1
|
Choi YE, Yang JM, Jeong CW, Shin S, Park J, Lee K, Cho JH. Prunus yedoensis Bark Downregulates the Expression of Cell Adhesion Molecules in Human Endothelial Cell Lines and Relaxes Blood Vessels in Rat Aortic Rings. Pharmaceuticals (Basel) 2024; 17:926. [PMID: 39065776 PMCID: PMC11279544 DOI: 10.3390/ph17070926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The incidence of cardiovascular diseases, such as high blood pressure, is increasing worldwide, owing to population aging and irregular lifestyle habits. Previous studies have reported the vasorelaxant effects of Prunus yedoensis bark methanol extract. However, various solvent extracts of P. yedoensis bark and their vascular relaxation mechanisms have not been sufficiently studied. We prepared extracts of P. yedoensis bark using various solvents (water, 30% ethanol, and 70% ethanol). P. yedoensis bark 30% ethanol extract (PYB-30E) decreased the expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin in human umbilical vein endothelial cells (HUVECs) activated with 200 ng/mL TNF-α. Additionally, PYB-30E showed vasodilatory effects on isolated rat aortic rings. This was confirmed to be the result of the activation of the NO/cGMP pathway, regulation of non-selective calcium-activated K+ channels, and calcium channel blockade. Additionally, PYB-30E significantly reduced systolic and diastolic blood pressure in spontaneously hypertensive rats (SHR). Taken together, our results indicated that PYB-30E is a candidate functional material with preventive and therapeutic effects against hypertension.
Collapse
Affiliation(s)
- Ye Eun Choi
- Haram Central Research Institute, Cheongju 28160, Republic of Korea; (Y.E.C.); (J.M.Y.); (C.W.J.)
| | - Jung Mo Yang
- Haram Central Research Institute, Cheongju 28160, Republic of Korea; (Y.E.C.); (J.M.Y.); (C.W.J.)
| | - Chae Won Jeong
- Haram Central Research Institute, Cheongju 28160, Republic of Korea; (Y.E.C.); (J.M.Y.); (C.W.J.)
| | - Sujin Shin
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Junkyu Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Kyungjin Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Ju Hyun Cho
- Haram Central Research Institute, Cheongju 28160, Republic of Korea; (Y.E.C.); (J.M.Y.); (C.W.J.)
| |
Collapse
|
2
|
Prunetinoside Inhibits Lipopolysaccharide-Provoked Inflammatory Response via Suppressing NF-κB and Activating the JNK-Mediated Signaling Pathway in RAW264.7 Macrophage Cells. Int J Mol Sci 2022; 23:ijms23105442. [PMID: 35628252 PMCID: PMC9140926 DOI: 10.3390/ijms23105442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/25/2022] Open
Abstract
Inflammation is a multifaceted response of the immune system at the site of injury or infection caused by pathogens or stress via immune cells. Due to the adverse effects of chemical drugs, plant-based compounds are gaining interest in current research. Prunetinoside or prunetin-5-O-glucoside (PUG) is a plant-based active compound, which possesses anti-inflammatory effects on immune cells. In this study, we investigate the effect of PUG on mouse macrophage RAW264.7 cells with or without stimulation of lipopolysaccharide (LPS). Cytotoxicity results showed that PUG is non-cytotoxic to the cells and it reversed the cytotoxicity in LPS-stimulated cells. The levels of nitric oxide (NO) and interleukin-6 (IL-6) were determined using a NO detection kit and IL-6 ELISA kit, respectively, and showed a significant decrease in NO and IL-6 in PUG-treated cells. Western blot and qRT-PCR were performed for the expression of two important pro-inflammatory cytokines, COX2 and iNOS, and found that their expression was downregulated in a dose-dependent manner. Other pro-inflammatory cytokines, such as IL-1β, IL-6, and TNFα, had reduced mRNA expression after PUG treatment. Furthermore, a Western blot was performed to calculate the expression of NF-κB and MAPK pathway proteins. The results show that PUG administration dramatically reduced the phosphorylation of p-Iκbα, p-NF-κB 65, and p-JNK. Remarkably, after PUG treatment, p-P38 and p-ERK remain unchanged. Furthermore, docking studies revealed that PUG is covalently linked to NF-κB and suppresses inflammation. In conclusion, PUG exerted the anti-inflammatory mechanism by barring the NF-κB pathway and activating JNK. Thus, prunetinoside could be adopted as a therapeutic compound for inflammatory-related conditions.
Collapse
|
3
|
Beszterda M, Frański R. Seasonal Qualitative Variations of Phenolic Content in the Stem Bark of
Prunus persica
var.
nucipersica
‐ Implication for the Use of the Bark as a Source of Bioactive Compounds. ChemistrySelect 2022. [DOI: 10.1002/slct.202200418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Monika Beszterda
- Poznań University of Life Sciences Department of Food Biochemistry and Analysis Mazowiecka 48 60-623 Poznań Poland
| | - Rafał Frański
- Faculty of Chemistry Adam Mickiewicz University Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
| |
Collapse
|
4
|
Abusaliya A, Ha SE, Bhosale PB, Kim HH, Park MY, Vetrivel P, Kim GS. Glycosidic flavonoids and their potential applications in cancer research: a review. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00178-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
Purpose of review
Every year, the cancer patient registry increases, and the leading cause of death in a global context. Plant-based molecules are gaining attention in cancer research due to the side effects of chemotherapy. A glycosidic derivative of flavonoid (GDF) plays a significant role in cancer proliferation mechanisms. GDF inhibits cell proliferation by elevating the expression of apoptotic proteins, altering the expression of nuclear factor-kappa B (NF- κB), and decreasing mitochondrial membrane potential (Δψm) in cancer cells.
Recent findings
Reported studies on the flavonoids orientin, vitexin, prunetionoside, chrysin, and scutellarein increased attention and are being widely investigated for their potential role in different parts of cancer research. Prunetionoside is a flavonoid with high cytotoxic potential and capable of inducing necroptosis in AGS gastric cancer cells. Similarly, scutellarein is a flavonol, induces an extrinsic apoptotic pathway and downregulates the expression level of cyclin proteins in HepG2 liver cancer cells. Vitexin is reported to be capable of deregulating the expression levels of p-Akt, p-mTOR, and p-PI3K in A549 lung cancer cells. Orientin inhibits IL-8 expression and invasion in MCF-7 breast cancer cells by suppressing MMP-9 in the presence of TPA via STAT3/AP-1/ERK/PKCα-mediated signaling pathways. It also induces mitochondria-mediated intrinsic apoptosis and G0/G1 cell cycle arrest in HT29 colon cancer cells. Chrysin is a flavonoid present in honey that has been shown to play an important role in cervical and colon cancer by suppressing the AKT/mTOR/PI3K pathway and increasing ROS accumulation, LDH leakage, respectively.
Collapse
|
5
|
Beszterda M, Frański R. Detection of flavone C-glycosides in the extracts from the bark of Prunus avium L. and Prunus cerasus L. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2020; 26:369-375. [PMID: 32996331 DOI: 10.1177/1469066720963003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The extracts from the bark of Prunus avium and Prunus cerasus have been analyzed by using high pressure liquid chromatography/electrospray ionization mass spectrometry. For the first time in the bark of Prunus species flavonoid C-glycosides have been detected. On the basis of the characteristic fragmentation patterns of their [M-H]- and [M + H]+ ions, three flavonoid C-glycosides have been identified, namely apigenin-6,8-di-C-glucoside (vicenin-2), apigenin-6-C-glucoside (isovitexin) and chrysin-8-C-glucoside. Taking into account the widely studied biological activities of flavonoid C-glycosides, the barks of these common fruit trees seem to be interesting materials of potential medical or cosmetic application.
Collapse
Affiliation(s)
- Monika Beszterda
- Department of Food Biochemistry and Analysis, Poznań University of Life Sciences, Poznań, Poland
| | - Rafał Frański
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
6
|
Kim MJ, Choi YA, Lee S, Choi JK, Kim YY, Kim EN, Jeong GS, Shin TY, Jang YH, Kim SH. Prunus serrulata var. spontanea inhibits mast cell activation and mast cell-mediated anaphylaxis. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112484. [PMID: 31843576 DOI: 10.1016/j.jep.2019.112484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/19/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A promising approach to treat a variety of diseases are considered as complementary and alternative herbal medicines. Prunus serrulata var. spontanea L. (Rosaceae) is used as herbal medicine to treat allergic diseases according to the Donguibogam, a tradition medical book of the Joseon Dynasty in Korea. AIM OF THE STUDY We prepared the aqueous extract of the bark of P. serrulata (AEBPS) and aimed to investigate the effects in mouse anaphylaxis models and various types of mast cells, including RBL-2H3, primary cultured peritoneal and bone marrow-derived mast cells. MATERIALS AND METHODS We used ovalbumin (OVA)-induced active systemic anaphylaxis (ASA) and immunoglobulin (Ig) E-mediated passive cutaneous anaphylaxis (PCA) models, in vivo. The control drug dexamethasone (10 mg/kg) was used to compare the effectiveness of AEBPS (1-100 mg/kg). In vitro, IgE-stimulated mast cells were used to confirm the role of AEBPS (1-100 μg/mL). For statistical analyses, p values less than 0.05 were considered to be significant. RESULTS In ASA model, oral administration of AEBPS suppressed the hypothermia and increased level of serum histamine in a dose-dependent manner. AEBPS attenuated the serum IgE, OVA-specific IgE, and interleukin (IL)-4. Oral administration of AEBPS also blocked mast cell-dependent PCA. AEBPS suppressed degranulation of mast cells by reducing intracellular calcium level in mast cells. AEBPS inhibited tumor necrosis factor-α and IL-4 expression and secretion in a concentration-dependent manner through the reduction of nuclear factor-κB. CONCLUSIONS On the basis of these findings, AEBPS could serve as a potential therapeutic target for the management of mast cell-mediated allergic inflammation and as a regulator of mast cell activation.
Collapse
Affiliation(s)
- Min-Jong Kim
- Cell and Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Young-Ae Choi
- Cell and Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Soyoung Lee
- Immunoregulatory Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Jin Kyeong Choi
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yeon-Yong Kim
- Cell and Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Immunoregulatory Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Eun-Nam Kim
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Tae-Yong Shin
- College of Pharmacy, Woosuk University, Jeonju, Republic of Korea
| | - Yong Hyun Jang
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Sang-Hyun Kim
- Cell and Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
7
|
Kwon DH, Ji JH, Yim SH, Kim BS, Choi HJ. Suppression of influenza B virus replication by sakuranetin and mode of its action. Phytother Res 2018; 32:2475-2479. [PMID: 30187587 DOI: 10.1002/ptr.6186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/06/2018] [Accepted: 08/10/2018] [Indexed: 12/17/2022]
Abstract
This study aimed to investigate in vitro the anti-influenza B/Lee/40 virus effect of sakuranetin and mode of its action. The sakuranetin exhibited potent antiviral activity against influenza B/Lee/40 virus, reducing the formation of a visible cytopathic effect, with a 50% inhibitory concentration (IC50 ) of 7.21 μg/ml and no cytotoxicity at a concentration of 100 μg/ml, and the derived therapeutic index (TI) was >13.87. Oseltamivir showed weak anti-influenza B/Lee/40 virus activity with IC50 of 80.74 μg/ml, 50% cytotoxicity concentration of >100 μg/ml, and TI of >1.24. Sakuranetin also showed effective inhibitory effects when added at the viral attachment, entry, and postentry steps. Moreover, sakuranetin effectively inactivated influenza B/Lee/40 virus infection in dose- and temperature-dependent manners. Sakuranetin indicated an inhibitory effect in viral RNA synthesis in the presence of 100 μg/ml of sakuranetin. Overall, this research revealed that sakuranetin could inhibit influenza B/Lee/40 virus replication and that sakuranetin may be involved in the virus attachment, entry, and postentry. Therefore, sakuranetin is a good candidate for a chemopreventive agent for influenza virus-related diseases.
Collapse
Affiliation(s)
- Dur-Han Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, South Korea
| | - Jeong-Hun Ji
- Department of Beauty Science, Gwangju University, Gwangju, South Korea
| | - Soon-Ho Yim
- Department of Pharmaceutical Engineering, College of Oriental Medicine, Dongshin University, Naju, South Korea
| | - Byoung-Soo Kim
- Department of Physiology, College of Korean Medicine, Daejeon University, Daejeon, South Korea
| | - Hwa-Jung Choi
- Department of Beauty Science, Kwangju Women's University, Gwangju, South Korea
| |
Collapse
|
8
|
Sakuranetin Inhibits Inflammatory Enzyme, Cytokine, and Costimulatory Molecule Expression in Macrophages through Modulation of JNK, p38, and STAT1. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:9824203. [PMID: 27668006 PMCID: PMC5030420 DOI: 10.1155/2016/9824203] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/10/2016] [Accepted: 08/14/2016] [Indexed: 01/14/2023]
Abstract
Sakuranetin is flavonoid phytoalexin that serves as a plant antibiotic and exists in Prunus and several other plant species. Recently, we identified the anti-inflammatory effect of Prunus yedoensis and found that there were few studies on the potential anti-inflammatory activity of sakuranetin, one of the main constituents of Prunus yedoensis. Here, we isolated peritoneal macrophages from thioglycollate-injected mice and examined whether sakuranetin affected the response of the macrophages in response to lipopolysaccharide (LPS) plus interferon- (IFN-) γ or LPS only. Sakuranetin suppressed the synthesis of iNOS and COX2 in LPS/IFN-γ stimulated cells and the secretion of TNF-α, IL-6, and IL-12 in LPS stimulated cells. The surface expression of the costimulatory molecules, CD86 and CD40, was also decreased. Among the LPS-induced signaling molecules, STAT1, JNK, and p38 phosphorylation was attenuated. These findings are evidence that sakuranetin acts as anti-inflammatory flavonoid and further study is required to evaluate its in vivo efficacy.
Collapse
|