1
|
Amrollahi-Sharifabadi M, Rezaei Orimi J, Adabinia Z, Shakeri T, Aghabeiglooei Z, Hashemimehr M, Rezghi M. Avicenna's views on pest control and medicinal plants he prescribed as natural pesticides. Wien Med Wochenschr 2024; 174:279-287. [PMID: 38386215 DOI: 10.1007/s10354-024-01034-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024]
Abstract
The present study aimed to introduce Avicenna's views on pest control and the medicinal plants he proposed as natural pesticides. Also, we addressed the strategies that he leveraged to formulate and prescribe them, and, finally, we put his views into perspective with modern science. The data were collected using Al-Qanun Fi Al-Tibb (The Canon of Medicine) as well as scientific databases. According to Al-Qanun Fi Al-Tibb, 42 medicinal plants are described as natural pest control agents. After introducing the pest control properties of each plant, Avicenna explained the appropriate strategies for use of these plants. These strategies or formulations included incensing, spraying, spreading, rubbing, smudging, and scent-dispersing, which are equivalent to the modern pesticide formulations of fumigants, aerosols, pastes and poisoned baits, lotions, creams, and slow-release formulations, respectively. This study revealed that Avicenna introduced the pest control approach with natural plants in his book Al-Qanun Fi Al-Tibb and, thus, harnessed the power of nature to control nature. Future research is recommended to find the pest control merits of the presented medicinal plants, in order to incorporate them into pest control programs and reduce environmental pollution resulting from the complications of current synthetic pesticides.
Collapse
Affiliation(s)
| | - Jamal Rezaei Orimi
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Zahra Adabinia
- Dr. Nourani Vesal Museum and Scientific and Cultural Documentation Center, Shiraz, Iran
| | - Tahereh Shakeri
- Faculty of Allied Medical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Aghabeiglooei
- Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran
| | - Mohammad Hashemimehr
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maedeh Rezghi
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
- Department of Traditional Medicine, School of Traditional Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
2
|
Baz MM, Selim AM, Radwan IT, Alkhaibari AM, Gattan HS, Alruhaili MH, Alasmari SM, Gad ME. Evaluating larvicidal, ovicidal and growth inhibiting activity of five medicinal plant extracts on Culex pipiens (Diptera: Culicidae), the West Nile virus vector. Sci Rep 2024; 14:19660. [PMID: 39191818 PMCID: PMC11350158 DOI: 10.1038/s41598-024-69449-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Mosquitoes, one of the deadliest animals on the planet, cause millions of fatalities each year by transmitting several human illnesses. Synthetic pesticides were previously used to prevent the spread of diseases by mosquitoes, which was effective in protecting humans but caused serious human health problems, environmental damage, and developed mosquito pesticide resistance. This research focuses on exploring new, more effective, safer, and environmentally friendly compounds to improve mosquito vector management. Phytochemicals are possible biological agents for controlling pests and many are target-specific, rapidly biodegradable, and eco-friendly. The potential of extracts of Lantana camara, Melia azedarach, Nerium oleander, Ricinus communis, and Withania somnifera against 3rd instar Culex pipiens (Common house mosquito) larvae was evaluated. Methanol extracts had more toxic effects against Cx. pipiens larvae (95-100%, 24 h post-treatment) than aqueous extracts (63-91%, 24 h post-treatment). The methanol extracts of Nerium oleander (LC50 = 158.92 ppm) and Ricinus communis (LC50 = 175.04 ppm) were very effective at killing mosquito larvae, 24 h after treatment. N. oleander (LC50 = 373.29 ppm) showed high efficacy in aqueous plant extracts. Among the different extracts of the five plants screened, the methanol extract of R. communis recorded the highest ovicidal activity of 5% at 800 ppm concentration. Total developmental duration and growth index were highly affected by R. communis and M. azedarach methanol extracts. In field tests it was clear that plant extracts decreased mosquito larval density, especially when mixed with mosquito Bti briquette, with stability up to seven days for N. oleander. GC-MS results showed that the methanol extract had a higher number of chemical compounds, particularly with more terpene compounds. A high-performance liquid chromatography (HPLC) technique was used to detect the existence of non-volatile polyphenols and flavonoids. All five methanol extracts showed high concentrations of active ingredients such as gallic acid, chlorogenic acid (more than 100 μg/ml) and the rosmarinic acid was also found in all the five extracts in addition to 17 active polyphenols and flavonoids presented at moderate to low concentrations. Molecular modeling of 18 active ingredients detected by the HPLC were performed to the vicinity of one of the fatty acid binding proteins of lm-FABP (PDB code: 2FLJ). Rutin, Caffeic acid, coumaric acid and rosmarinic acid which presented densely in R. communis and N. oleander showed multiple and stable intermolecular hydrogen bonding and π-π stacking interactions. The inhibition ability of the fatty acid binding protein, FABP4, was evaluated with remarkable receptor inhibition evident, especially with R. communis and N. oleander having inhibitory concentrations of IC50 = 0.425 and 0.599 µg/mL, respectively. The active phytochemical compounds in the plants suggest promising larvicidal and ovicidal activity, and have potential as a safe and effective alternative to synthetic insecticides.
Collapse
Affiliation(s)
- Mohamed M Baz
- Entomology Department, Faculty of Science, Benha University, Benha, 13518, Qalyubiya, Egypt
| | - Abdelfattah M Selim
- Department of Animal Medicine (Infectious Diseases), College of Veterinary Medicine, Benha University, Toukh, 13736, Egypt.
| | - Ibrahim Taha Radwan
- Supplementary General Sciences Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, 11835, Egypt.
| | - Abeer Mousa Alkhaibari
- Department of Biology, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Hattan S Gattan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Mohammed H Alruhaili
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King AbdulAziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Saeed M Alasmari
- Department of Biology, Faculty of Science and Arts, Najran University, 1988, Najran, Saudi Arabia
| | - Mohammed E Gad
- Department of Zoology and Entomology, Faculty of Science, Al Azhar University, Nasr City, 11884, Cairo, Egypt
| |
Collapse
|
3
|
Alami A, El Ouali Lalami A, Annemer S, El-Akhal F, Ez zoubi Y, Farah A. Chemical Composition and Larvicidal Properties of Essential Oils from Wild and Cultivated Artemisia campestris L., an Endemic Plant in Morocco. ScientificWorldJournal 2023; 2023:5748133. [PMID: 37849964 PMCID: PMC10578985 DOI: 10.1155/2023/5748133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
The Asteraceae family is well known for its toxic and repellent activity against mosquitoes. In this study, essential oils (EOs) extracted from the aerial parts of both wild and cultivated Artemisia campestris L. plants were tested for larvicidal activity against Culex pipiens (Diptera: Culicidae), a pest mosquito widely suspected to be the vector responsible for West Nile virus transmission. The research aims at comparing the chemical composition and insecticidal activity of cultivated and wild A. campestris EOs. The EOs were obtained by hydrodistillation from the plant's aerial parts and were analyzed using GC-MS. Furthermore, the larviciding experiment was carried out following the standard WHO protocol. The result showed that wild and cultivated plant EOs differed only quantitatively, while the qualitative profile revealed a nearly identical chemical composition. Camphor (18.98%), car-3-en-5-one (11.25%), thujone (6.36%), chrysanthenone (6.24%), filifolone (4.56%), and borneol (3.56%) dominate the wild plant EO. Camphor (21.01%), car-3-en-5-one (17%), chrysanthenone (10.15%), filifolone (7.90%), borneol (3.38%), and thujone (3.08%) are the major compounds of the cultivated plant. Cultivation did not affect the EO production since the yield of the cultivated plant was 0.5 ± 0.1% and 0.6 ± 0.2% for the wild plant. The cultivated A. campestris EO had the highest insecticidal activity (LC50 = 9.79 µg/ml), and no significant difference was noticed between wild and cultivated A. campestris EO in terms of LC90. These findings could pave the way for a new method of producing biocides to control major disease vectors and offer a potential alternative for pest control.
Collapse
Affiliation(s)
- Abdellatif Alami
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Techniques of Fez, Sidi Mohamed Ben Abdellah University, Route d'Imouzzer, Fez, Morocco
| | - Abdelhakim El Ouali Lalami
- Institute of Nursing Professions and Health Techniques of Fez, Regional Health Directorate, EL Ghassani Hospital, Fez 30000, Morocco
| | - Saoussan Annemer
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Techniques of Fez, Sidi Mohamed Ben Abdellah University, Route d'Imouzzer, Fez, Morocco
| | - Fouad El-Akhal
- Institute of Nursing Professions and Health Techniques of Tetouan (Annex Al Hoceima), Regional Health Directorate, Hospital Mohammed V, Al Hoceima 32000, Morocco
| | - Yassine Ez zoubi
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Techniques of Fez, Sidi Mohamed Ben Abdellah University, Route d'Imouzzer, Fez, Morocco
- Biotechnology, Environmental Technology and Valorization of Bio-Resources Team, Department of Biology, Faculty of Sciences and Techniques Al-Hoceima, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Abdellah Farah
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Techniques of Fez, Sidi Mohamed Ben Abdellah University, Route d'Imouzzer, Fez, Morocco
| |
Collapse
|
4
|
El-Kasem Bosly HA. Larvicidal and adulticidal activity of essential oils from plants of the Lamiaceae family against the West Nile virus vector, Culex pipiens (Diptera: Culicidae). Saudi J Biol Sci 2022; 29:103350. [PMID: 35762012 PMCID: PMC9232543 DOI: 10.1016/j.sjbs.2022.103350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/01/2022] [Accepted: 06/10/2022] [Indexed: 12/17/2022] Open
Abstract
Culex pipiens mosquitoes are the most widely distributed primary vector of the West Nile virus worldwide. Many attempts for investigation of botanical pesticides to avoid the development of pesticide resistance to conventional synthetic pesticides that are recognized as a threat to the diversity of ecosystems. The study aimed to determine the components of three essential oils of Lamiaceae family, lavender (Lavandula angustifolia), peppermint (Mentha piperita L.), and rosemary (Rosmarinus officinalis L.) by gas chromatography-mass spectrometry (GC–MS) analysis. Furthermore, aimed to validate the insecticidal activities of these oils as larvicidal agents against the third instar larvae of Culex pipiens using five different concentrations (62.5, 125, 250, 500, and 1000 ppm) for each oil in five replicates and as an adulticidal agent against approximately three-day-old female adults of Cx. Pipiens using 0.5, 1, 2, 4, and 5% concentrations in three replicates. The results generally showed a dose-related response. At 1000 ppm, rosemary oil showed the highest larvicidal (100%) (LC50, 214.97 ppm), followed by peppermint oil (92.00% mortality and LC50 (269.35 ppm). Lavender oil showed the lowest efficacy with 87.20% mortality and LC50 (301.11 ppm). At 5% oil concentration, the highest knockdown rate at 1 h was recorded for lavender oil (95.55%), followed by peppermint oil (88.89%) and lastly rosemary oil (84.44%). After 24 h, rosemary oil showed the lowest adult mortality rate (88.89%; LC50, 1.44%), while lavender and peppermint oils both showed a 100% mortality rate, with (LC50, 0.81% and 0.91%, respectively). The chemical constituents of the oils consisted of monoterpenes and sesquiterpenes that determined their insecticidal activities against the target insect stage. The study proposed that rosemary essential oil may be useful for the control of Cx. pipiens larvae as part of an integrated water treatment strategy, and lavender and peppermint oils may be used in an integrated plan for adult’s control.
Collapse
Affiliation(s)
- Hanan Abo El-Kasem Bosly
- Entomology Biology Department, Faculty of Science, Jazan University, PO Box 2097, Jizan 45142, Saudi Arabia
| |
Collapse
|