 10.1155/2017/5190986] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/27/2016] [Accepted: 12/14/2016] [Indexed: 01/02/2023]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by articular cartilage destruction, synovial inflammation, and osteophyte formation. No effective treatments are available. The current pharmacological medications such as nonsteroidal anti-inflammatory drugs (NSAIDs) and analgesics, accompanied by possible adverse effects, might ameliorate OA symptoms. But they do not arrest the progression of OA. Traditional Chinese medicine (TCM) provides medical value by modification of disease and symptoms in OA. Valuable work on exploring TCM merits for OA patients has been investigated using modern technologies, although the complicated interacting network among the numerous components indicates the uncertainty of target specification. This review will provide an overview of the action mechanism of TCM in the last 5 years, discussing the TCM activities of anti-inflammation, antiapoptosis, antioxidation, anticatabolism, and proliferation in OA. TCM is a proposed medical option for OA treatment.
Collapse
|