1
|
Zhang Z, Zheng H, Yu Q, Jing X. Understanding of Spinal Wide Dynamic Range Neurons and Their Modulation on Pathological Pain. J Pain Res 2024; 17:441-457. [PMID: 38318328 PMCID: PMC10840524 DOI: 10.2147/jpr.s446803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
The spinal dorsal horn (SDH) transmits sensory information from the periphery to the brain. Wide dynamic range (WDR) neurons within this relay site play a critical role in modulating and integrating peripheral sensory inputs, as well as the process of central sensitization during pathological pain. This group of spinal multi-receptive neurons has attracted considerable attention in pain research due to their capabilities for encoding the location and intensity of nociception. Meanwhile, transmission, processing, and modulation of incoming afferent information in WDR neurons also establish the underlying basis for investigating the integration of acupuncture and pain signals. This review aims to provide a comprehensive examination of the distinctive features of WDR neurons and their involvement in pain. Specifically, we will examine the regulation of diverse supraspinal nuclei on these neurons and analyze their potential in elucidating the mechanisms of acupuncture analgesia.
Collapse
Affiliation(s)
- Zhiyun Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Hao Zheng
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Qingquan Yu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Xianghong Jing
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Ramawad HA, Paridari P, Jabermoradi S, Gharin P, Toloui A, Safari S, Yousefifard M. Muscimol as a treatment for nerve injury-related neuropathic pain: a systematic review and meta-analysis of preclinical studies. Korean J Pain 2023; 36:425-440. [PMID: 37732408 PMCID: PMC10551397 DOI: 10.3344/kjp.23161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 09/22/2023] Open
Abstract
Background : Muscimol's quick onset and GABAergic properties make it a promising candidate for the treatment of pain. This systematic review and meta-analysis of preclinical studies aimed at summarizing the evidence regarding the efficacy of muscimol administration in the amelioration of nerve injury-related neuropathic pain. Methods : Two independent researchers performed the screening process in Medline, Embase, Scopus and Web of Science extracting data were extracted into a checklist designed according to the PRISMA guideline. A standardized mean difference (SMD [95% confidence interval]) was calculated for each. To assess the heterogeneity between studies, I2 and chi-square tests were utilized. In the case of heterogeneity, meta-regression and subgroup analyses were performed to identify the potential source. Results : Twenty-two articles met the inclusion criteria. Pooled data analysis showed that the administration of muscimol during the peak effect causes a significant reduction in mechanical allodynia (SMD = 1.78 [1.45-2.11]; P < 0.0001; I2 = 72.70%), mechanical hyperalgesia (SMD = 1.62 [1.28-1.96]; P < 0.0001; I2 = 40.66%), and thermal hyperalgesia (SMD = 2.59 [1.79-3.39]; P < 0.0001; I2 = 80.33%). This significant amendment of pain was observed at a declining rate from 15 minutes to at least 180 minutes post-treatment in mechanical allodynia and mechanical hyperalgesia, and up to 30 minutes in thermal hyperalgesia (P < 0 .0001). Conclusions : Muscimol is effective in the amelioration of mechanical allodynia, mechanical hyperalgesia, and thermal hyperalgesia, exerting its analgesic effects 15 minutes after administration for up to at least 3 hours.
Collapse
Affiliation(s)
- Hamzah Adel Ramawad
- Department of Emergency Medicine, NYC Health + Hospitals, Coney Island, NY, USA
| | - Parsa Paridari
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sajjad Jabermoradi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Pantea Gharin
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Toloui
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Safari
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Yousefifard
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Xing J, Wang Η, Chen L, Wang H, Huang H, Huang J, Xu C. Blocking Cx43 alleviates neuropathic pain in rats with chronic constriction injury via the P2X4 and P38/ERK-P65 pathways. Int Immunopharmacol 2023; 114:109506. [PMID: 36442284 DOI: 10.1016/j.intimp.2022.109506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Neuropathic pain is a growing concern in the medical community, and studies on new analgesic targets for neuropathic pain have become a new hot spot. Whether Connexin43 (Cx43) has a key role in neuropathic pain mediated by the purinergic 2X4 (P2X4) receptor in rats with chronic constriction injury (CCI) was explored in this study. Our experimental results show that blockade of Cx43 could attenuate neuropathic pain in rats suffering from CCI via the P2X4, p38, ERK, and NF-kB signalling pathways. These results suggest that Cx43 may be a promising therapeutic target for the development of novel pharmacological agents in the management of neuropathic pain.
Collapse
Affiliation(s)
- Juping Xing
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, Jiangxi, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang 330006, Jiangxi, PR China
| | - Ηongji Wang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, Jiangxi, PR China
| | - Lisha Chen
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, Jiangxi, PR China
| | - Hanxi Wang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, Jiangxi, PR China
| | - Huan Huang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, Jiangxi, PR China
| | - Jiabao Huang
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, Jiangxi, PR China
| | - Changshui Xu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, Jiangxi, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang 330006, Jiangxi, PR China; The Clinical Medical School, Jiangxi Medical College, Shangrao 334000, Jiangxi, PR China; The First Affiliated Hospital, Jiangxi Medical College, Shangrao 334000, Jiangxi, PR China.
| |
Collapse
|
4
|
Electroacupuncture Suppresses CCI-Induced Neuropathic Pain through GABAA Receptors. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4505934. [PMID: 36248405 PMCID: PMC9568313 DOI: 10.1155/2022/4505934] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
Abstract
Neuropathic pain remains a chronic and intractable pain. Recent studies have shown a close relationship between gamma-aminobutyric acid A (GABAA) receptor and neuropathic pain. Spinal cord GABAA receptors are key modulators of pain processing. Electroacupuncture (EA) is currently used worldwide to relieve pain. The immunomodulatory effect of EA in animals has been proposed in previous studies. However, it remains unclear how EA contributes to alleviating neuropathic pain. In this study, the chronic constriction injury (CCI) rat model was used to explore the relationship between GABAA receptor and neuropathic pain. We also investigated whether EA treatment could ameliorate pain hypersensitivity by modulating the GABAA receptor. To determine the function of EA in neurological diseases, in this study, the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were assessed to determine the threshold of pain. In addition, we used Western blot, immunofluorescence, and real-time quantitative PCR to confirm whether EA treatment relieves pain hypersensitivity by regulating GABAA receptors. The morphology of synapse was examined using an electron microscope. In the present study, EA relieved mechanical allodynia and thermal hyperalgesia. EA also inhibited microglial activation in the spinal cord, accompanied by increased levels of GABAARα2, GABAARα3, and GABAARγ2 subunits. However, the analgesic effect of EA was attenuated by treatment with the GABAA receptor antagonist bicuculine. Overall, the present results indicate that microglia and GABAA receptor might participate in EA analgesia. These results contribute to our understanding of the impact of EA on rats after sciatic nerve compression, providing a theoretical basis for the clinical application of EA analgesia.
Collapse
|
5
|
Schiel KA. A beneficial role for elevated extracellular glutamate in Amyotrophic Lateral Sclerosis and cerebral ischemia. Bioessays 2021; 43:e2100127. [PMID: 34585427 DOI: 10.1002/bies.202100127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/06/2022]
Abstract
This hypothesis proposes that increased extracellular glutamate in Amyotrophic Lateral Sclerosis (ALS) and cerebral ischemia, currently viewed as a trigger for excitotoxicity, is actually beneficial as it stimulates the utilization of glutamate as metabolic fuel. Renewed appreciation of glutamate oxidation by ischemic neurons has raised questions regarding the role of extracellular glutamate in ischemia. Is it detrimental, as suggested by excitotoxicity in early in vitro studies, or beneficial, as suggested by its oxidation in later in vivo studies? The answer may depend on the activity of N-methyl-D-aspartate (NMDA) glutamate receptors. Early in vitro procedures co-activated NMDA receptors (NMDARs) containing 2A (GluN2A) and 2B (GluN2B) subunits, an event now believed to trigger excitotoxicity; however, during in vivo ischemia D-serine and zinc molecules are released and these ensure only GluN2B receptors are stimulated. This not only prevents excitotoxicity but also initiates signaling cascades that allow ischemic neurons to import and oxidize glutamate.
Collapse
|
6
|
Sadeghi M, Manaheji H, Zaringhalam J, Haghparast A, Nazemi S, Bahari Z, Noorbakhsh SM. Evaluation of the GABAA Receptor Expression and the Effects of Muscimol on the Activity of Wide Dynamic Range Neurons Following Chronic Constriction Injury of Sciatic Nerve in Rats. Basic Clin Neurosci 2021; 12:651-666. [PMID: 35173919 PMCID: PMC8818116 DOI: 10.32598/bcn.2021.1726.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/05/2020] [Accepted: 08/02/2021] [Indexed: 11/20/2022] Open
Abstract
Introduction The modality of γ-aminobutyric acid type a receptors (GABAA) controls dorsal horn neuronal excitability and inhibits sensory information. This study aimed to investigate the expression of the GABAA receptor and the effects of its agonist muscimol on Wide Dynamic Range (WDR) neuronal activity in the Chronic Constriction Injury (CCI) model of neuropathic pain. Methods Adult male Wistar rats weighing 200 to 250 g were used to induce CCI neuropathy. Fourteen days after surgery, muscimol (0.5, 1, and 2 mg/kg IP) was injected. Then, the behavioral tests were performed. After that, the animals were killed, and the lumbar segments of the spinal cords were collected for Western blot analysis of the GABAA receptor α1 subunit expression. The electrophysiological properties of WDR neurons were studied by single-unit recordings in separate groups 14 days after CCI. Results The outcomes indicated the development of thermal hyperalgesia and mechanical allodynia after neuropathy; nonetheless, the expression of the GABAA receptor α1 subunit did not change significantly. Moreover, the evoked responses of the WDR neurons to electrical, mechanical, and thermal stimuli increased considerably. Fourteen days after CCI, muscimol administration decreased thermal hyperalgesia, mechanical allodynia, and hyper-responsiveness of the WDR neurons in CCI rats. Conclusion The modulation of the spinal GABAA receptors after nerve injury can offer further insights to design new therapeutic agents to reduce neuropathic pain symptoms.
Collapse
Affiliation(s)
- Mehdi Sadeghi
- Department of Physiology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Homa Manaheji
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Zaringhalam
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samad Nazemi
- Department of Physiology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Zahra Bahari
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Noorbakhsh
- Department of Physiology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
7
|
Li C, Lei Y, Tian Y, Xu S, Shen X, Wu H, Bao S, Wang F. The etiological contribution of GABAergic plasticity to the pathogenesis of neuropathic pain. Mol Pain 2020; 15:1744806919847366. [PMID: 30977423 PMCID: PMC6509976 DOI: 10.1177/1744806919847366] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neuropathic pain developing after peripheral or central nerve injury is the result of pathological changes generated through complex mechanisms. Disruption in the homeostasis of excitatory and inhibitory neurons within the central nervous system is a crucial factor in the formation of hyperalgesia or allodynia occurring with neuropathic pain. The central GABAergic pathway has received attention for its extensive distribution and function in neural circuits, including the generation and development of neuropathic pain. GABAergic inhibitory changes that occur in the interneurons along descending modulatory and nociceptive pathways in the central nervous system are believed to generate neuronal plasticity, such as synaptic plasticity or functional plasticity of the related genes or proteins, that is the foundation of persistent neuropathic pain. The primary GABAergic plasticity observed in neuropathic pain includes GABAergic synapse homo- and heterosynaptic plasticity, decreased synthesis of GABA, down-expression of glutamic acid decarboxylase and GABA transporter, abnormal expression of NKCC1 or KCC2, and disturbed function of GABA receptors. In this review, we describe possible mechanisms associated with GABAergic plasticity, such as central sensitization and GABAergic interneuron apoptosis, and the epigenetic etiologies of GABAergic plasticity in neuropathic pain. Moreover, we summarize potential therapeutic targets of GABAergic plasticity that may allow for successful relief of hyperalgesia from nerve injury. Finally, we compare the effects of the GABAergic system in neuropathic pain to other types of chronic pain to understand the contribution of GABAergic plasticity to neuropathic pain.
Collapse
Affiliation(s)
- Caijuan Li
- 1 Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yanying Lei
- 2 Department of Stomatology, Affiliated Hospital of Qinghai University, Xining, China
| | - Yi Tian
- 3 Department of Anesthesiology, Haikou Affiliated Hospital of Xiangya Medical School, Central South University, Haikou People's Hospital, Haikou, China
| | - Shiqin Xu
- 1 Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiaofeng Shen
- 1 Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Haibo Wu
- 1 Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Senzhu Bao
- 2 Department of Stomatology, Affiliated Hospital of Qinghai University, Xining, China
| | - Fuzhou Wang
- 1 Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.,4 Group of Neuropharmacology and Neurophysiology, Division of Neuroscience, The Bonoi Academy of Science and Education, Chapel Hill, NC, USA
| |
Collapse
|