1
|
Guo L, Zhu Y, Zhao N, Leng H, Wang S, Yang Q, Zhao P, Chen Y, Cha G, Bai L, Bao R. Insights into the catalytic mechanism of archaeal peptidoglycan endoisopeptidases from methanogenic phages. Int J Biol Macromol 2025; 296:139672. [PMID: 39793783 DOI: 10.1016/j.ijbiomac.2025.139672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Archaeal peptidoglycan, a crucial component of the cell walls of Methanobacteria and Methanopyri, enhances the tightness of methanogenic cells and their resistance to known lytic enzymes and antibiotics. Although archaeal peptidoglycan endoisopeptidases (Pei) can reportedly degrade archaeal peptidoglycan, their biochemistry is still largely unknown. In this study, we investigated the activity and catalytic properties of the endoisopeptidases PeiW and PeiP using synthesized isopeptides identical to natural substrates. Enzymatic assays demonstrated their distinct substrate specificity and cleavage efficiency. The crystal structure of Pei revealed a catalytic mechanism resembling that of cysteine peptidases that use the 'CHD' triad to cleave isopeptide bonds. We also identified several key residues in the substrate binding site that confer recognition specificity, including Y174, V252 and C265. Based on the residues present in the active site and their influence on activity, we propose a classification of the archaeal peptidoglycan endoisopeptide family into four categories to facilitate the identification of new archaeal peptidases in the future. These insights into the structure and function of Pei suggest new strategies for use in methanogen biotechnology.
Collapse
Affiliation(s)
- Leizhou Guo
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan 610041, China
| | - Yibo Zhu
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; ACCURATE BIOTECHNOLOGY (HUNAN) CO., LTD, Changsha 410000, China
| | - Ninglin Zhao
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Huan Leng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan 610041, China; Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Shuxin Wang
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan 610041, China
| | - Qing Yang
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan 610041, China
| | - Pengyan Zhao
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan 610041, China
| | - Yi Chen
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan 610041, China
| | - Guihong Cha
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan 610041, China.
| | - Liping Bai
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan 610041, China.
| | - Rui Bao
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
2
|
Baquero DP, Medvedeva S, Martin-Gallausiaux C, Pende N, Sartori-Rupp A, Tachon S, Pedron T, Debarbieux L, Borrel G, Gribaldo S, Krupovic M. Stable coexistence between an archaeal virus and the dominant methanogen of the human gut. Nat Commun 2024; 15:7702. [PMID: 39231967 PMCID: PMC11375127 DOI: 10.1038/s41467-024-51946-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
The human gut virome, which is mainly composed of bacteriophages, also includes viruses infecting archaea, yet their role remains poorly understood due to lack of isolates. Here, we characterize a temperate archaeal virus (MSTV1) infecting Methanobrevibacter smithii, the dominant methanogenic archaeon of the human gut. The MSTV1 genome is integrated in the host chromosome as a provirus which is sporadically induced, resulting in virion release. Using cryo-electron tomography, we capture several intracellular virion assembly intermediates and confirm that only a small fraction of the host population actively produces virions in vitro. Similar low frequency of induction is observed in a mouse colonization model, using mice harboring a stable consortium of 12 bacterial species (OMM12). Transcriptomic analysis suggests a regulatory lysogeny-lysis switch involving an interplay between viral proteins to maintain virus-host equilibrium, ensuring host survival and viral persistence. Thus, our study sheds light on archaeal virus-host interactions and highlights similarities with bacteriophages in establishing stable coexistence with their hosts in the gut.
Collapse
Affiliation(s)
- Diana P Baquero
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Sofia Medvedeva
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unit Evolutionary Biology of the Microbial Cell, Paris, France
| | - Camille Martin-Gallausiaux
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unit Evolutionary Biology of the Microbial Cell, Paris, France
| | - Nika Pende
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unit Evolutionary Biology of the Microbial Cell, Paris, France
- University of Vienna, Archaea Physiology and Biotechnology Group, Vienna, Austria
| | - Anna Sartori-Rupp
- Institut Pasteur, NanoImaging Core Facility, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France
| | - Stéphane Tachon
- Institut Pasteur, NanoImaging Core Facility, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France
| | - Thierry Pedron
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, Paris, France
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, Paris, France
| | - Guillaume Borrel
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unit Evolutionary Biology of the Microbial Cell, Paris, France
| | - Simonetta Gribaldo
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unit Evolutionary Biology of the Microbial Cell, Paris, France.
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France.
| |
Collapse
|
3
|
Aziz I, Kayastha K, Kaltwasser S, Vonck J, Welsch S, Murphy BJ, Kahnt J, Wu D, Wagner T, Shima S, Ermler U. Structural and mechanistic basis of the central energy-converting methyltransferase complex of methanogenesis. Proc Natl Acad Sci U S A 2024; 121:e2315568121. [PMID: 38530900 PMCID: PMC10998594 DOI: 10.1073/pnas.2315568121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/24/2024] [Indexed: 03/28/2024] Open
Abstract
Methanogenic archaea inhabiting anaerobic environments play a crucial role in the global biogeochemical material cycle. The most universal electrogenic reaction of their methane-producing energy metabolism is catalyzed by N 5-methyl-tetrahydromethanopterin: coenzyme M methyltransferase (MtrABCDEFGH), which couples the vectorial Na+ transport with a methyl transfer between the one-carbon carriers tetrahydromethanopterin and coenzyme M via a vitamin B12 derivative (cobamide) as prosthetic group. We present the 2.08 Å cryo-EM structure of Mtr(ABCDEFG)3 composed of the central Mtr(ABFG)3 stalk symmetrically flanked by three membrane-spanning MtrCDE globes. Tetraether glycolipids visible in the map fill gaps inside the multisubunit complex. Putative coenzyme M and Na+ were identified inside or in a side-pocket of a cytoplasmic cavity formed within MtrCDE. Its bottom marks the gate of the transmembrane pore occluded in the cryo-EM map. By integrating Alphafold2 information, functionally competent MtrA-MtrH and MtrA-MtrCDE subcomplexes could be modeled and thus the methyl-tetrahydromethanopterin demethylation and coenzyme M methylation half-reactions structurally described. Methyl-transfer-driven Na+ transport is proposed to be based on a strong and weak complex between MtrCDE and MtrA carrying vitamin B12, the latter being placed at the entrance of the cytoplasmic MtrCDE cavity. Hypothetically, strongly attached methyl-cob(III)amide (His-on) carrying MtrA induces an inward-facing conformation, Na+ flux into the membrane protein center and finally coenzyme M methylation while the generated loosely attached (or detached) MtrA carrying cob(I)amide (His-off) induces an outward-facing conformation and an extracellular Na+ outflux. Methyl-cob(III)amide (His-on) is regenerated in the distant active site of the methyl-tetrahydromethanopterin binding MtrH implicating a large-scale shuttling movement of the vitamin B12-carrying domain.
Collapse
Affiliation(s)
- Iram Aziz
- Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am MainD-60438, Germany
| | - Kanwal Kayastha
- Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am MainD-60438, Germany
| | - Susann Kaltwasser
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Frankfurt am MainD-60438, Germany
| | - Janet Vonck
- Structural Biology, Max Planck Institute of Biophysics, Frankfurt am MainD-60438, Germany
| | - Sonja Welsch
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Frankfurt am MainD-60438, Germany
| | - Bonnie J. Murphy
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Frankfurt am MainD-60438, Germany
| | - Jörg Kahnt
- Max Planck Institute for Terrestrial Microbiology, MarburgD-35043, Germany
| | - Di Wu
- Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am MainD-60438, Germany
| | - Tristan Wagner
- Max Planck Institute for Marine Microbiology, BremenD-28359, Germany
| | - Seigo Shima
- Max Planck Institute for Terrestrial Microbiology, MarburgD-35043, Germany
| | - Ulrich Ermler
- Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am MainD-60438, Germany
| |
Collapse
|
4
|
Ozhelvaci F, Steczkiewicz K. Identification and Classification of Papain-like Cysteine Proteinases. J Biol Chem 2023:104801. [PMID: 37164157 DOI: 10.1016/j.jbc.2023.104801] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
Papain-like cysteine peptidases form a big and highly diverse superfamily of proteins involved in many important biological functions, such as protein turnover, deubiquitination, tissue remodeling, blood clotting, virulence, defense, and cell wall remodeling. High sequence and structure diversity observed within these proteins hinders their comprehensive classification as well as the identification of new representatives. Moreover, in general protein databases, many families already classified as papain-like lack details regarding their mechanism of action or biological function. Here, we use transitive remote homology searches and 3D modeling to newly classify 21 families to the papain-like cysteine peptidase superfamily. We attempt to predict their biological function, and provide structural chacterization of 89 protein clusters defined based on sequence similarity altogether spanning 106 papain-like families. Moreover, we systematically discuss observed diversity in sequences, structures, and catalytic sites. Eventually, we expand the list of human papain-related proteins by seven representatives, including dopamine receptor-interacting protein (DRIP1) as potential deubiquitinase, and centriole duplication regulating CEP76 as retaining catalytically active peptidase-like domain. The presented results not only provide structure-based rationales to already existing peptidase databases but also may inspire further experimental research focused on peptidase-related biological processes.
Collapse
Affiliation(s)
- Fatih Ozhelvaci
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kamil Steczkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
5
|
Kheiri R, Mehrshad M, Pourbabaee AA, Ventosa A, Amoozegar MA. Hypersaline Lake Urmia: a potential hotspot for microbial genomic variation. Sci Rep 2023; 13:374. [PMID: 36611086 PMCID: PMC9825399 DOI: 10.1038/s41598-023-27429-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
Lake Urmia located in Iran is a hypersaline environment with a salinity of about 27% (w/v). Metagenomic analyses of water samples collected from six locations in the lake exhibited a microbial community dominated by representatives of the family Haloferacaceae (69.8%), mainly those affiliated to only two genera, Haloquadratum (59.3%) and Halonotius (9.1%). Similar to other hypersaline lakes, the bacterial community was dominated by Salinibacter ruber (23.3%). Genomic variation analysis by inspecting single nucleotide variations (SNVs) and insertions/deletions (INDELs) exhibited a high level of SNVs and insertions, most likely through transformation for abundant taxa in the Lake Urmia community. We suggest that the extreme conditions of Lake Urmia and specifically its high ionic concentrations could potentially increase the SNVs and insertions, which can consequently hamper the assembly and genome reconstruction from metagenomic reads of Lake Urmia.
Collapse
Affiliation(s)
- Roohollah Kheiri
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Maliheh Mehrshad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Ahmad Ali Pourbabaee
- Department of Soil Science, Agriculture Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012, Sevilla, Spain
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
6
|
Altermann E, Reilly K, Young W, Ronimus RS, Muetzel S. Tailored Nanoparticles With the Potential to Reduce Ruminant Methane Emissions. Front Microbiol 2022; 13:816695. [PMID: 35359731 PMCID: PMC8963448 DOI: 10.3389/fmicb.2022.816695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Agricultural methane produced by archaea in the forestomach of ruminants is a key contributor to rising levels of greenhouse gases leading to climate change. Functionalized biological polyhydroxybutyrate (PHB) nanoparticles offer a new concept for the reduction of enteric methane emissions by inhibiting rumen methanogens. Nanoparticles were functionalized in vivo with an archaeal virus lytic enzyme, PeiR, active against a range of rumen Methanobrevibacter species. The impact of functionalized nanoparticles against rumen methanogens was demonstrated in pure cultures, in rumen batch and continuous flow rumen models yielding methane reduction of up to 15% over 11 days in the most complex system. We further present evidence of biological nanoparticle fermentation in a rumen environment. Elevated levels of short-chain fatty acids essential to ruminant nutrition were recorded, giving rise to a promising new strategy combining methane mitigation with a possible increase in animal productivity.
Collapse
Affiliation(s)
- Eric Altermann
- AgResearch Ltd., Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
- *Correspondence: Eric Altermann,
| | | | - Wayne Young
- AgResearch Ltd., Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | | | | |
Collapse
|
7
|
Subedi BP, Martin WF, Carbone V, Duin EC, Cronin B, Sauter J, Schofield LR, Sutherland-Smith AJ, Ronimus RS. Archaeal pseudomurein and bacterial murein cell wall biosynthesis share a common evolutionary ancestry. FEMS MICROBES 2021; 2:xtab012. [PMID: 37334239 PMCID: PMC10117817 DOI: 10.1093/femsmc/xtab012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/19/2021] [Indexed: 08/29/2023] Open
Abstract
Bacteria near-universally contain a cell wall sacculus of murein (peptidoglycan), the synthesis of which has been intensively studied for over 50 years. In striking contrast, archaeal species possess a variety of other cell wall types, none of them closely resembling murein. Interestingly though, one type of archaeal cell wall termed pseudomurein found in the methanogen orders Methanobacteriales and Methanopyrales is a structural analogue of murein in that it contains a glycan backbone that is cross-linked by a L-amino acid peptide. Here, we present taxonomic distribution, gene cluster and phylogenetic analyses that confirm orthologues of 13 bacterial murein biosynthesis enzymes in pseudomurein-containing methanogens, most of which are distantly related to their bacterial counterparts. We also present the first structure of an archaeal pseudomurein peptide ligase from Methanothermus fervidus DSM1088 (Mfer336) to a resolution of 2.5 Å and show that it possesses a similar overall tertiary three domain structure to bacterial MurC and MurD type murein peptide ligases. Taken together the data strongly indicate that murein and pseudomurein biosynthetic pathways share a common evolutionary history.
Collapse
Affiliation(s)
- Bishwa P Subedi
- AgResearch Ltd. Grasslands, Tennent Drive, Palmerston North 4442, New Zealand
- Massey University, Tennent Drive, Palmerston North 4442, New Zealand
| | - William F Martin
- Institute for Molecular Evolution, Heinrich-Heine University, Düsseldorf Universitätsstraße 1, D-40225, Germany
| | - Vincenzo Carbone
- AgResearch Ltd. Grasslands, Tennent Drive, Palmerston North 4442, New Zealand
| | - Eduardus C Duin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA
| | - Bryan Cronin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA
| | - Julia Sauter
- AgResearch Ltd. Grasslands, Tennent Drive, Palmerston North 4442, New Zealand
| | - Linley R Schofield
- AgResearch Ltd. Grasslands, Tennent Drive, Palmerston North 4442, New Zealand
| | | | - Ron S Ronimus
- AgResearch Ltd. Grasslands, Tennent Drive, Palmerston North 4442, New Zealand
| |
Collapse
|
8
|
Gilbert RA, Townsend EM, Crew KS, Hitch TCA, Friedersdorff JCA, Creevey CJ, Pope PB, Ouwerkerk D, Jameson E. Rumen Virus Populations: Technological Advances Enhancing Current Understanding. Front Microbiol 2020; 11:450. [PMID: 32273870 PMCID: PMC7113391 DOI: 10.3389/fmicb.2020.00450] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/02/2020] [Indexed: 01/07/2023] Open
Abstract
The rumen contains a multi-kingdom, commensal microbiome, including protozoa, bacteria, archaea, fungi and viruses, which enables ruminant herbivores to ferment and utilize plant feedstuffs that would be otherwise indigestible. Within the rumen, virus populations are diverse and highly abundant, often out-numbering the microbial populations that they both predate on and co-exist with. To date the research effort devoted to understanding rumen-associated viral populations has been considerably less than that given to the other microbial populations, yet their contribution to maintaining microbial population balance, intra-ruminal microbial lysis, fiber breakdown, nutrient cycling and genetic transfer may be highly significant. This review follows the technological advances which have contributed to our current understanding of rumen viruses and drawing on knowledge from other environmental and animal-associated microbiomes, describes the known and potential roles and impacts viruses have on rumen function and speculates on the future directions of rumen viral research.
Collapse
Affiliation(s)
- Rosalind A. Gilbert
- Department of Agriculture and Fisheries, Brisbane, QLD, Australia
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Eleanor M. Townsend
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Kathleen S. Crew
- Department of Agriculture and Fisheries, Brisbane, QLD, Australia
| | - Thomas C. A. Hitch
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Jessica C. A. Friedersdorff
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Christopher J. Creevey
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Phillip B. Pope
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Diane Ouwerkerk
- Department of Agriculture and Fisheries, Brisbane, QLD, Australia
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Eleanor Jameson
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
9
|
Altermann E, Schofield LR, Ronimus RS, Beatty AK, Reilly K. Inhibition of Rumen Methanogens by a Novel Archaeal Lytic Enzyme Displayed on Tailored Bionanoparticles. Front Microbiol 2018; 9:2378. [PMID: 30356700 PMCID: PMC6189367 DOI: 10.3389/fmicb.2018.02378] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/18/2018] [Indexed: 11/13/2022] Open
Abstract
Methane is a potent greenhouse gas, 25 times more efficient at trapping heat than carbon dioxide. Ruminant methane emissions contribute almost 30% to anthropogenic sources of global atmospheric methane levels and a reduction in methane emissions would significantly contribute to slowing global temperature rises. Here we demonstrate the use of a lytic enyzme, PeiR, from a methanogen virus that infects Methanobrevibacter ruminantium M1 as an effective agent inhibiting a range of rumen methanogen strains in pure culture. We determined the substrate specificity of soluble PeiR and demonstrated that the enzyme is capable of hydrolysing the pseudomurein cell walls of methanogens. Subsequently, peiR was fused to the polyhydroxyalkanoate (PHA) synthase gene phaC and displayed on the surface of PHA bionanoparticles (BNPs) expressed in Eschericia coli via one-step biosynthesis. These tailored BNPs were capable of lysing not only the original methanogen host strain, but a wide range of other rumen methanogen strains in vitro. Methane production was reduced by up to 97% for 5 days post-inoculation in the in vitro assay. We propose that tailored BNPs carrying anti-methanogen enzymes represent a new class of methane inhibitors. Tailored BNPs can be rapidly developed and may be able to modulate the methanogen community in vivo with the aim to lower ruminant methane emissions without impacting animal productivity.
Collapse
Affiliation(s)
- Eric Altermann
- Rumen Microbiology, Animal Science, AgResearch Ltd., Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Linley R Schofield
- Rumen Microbiology, Animal Science, AgResearch Ltd., Palmerston North, New Zealand
| | - Ron S Ronimus
- Rumen Microbiology, Animal Science, AgResearch Ltd., Palmerston North, New Zealand
| | - Amy K Beatty
- Soil Biology, Forage Science, AgResearch Ltd., Christchurch, New Zealand
| | - Kerri Reilly
- Rumen Microbiology, Animal Science, AgResearch Ltd., Palmerston North, New Zealand
| |
Collapse
|
10
|
Carbone V, Schofield LR, Sang C, Sutherland-Smith AJ, Ronimus RS. Structural determination of archaeal UDP-N-acetylglucosamine 4-epimerase from Methanobrevibacter ruminantium M1 in complex with the bacterial cell wall intermediate UDP-N-acetylmuramic acid. Proteins 2018; 86:1306-1312. [PMID: 30242905 DOI: 10.1002/prot.25606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/01/2018] [Accepted: 09/14/2018] [Indexed: 12/19/2022]
Abstract
The crystal structure of UDP-N-acetylglucosamine 4-epimerase (UDP-GlcNAc 4-epimerase; WbpP; EC 5.1.3.7), from the archaeal methanogen Methanobrevibacter ruminantium strain M1, was determined to a resolution of 1.65 Å. The structure, with a single monomer in the crystallographic asymmetric unit, contained a conserved N-terminal Rossmann-fold for nucleotide binding and an active site positioned in the C-terminus. UDP-GlcNAc 4-epimerase is a member of the short-chain dehydrogenases/reductases superfamily, sharing sequence motifs and structural elements characteristic of this family of oxidoreductases and bacterial 4-epimerases. The protein was co-crystallized with coenzyme NADH and UDP-N-acetylmuramic acid, the latter an unintended inclusion and well known product of the bacterial enzyme MurB and a critical intermediate for bacterial cell wall synthesis. This is a non-native UDP sugar amongst archaea and was most likely incorporated from the E. coli expression host during purification of the recombinant enzyme.
Collapse
Affiliation(s)
- Vincenzo Carbone
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Linley R Schofield
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Carrie Sang
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | | | - Ron S Ronimus
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| |
Collapse
|
11
|
Expression, Purification, and Characterization of ( R)-Sulfolactate Dehydrogenase (ComC) from the Rumen Methanogen Methanobrevibacter millerae SM9. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2017; 2017:5793620. [PMID: 29234237 PMCID: PMC5695019 DOI: 10.1155/2017/5793620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/19/2017] [Indexed: 12/03/2022]
Abstract
(R)-Sulfolactate dehydrogenase (EC 1.1.1.337), termed ComC, is a member of an NADH/NADPH-dependent oxidoreductase family of enzymes that catalyze the interconversion of 2-hydroxyacids into their corresponding 2-oxoacids. The ComC reaction is reversible and in the biosynthetic direction causes the conversion of (R)-sulfolactate to sulfopyruvate in the production of coenzyme M (2-mercaptoethanesulfonic acid). Coenzyme M is an essential cofactor required for the production of methane by the methyl-coenzyme M reductase complex. ComC catalyzes the third step in the first established biosynthetic pathway of coenzyme M and is also involved in methanopterin biosynthesis. In this study, ComC from Methanobrevibacter millerae SM9 was cloned and expressed in Escherichia coli and biochemically characterized. Sulfopyruvate was the preferred substrate using the reduction reaction, with 31% activity seen for oxaloacetate and 0.2% seen for α-ketoglutarate. Optimal activity was observed at pH 6.5. The apparent KM for coenzyme (NADH) was 55.1 μM, and for sulfopyruvate, it was 196 μM (for sulfopyruvate the Vmax was 93.9 μmol min−1 mg−1 and kcat was 62.8 s−1). The critical role of ComC in two separate cofactor pathways makes this enzyme a potential means of developing methanogen-specific inhibitors for controlling ruminant methane emissions which are increasingly being recognized as contributing to climate change.
Collapse
|