1
|
Chen Y, Zhou Y, Li XC, Ma X, Mi WL, Chu YX, Wang YQ, Mao-Ying QL. Neuronal GRK2 regulates microglial activation and contributes to electroacupuncture analgesia on inflammatory pain in mice. Biol Res 2022; 55:5. [PMID: 35115050 PMCID: PMC8812183 DOI: 10.1186/s40659-022-00374-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/22/2022] [Indexed: 12/30/2022] Open
Abstract
Background G protein coupled receptor kinase 2 (GRK2) has been demonstrated to play a crucial role in the development of chronic pain. Acupuncture is an alternative therapy widely used for pain management. In this study, we investigated the role of spinal neuronal GRK2 in electroacupuncture (EA) analgesia. Methods The mice model of inflammatory pain was built by subcutaneous injection of Complete Freund’s Adjuvant (CFA) into the plantar surface of the hind paws. The mechanical allodynia of mice was examined by von Frey test. The mice were subjected to EA treatment (BL60 and ST36 acupuncture points) for 1 week. Overexpression and downregulation of spinal neuronal GRK2 were achieved by intraspinal injection of adeno associated virus (AAV) containing neuron-specific promoters, and microglial activation and neuroinflammation were evaluated by real-time PCR. Results Intraplantar injection with CFA in mice induced the decrease of GRK2 and microglial activation along with neuroinflammation in spinal cord. EA treatment increased the spinal GRK2, reduced neuroinflammation, and significantly decreased CFA-induced mechanical allodynia. The effects of EA were markedly weakened by non-cell-specific downregulation of spinal GRK2. Further, intraspinal injection of AAV containing neuron-specific promoters specifically downregulated neuronal GRK2, and weakened the regulatory effect of EA on CFA-induced mechanical allodynia and microglial activation. Meanwhile, overexpression of spinal neuronal GRK2 decreased mechanical allodynia. All these indicated that the neuronal GRK2 mediated microglial activation and neuroinflammation, and subsequently contributed to CFA-induced inflammatory pain. Conclusion The restoration of the spinal GRK2 and subsequent suppression of microglial activation and neuroinflammation might be an important mechanism for EA analgesia. Our findings further suggested that the spinal GRK2, especially neuronal GRK2, might be the potential target for EA analgesia and pain management, and we provided a new experimental basis for the EA treatment of pain. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-022-00374-6.
Collapse
Affiliation(s)
- Yu Chen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yang Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiao-Chen Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xue Ma
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yu-Xia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, People's Republic of China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, People's Republic of China.,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, 200433, People's Republic of China
| | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, People's Republic of China. .,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
2
|
Li HP, Su W, Shu Y, Yuan XC, Lin LX, Hou TF, Xiang HC, Zhu H, Hu XF, Pan L, Wu JN, Meng XF, Pan HL, Wu CH, Li M. Electroacupuncture decreases Netrin-1-induced myelinated afferent fiber sprouting and neuropathic pain through μ-opioid receptors. J Pain Res 2019; 12:1259-1268. [PMID: 31118749 PMCID: PMC6499485 DOI: 10.2147/jpr.s191900] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/21/2019] [Indexed: 12/28/2022] Open
Abstract
Purpose: We determined whether electroacupuncture (EA) reduces Netrin-1-induced myelinated primary afferent nerve fiber sprouting in the spinal cord and pain hypersensitivity associated with postherpetic neuralgia (PHN) through activation of μ-opioid receptors. Methods: PHN was induced by systemic injection of resiniferatoxin (RTX) in rats. Thirty-six days after RTX injection, a μ-opioid receptor antagonist, beta-funaltrexamine (β-FNA) or a κ-opioid receptor antagonist, nor Binaltorphimine (nor-BNI), was injected intrathecally 30 mins before EA, once every other day for 4 times. Mechanical allodynia was tested with von Frey filaments. The protein expression level of Netrin-1 and its receptors (DCC and UNC5H2) were quantified by using western blotting. The myelinated primary afferent nerve fiber sprouting was mapped with the transganglionic tracer cholera toxin B-subunit (CTB). Results: Treatment with 2 Hz EA at “Huantiao” (GB30) and “Yanglingquan” (GB34) decreased the mechanical allodynia at 22 days and the myelinated primary afferent nerve fiber preternatural sprouting into the lamina II of the spinal dorsal horn at 42 days after RTX injection. Also, treatment with 2 Hz EA reduced the protein levels of DCC and Netrin-1 and promoted the expression of UNC5H2 in the spinal dorsal horn 42 days after RTX injection. Furthermore, the μ-opioid receptor antagonist β-FNA, but not the κ-opioid receptor antagonist nor-BNI, reversed the effect of EA on neuropathic pain caused by RTX. In addition, morphine inhibited the Netrin-1 protein level induced by RTX in SH-SY5Y cells. Conclusions: Through activation of μ-opioid receptors, treatment with EA reduces the expression level of DCC and Netrin-1 and changes a growth-permissive environment in spinal dorsal horn into an inhibitory environment by increasing UNC5H2, thus decreasing RTX-caused primary afferent nerve sprouting in the spinal dorsal horn and neuropathic pain.
Collapse
Affiliation(s)
- Hong-Ping Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wen Su
- Department of Acupuncture, Wuhan First Hospital, Wuhan, People's Republic of China
| | - Yang Shu
- Department of Central Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, People's Republic of China
| | - Xiao-Cui Yuan
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Li-Xue Lin
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Teng-Fei Hou
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hong-Chun Xiang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - He Zhu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xue-Fei Hu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Li Pan
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jing-Nan Wu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xian-Fang Meng
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cai-Hua Wu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Department of Acupuncture, Wuhan First Hospital, Wuhan, People's Republic of China
| | - Man Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|