1
|
Grambusch IM, Schmitz C, Schlabitz C, Ducati RG, Lehn DN, Volken de Souza CF. Encapsulation of Saccharomyces spp. for Use as Probiotic in Food and Feed: Systematic Review and Meta-analysis. Probiotics Antimicrob Proteins 2024; 16:1979-1995. [PMID: 39249640 DOI: 10.1007/s12602-024-10331-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 09/10/2024]
Abstract
Probiotics, particularly yeasts from the genus Saccharomyces, are valuable for their health benefits and potential as antibiotic alternatives. To be effective, these microorganisms must withstand harsh environmental conditions, necessitating advanced protective technologies such as encapsulation to maintain probiotic viability during processing, storage, and passage through the digestive system. This review and meta-analysis aims to describe and compare methods and agents used for encapsulating Saccharomyces spp., examining operating conditions, yeast origins, and species. It provides an overview of the literature on the health benefits of nutritional yeast consumption. A bibliographic survey was conducted following the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. The meta-analysis compared encapsulation methods regarding their viability after encapsulation and exposure to the gastrointestinal tract. Nineteen studies were selected after applying inclusion/exclusion criteria. Freeze drying was found to be the most efficient for cell survival, while ionic gelation was best for maintaining viability after exposure to the gastrointestinal tract. Consequently, the combination of freeze drying and ionic gelation proved most effective in maintaining high cell viability during encapsulation, storage, and consumption. Research on probiotics for human food and animal feed indicates that combining freeze drying and ionic gelation effectively protects Saccharomyces spp.; however, industrial scalability must be considered. Reports on yeast encapsulation using agro-industrial residues as encapsulants offer promising strategies for preserving potential probiotic yeasts, contributing to the environmental sustainability of industrial processes.
Collapse
Affiliation(s)
- Isabel Marie Grambusch
- Food Biotechnology Laboratory, University of Vale Do Taquari - Univates, Lajeado, RS, Brazil
| | - Caroline Schmitz
- Food Biotechnology Laboratory, University of Vale Do Taquari - Univates, Lajeado, RS, Brazil
| | - Cláudia Schlabitz
- Food Biotechnology Laboratory, Graduate Program in Biotechnology, University of Vale Do Taquari - Univates, Av. Avelino Tallini, 171, ZC 95914-014, Lajeado, RS, Brazil
| | - Rodrigo Gay Ducati
- Graduate Program in Biotechnology, University of Vale Do Taquari - Univates, Lajeado, RS, Brazil
| | - Daniel Neutzling Lehn
- Food Biotechnology Laboratory, Graduate Program in Biotechnology, University of Vale Do Taquari - Univates, Av. Avelino Tallini, 171, ZC 95914-014, Lajeado, RS, Brazil
| | - Claucia Fernanda Volken de Souza
- Food Biotechnology Laboratory, Graduate Program in Biotechnology, University of Vale Do Taquari - Univates, Av. Avelino Tallini, 171, ZC 95914-014, Lajeado, RS, Brazil.
| |
Collapse
|
2
|
Inhibition of Aflatoxin B1 Synthesis in Aspergillus flavus by Mate ( Ilex paraguariensis), Rosemary ( Rosmarinus officinalis) and Green Tea ( Camellia sinensis) Extracts: Relation with Extract Antioxidant Capacity and Fungal Oxidative Stress Response Modulation. Molecules 2022; 27:molecules27238550. [PMID: 36500642 PMCID: PMC9739609 DOI: 10.3390/molecules27238550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Plant extracts may represent an ecofriendly alternative to chemical fungicides to limit aflatoxin B1 (AFB1) contamination of foods and feeds. Mate (Ilex paraguariensis), rosemary (Romarinus officinalis) and green tea (Camellia sinensis) are well known for their beneficial properties, which are mainly related to their richness in bioactive phenolic compounds. AFB1 production is inhibited, with varying efficiency, by acetone/water extracts from these three plants. At 0.45 µg dry matter (DM)/mL of culture medium, mate and green tea extracts were able to completely inhibit AFB1 production in Aspergillus flavus, and rosemary extract completely blocked AFB1 biosynthesis at 3.6 µg DM/mL of culture medium. The anti-AFB1 capacity of the extracts correlated strongly with their phenolic content, but, surprisingly, no such correlation was evident with their antioxidative ability, which is consistent with the ineffectiveness of these extracts against fungal catalase activity. Anti-AFB1 activity correlated more strongly with the radical scavenging capacity of the extracts. This is consistent with the modulation of SOD induced by mate and green tea in Aspergillus flavus. Finally, rutin, a phenolic compound present in the three plants tested in this work, was shown to inhibit AFB1 synthesis and may be responsible for the anti-mycotoxin effect reported herein.
Collapse
|
3
|
Emadi A, Eslami M, Yousefi B, Abdolshahi A. In vitro strain specific reducing of aflatoxin B1 by probiotic bacteria: a systematic review and meta-analysis. TOXIN REV 2022. [DOI: 10.1080/15569543.2021.1929323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Alireza Emadi
- Semnan University of Medical Sciences and Health Services, Semnan, Iran
| | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Anna Abdolshahi
- Semnan University of Medical Sciences and Health Services, Semnan, Iran
| |
Collapse
|
4
|
Detoxification of AFB1 by Yeasts Isolates from Kefir and Traditional Kefir-Like Products. MEDICAL LABORATORY JOURNAL 2022. [DOI: 10.52547/mlj.16.4.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
5
|
Moradi L, Paimard G, Sadeghi E, Rouhi M, Mohammadi R, Noroozi R, Safajoo S. Fate of aflatoxins M 1 and B 1 within the period of production and storage of Tarkhineh: A traditional Persian fermented food. Food Sci Nutr 2022; 10:945-952. [PMID: 35311167 PMCID: PMC8907732 DOI: 10.1002/fsn3.2728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 12/29/2022] Open
Abstract
The objective of the study was to assess the amount of aflatoxin M1 (AFM1) and aflatoxin B1 (AFB1) during fermentation, drying, and storage of Tarkhineh-a traditional Persian fermented food-over four months. Tarkhineh samples were produced based on a traditional method. Various concentrations of AFB1 (2.5, 5, 7.5, and 10 µg/kg) and AFM1, stood at 0.25, 0.5, 0.75, and 1 µg/kg, were added to Iranian yogurt drink, called doogh, samples. Tarkhineh samples were evaluated for AFB1 and AFM1 on days 0, 2, 6, and 8 and also after drying and four months of storage. In cases of repeatability, recovery, and reproducibility, the high-performance liquid chromatography through fluorescence detector (HPLC-FD) method was successfully done to demonstrate aflatoxins (AFs) in Tarkhineh samples. The fermentation process had a considerable consequence on the reduction in AFM1 and AFB1 as compared to the control group, evidenced by 65.10%-81.20% and 55.80%-74.10%, respectively, after eight days of fermentation (p < .05). The highest reduction in AFB1 existed in samples containing 2.5 µg/kg toxin, followed by 5, 7.5, and 10 µg/kg, respectively. A similar trend was found for AFM1, as the highest concentration was found in samples containing 0.25 µg/kg toxin, followed by 0.5, 0.75, and 1 µg/kg, respectively.
Collapse
Affiliation(s)
- Leila Moradi
- Student Research CommitteeDepartment of Food Science and TechnologySchool of Nutrition Sciences and Food TechnologyKermanshah University of Medical SciencesKermanshahIran
| | - Giti Paimard
- Department of Food Science and TechnologySchool of Nutrition Sciences and Food TechnologyResearch Center for Environmental Determinants of Health (RCEDH)Health InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Ehsan Sadeghi
- Department of Food Science and TechnologySchool of Nutrition Sciences and Food TechnologyResearch Center for Environmental Determinants of Health (RCEDH)Health InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Milad Rouhi
- Department of Food Science and TechnologySchool of Nutrition Sciences and Food TechnologyResearch Center for Environmental Determinants of Health (RCEDH)Health InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Reza Mohammadi
- Department of Food Science and TechnologySchool of Nutrition Sciences and Food TechnologyResearch Center for Environmental Determinants of Health (RCEDH)Health InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Razieh Noroozi
- Student Research CommitteeDepartment of Food Science and TechnologySchool of Nutrition Sciences and Food TechnologyKermanshah University of Medical SciencesKermanshahIran
| | - Saeede Safajoo
- Student Research CommitteeDepartment of Food Science and TechnologySchool of Nutrition Sciences and Food TechnologyKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
6
|
Parappilly SJ, Idicula DV, Chandran A, Mathil Radhakrishnan K, George SM. Antifungal activity of human gut lactic acid bacteria against aflatoxigenic
Aspergillus flavus
MTCC 2798 and their potential application as food biopreservative. J Food Saf 2021. [DOI: 10.1111/jfs.12942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Dona V. Idicula
- Department of Microbiology Sree Sankara College Kalady Kerala India
| | - Archana Chandran
- College of Dairy Sciences & Technology Kerala Veterinary and Animal Sciences University Pookode Kerala India
| | | | - Sumi Mary George
- Department of Microbiology Sree Sankara College Kalady Kerala India
| |
Collapse
|
7
|
Ansari F, Alian Samakkhah S, Bahadori A, Jafari SM, Ziaee M, Khodayari MT, Pourjafar H. Health-promoting properties of Saccharomyces cerevisiae var. boulardii as a probiotic; characteristics, isolation, and applications in dairy products. Crit Rev Food Sci Nutr 2021; 63:457-485. [PMID: 34254862 DOI: 10.1080/10408398.2021.1949577] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Saccharomyces cerevisiae var. boulardii (S. boulardii) has been isolated from lychee (Litchi chinensis), mangosteen fruit, kombucha, and dairy products like kefir. Dairy products containing S. boulardii have been revealed to possess potential probiotic activities owing to their ability to produce organic acids, essential enzymes, vitamins, and other important metabolites such as vanillic acid, phenyl ethyl alcohol, and erythromycin. S. boulardii has a wide spectrum of anti-carcinogenic, antibacterial antiviral, and antioxidant activity, and is known to reduce serum cholesterol levels. However, this yeast has mainly been prescribed for prophylaxis treatment of gastrointestinal infectious diseases, and stimulating the immune system in a number of commercially available products. The present comprehensive review article reviews the properties of S. boulardii related to their use in fermented dairy foods as a probiotic microorganism or starter culture. Technical aspects regarding the integration of this yeast into the dairy foods matrix its health advantages, therapeutic functions, microencapsulation, and viability in harsh conditions, and safety aspects are highlighted.
Collapse
Affiliation(s)
- Fereshteh Ansari
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.,Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Iranian EBM Centre: A Joanna Briggs Institute Affiliated Group
| | - Shohre Alian Samakkhah
- Department of Food Hygiene and Quality Control, Faculty of Veterinary of Medicine, Amol University of Special Modern Technology, Amol, Iran
| | - Ali Bahadori
- Department of Medical Microbiology, Sarab Faculty of Medical Sciences, Sarab, Iran
| | - Seyedeh Maedeh Jafari
- Department of Comparative Bioscience, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran
| | - Mojtaba Ziaee
- Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran
| | | | - Hadi Pourjafar
- Alborz University of Medical Sciences, Dietary Supplements and Probiotic Research Center, Karaj, Iran.,Department of Food Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
8
|
Fouad MT, El-Desouky TA. Anti-Toxigenic Effect of Lactic Acid Bacteria Against Aspergillus spp Isolated from Wheat Grains. Open Microbiol J 2020. [DOI: 10.2174/1874434602014010252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Introduction:
Many fungi infect the wheat grains. Under field and or storage conditions from temperature and humidity, some fungi can produce aflatoxins (AFs), which may cause acute or chronic diseases. Therefore, there is a necessary and urgent need to find an effective and safe way to reduce or remove AFs.
Objective:
The objective of this study was the evaluation of Lactobacillus rhamnosus, Lactobacillus gasseri, and Lactobacillus plantarum for their ability to reduce and or remove AFs produced by Aspergillus flavus and Aspergillus parasiticus, which were isolated from wheat grains, as well as control of AFs produced on affected wheat grain by A.parasiticus spores only.
Methods:
LAB, isolated from some local dairy products, were cultured in MRS for the evaluation of their ability to remove AFs, produced by A. flavus and A. parasiticus on (YES) media, in addition to the treatment of wheat grains by LAB cells to prevent AFs produced by A. parasiticus.
Results:
The L. rhamnosus strain gave the highest reduction rates of AFs produced by A. parasiticus that were 62.6, 44.4, 43.3, and 52.2% for AFG1, AFB1, AFG2, and AFB2, respectively. While in the case of A. flavus, the reduction was 50.4, 42.7, 40.6, and 36.8% in the same order of toxins. When applied, these strains with wheat grains were affected by A. parasiticus, the inhibition rates of AFs were ranged between 61.4 and 75.8% with L. rhamnosus strain and 43.7 to 52.1% with L. gasseri, while L. plantarum strain ranged from 55.5 to 66.9%.
Conclusion:
According to this study, L. rhamnosus is considered one of the best strains in this field. Therefore, the present study suggests applied use of LAB as a treatment to prevent AFs production in wheat grains.
Collapse
|
9
|
Jubeen F, Sher F, Hazafa A, Zafar F, Ameen M, Rasheed T. Evaluation and detoxification of aflatoxins in ground and tree nuts using food grade organic acids. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020; 29:101749. [DOI: 10.1016/j.bcab.2020.101749] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Fungi and Aflatoxin Levels in Traditionally Processed Cassava ( Manihot esculenta Crantz) Products in Homa Bay County, Kenya. Int J Microbiol 2020; 2020:3406461. [PMID: 32908522 PMCID: PMC7471817 DOI: 10.1155/2020/3406461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/16/2020] [Accepted: 08/01/2020] [Indexed: 11/17/2022] Open
Abstract
Cassava (Manihot esculenta Crantz) is a major source of carbohydrates, calcium, vitamins (B and C), and essential minerals and is the third most important source of calories in the tropics. However, it is not clear if the traditional processing methods expose the products to microbial contamination. This study assessed the levels of fungi and aflatoxin contamination in traditionally processed cassava products (Akuoga and Abeta). A total of 38 samples were collected from the local markets in 7 subcounties in Homa Bay County, Kenya. The levels of aflatoxin were determined using an indirect competitive ELISA protocol. Yeast and mould contamination was determined using ISO 21527-2 method. Mean aflatoxin levels in chopped, fermented, and sun-dried cassava (Akuoga) were 0.36 μg/kg compared to 0.25 μg/kg in chopped and sun-dried (Abeta) products. Aflatoxin contamination was detected in 55% of the samples and ranged from 0–5.33 μg/kg. These levels are within 10 μg/kg recommended by the CODEX STAN 193-1995. Yeast and mould counts in fermented and chopped sun-dried products were 3.16 log Cfu/g and 2.92 log Cfu/g, respectively. The yeast and mould counts were above standards set by East African Standard 739:2010 in 62% (Akuoga) and 58% (Abeta). The most prevalent fungal species were Saccharomyces cerevisiae (68.4%) and Candida rugosa (68%) followed by Candida parapsilosis (18.4%), Candida tropicalis (15.8%), Candida humilis (15.8%), and Aspergillus spp. (5.3%). Aspergillus spp. was the only mycotoxigenic mould isolated from the samples. The study shows that cassava consumers are exposed to the risk of aflatoxin poisoning. The study, therefore, recommends appropriate surveillance to ensure safety standards.
Collapse
|
11
|
Abstract
The review covers achievements and developments in the field of probiosis and prebiosis originating from sources other than dairy sources, mainly from plant material like cereals. The actual definitions of probiotic microorganisms, prebiotic, and postbiotic compounds and functional food are discussed. The presentation takes into account the relations between selected food components and their effect on probiotic bacteria, as well as effects on some health issues in humans. The review also focuses on the preservation of cereals using probiotic bacteria, adverse effects of probiotics and prebiotics, and novel possibilities for using probiotic bacteria in the food industry.
Collapse
|
12
|
Azeem N, Nawaz M, Anjum AA, Saeed S, Sana S, Mustafa A, Yousuf MR. Activity and Anti-Aflatoxigenic Effect of Indigenously Characterized Probiotic Lactobacilli against Aspergillus flavus-A Common Poultry Feed Contaminant. Animals (Basel) 2019; 9:E166. [PMID: 30991667 PMCID: PMC6523852 DOI: 10.3390/ani9040166] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/28/2019] [Accepted: 04/11/2019] [Indexed: 11/16/2022] Open
Abstract
Aflatoxin contamination in human food and animal feed is a threat to public safety. Aflatoxin B1 (AFB1) can be especially damaging to poultry production and consequently economic development of Pakistan. The present study assessed the in vitro binding of AFB1 by indigenously characterized probiotic lactobacilli. Six isolates (Lactobacillus gallinarum PDP 10, Lactobacillus reuetri FYP 38, Lactobacillus fermentum PDP 24, Lactobacillus gallinarum PL 53, Lactobacillus paracasei PL 120, and Lactobacillus gallinarum PL 149) were tested for activity against toxigenic Aspergillus flavus W-7.1 (AFB1 producer) by well diffusion assay. Only three isolates (PL 53, PL 120, and PL 149) had activity against A. flavus W-7.1. The ameliorative effect of these probiotic isolates on AFB1 production was determined by co-culturing fungus with lactobacilli for 12 days, followed by aflatoxin quantification by high-performance liquid chromatography. In vitro AFB1 binding capacities of lactobacilli were determined by their incubation with a standard amount of AFB1 in phosphate buffer saline at 37 °C for 2 h. AFB1 binding capacities of isolates ranged from 28-65%. Four isolates (PDP 10, PDP 24, PL 120, and PL 149) also ceased aflatoxin production completely, whereas PL 53 showed 55% reduction in AFB1 production as compared to control. The present study demonstrated Lactobacillus gallinarum PL 149 to be an effective candidate AFB1 binding agent against Aspergillus flavus. These findings further support the binding ability of lactic acid bacteria for dietary contaminants.
Collapse
Affiliation(s)
- Nimra Azeem
- Department of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Punjab, Pakistan.
| | - Muhammad Nawaz
- Department of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Punjab, Pakistan.
| | - Aftab Ahmad Anjum
- Department of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Punjab, Pakistan.
| | - Shagufta Saeed
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore 54000, Punjab, Pakistan.
| | - Saba Sana
- Department of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Punjab, Pakistan.
| | - Amina Mustafa
- Department of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Punjab, Pakistan.
| | - Muhammad Rizwan Yousuf
- Department of Theriogenology, University of Veterinary and Animal Sciences, Lahore 54000, Punjab, Pakistan.
| |
Collapse
|
13
|
Lazo-Vélez MA, Serna-Saldívar SO, Rosales-Medina MF, Tinoco-Alvear M, Briones-García M. Application of Saccharomyces cerevisiae var. boulardii in food processing: a review. J Appl Microbiol 2018; 125:943-951. [PMID: 29961970 DOI: 10.1111/jam.14037] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/09/2018] [Accepted: 06/20/2018] [Indexed: 12/18/2022]
Abstract
Probiotics are increasingly being added to food in order to develop products with health-promoting properties. Particularly, Saccharomyces cereviceae var. boulardii yeast is recently being investigated like a starting-culture for development of functional and probiotic foods. Although the literature is abundant on the beneficial effects of S. boulardii on health, slight information is available on the effects of supplementing this probiotic to food systems. The aim of this paper is to examine the applications of S. boulardii to different food matrices and its implication in food processing (stability, sensorial properties and other technological implications) and the concomitant effects on nutrition and health.
Collapse
Affiliation(s)
- M A Lazo-Vélez
- Universidad del Azuay, Grupos Estratégicos de Investigación de la Carrera de Alimentos (GEICA-UDA), Cuenca, Ecuador
| | - S O Serna-Saldívar
- Tecnológico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, México
| | - M F Rosales-Medina
- Universidad del Azuay, Grupos Estratégicos de Investigación de la Carrera de Alimentos (GEICA-UDA), Cuenca, Ecuador
| | - M Tinoco-Alvear
- Universidad del Azuay, Grupos Estratégicos de Investigación de la Carrera de Alimentos (GEICA-UDA), Cuenca, Ecuador
| | - M Briones-García
- Universidad del Azuay, Grupos Estratégicos de Investigación de la Carrera de Alimentos (GEICA-UDA), Cuenca, Ecuador
| |
Collapse
|
14
|
Chiocchetti GM, Jadán-Piedra C, Monedero V, Zúñiga M, Vélez D, Devesa V. Use of lactic acid bacteria and yeasts to reduce exposure to chemical food contaminants and toxicity. Crit Rev Food Sci Nutr 2018; 59:1534-1545. [PMID: 29337587 DOI: 10.1080/10408398.2017.1421521] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Chemical contaminants that are present in food pose a health problem and their levels are controlled by national and international food safety organizations. Despite increasing regulation, foods that exceed legal limits reach the market. In Europe, the number of notifications of chemical contamination due to pesticide residues, mycotoxins and metals is particularly high. Moreover, in many parts of the world, drinking water contains high levels of chemical contaminants owing to geogenic or anthropogenic causes. Elimination of chemical contaminants from water and especially from food is quite complex. Drastic treatments are usually required, which can modify the food matrix or involve changes in the forms of cultivation and production of the food products. These modifications often make these treatments unfeasible. In recent years, efforts have been made to develop strategies based on the use of components of natural origin to reduce the quantity of contaminants in foods and drinking water, and to reduce the quantity that reaches the bloodstream after ingestion, and thus, their toxicity. This review provides a summary of the existing literature on strategies based on the use of lactic acid bacteria or yeasts belonging to the genus Saccharomyces that are employed in food industry or for dietary purposes.
Collapse
Affiliation(s)
- Gabriela Matuoka Chiocchetti
- a Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , C/ Agustín Escardino 7 - Paterna (Valencia) , Spain
| | - Carlos Jadán-Piedra
- a Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , C/ Agustín Escardino 7 - Paterna (Valencia) , Spain
| | - Vicente Monedero
- a Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , C/ Agustín Escardino 7 - Paterna (Valencia) , Spain
| | - Manuel Zúñiga
- a Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , C/ Agustín Escardino 7 - Paterna (Valencia) , Spain
| | - Dinoraz Vélez
- a Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , C/ Agustín Escardino 7 - Paterna (Valencia) , Spain
| | - Vicenta Devesa
- a Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , C/ Agustín Escardino 7 - Paterna (Valencia) , Spain
| |
Collapse
|
15
|
Hamad GM, Zahran E, Hafez EE. The efficacy of bacterial and yeasts strains and their combination to bind aflatoxin B1 and B2 in artificially contaminated infants food. J Food Saf 2017. [DOI: 10.1111/jfs.12365] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gamal M. Hamad
- Food Technology Department; Arid Lands and Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA- CITY); New Borg El-Arab City Alexandria Egypt
| | - Eman Zahran
- Department of Internal Medicine, Infections, and Fish Diseases, Faculty of Veterinary Medicine; Mansoura University; Mansoura Dakahlia Egypt
| | - Elsayed E. Hafez
- Plant Protection and Biomolecular Diagnosis Department; Arid Land Cultivation Research Institute, City of Scientific Research and Technology Applications (SRTA- CITY); New Borg El-Arab City Alexandria Egypt
| |
Collapse
|
16
|
Saber A, Alipour B, Faghfoori Z, Mousavi Jam A, Yari Khosroushahi A. Secretion metabolites of probiotic yeast, Pichia kudriavzevii AS-12, induces apoptosis pathways in human colorectal cancer cell lines. Nutr Res 2017; 41:36-46. [PMID: 28477945 DOI: 10.1016/j.nutres.2017.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/22/2017] [Accepted: 04/12/2017] [Indexed: 02/08/2023]
Abstract
There is a common agreement on the important role of the gastrointestinal microbiota in the etiology of cancer. Benign probiotic yeast strains are able to ameliorate intestinal microbiota and regulate the host metabolism, physiology, and immune system through anti-inflammatory, antiproliferative, and anticancer effects. We hypothesized that Pichia kudriavzevii AS-12 secretion metabolites possess anticancer activity on human colorectal cancer cells (HT-29, Caco-2) via inhibiting growth and inducing apoptosis. This study aimed to assess the anticancer effect of P. kudriavzevii AS-12 secretion metabolites and the underlying mechanisms. The cytotoxicity evaluations were performed via 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide assay; 4',6-diamidino-2-phenylindole staining; and FACS-flow cytometry tests. Also, the effects of P. kudriavzevii AS-12 secretion metabolites on the expression level of 6 important genes (BAD, Bcl-2, Caspase-3, Caspase-8, Caspase-9 and Fas-R) involved in the extrinsic and intrinsic apoptosis pathways were studied by real-time polymerase chain reaction method. P. kudriavzevii AS-12 secretion metabolites showed significant (P < .0001) cytotoxic effects on HT-29 cells (57.5%) and Caco-2 (32.5%) compared to KDR/293 normal cells (25%). Moreover, the cytotoxic effects of examined yeast supernatant on HT-29 cells were comparable with 5-fluorouracil, as a positive control (57.5% versus 62.2% respectively). Flow cytometric results showed that the induction of apoptosis is the main mechanism of the anticancer effects. Also, according to the reverse transcriptase polymerase chain reaction results, the expression level of proapoptotic genes (BAD, Caspase-3, Caspase-8, Caspase-9, and Fas-R) in treated HT-29 and Caco-2 cells was higher than untreated and normal cells, whereas the antiapoptotic gene (Bcl-2) was downregulated. P. kudriavzevii AS-12 secretion metabolites exert its anticancer effects by inhibiting cell proliferation and inducing intrinsic and extrinsic apoptosis in colon cancer cells.
Collapse
Affiliation(s)
- Amir Saber
- Biotechnology Research Center, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Diet Therapy, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Beitollah Alipour
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Ali Mousavi Jam
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Drug Applied Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Saber A, Alipour B, Faghfoori Z, Yari Khosroushahi A. Cellular and molecular effects of yeast probiotics on cancer. Crit Rev Microbiol 2016; 43:96-115. [PMID: 27561003 DOI: 10.1080/1040841x.2016.1179622] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cancer is one of the main causes of human deaths worldwide. The exact mechanisms of initiation and progression of malignancies are not clear yet, but there is a common agreement about the role of colonic microbiota in the etiology of different cancers. Probiotics have been examined for their anti-cancer effects, and different mechanisms have been suggested about their antitumor functions. Nonpathogenic yeasts, as members of probiotics family, can be effective on gut microbiota dysbiosis. Generally safe yeasts have shown so many beneficial effects on human health. Probiotic yeasts influence physiology, metabolism, and immune homeostasis in the colon and contribute to cancer treatment due to possessing anti-inflammatory, anti-proliferative and anti-cancer properties. This study reviews some of the health-beneficial effects of probiotic yeasts and their biological substances like folic acid and β-glucan on cancer and focuses on the possible cellular and molecular mechanisms of probiotic yeasts such as influencing pathogenic bacteria, inactivation of carcinogenic compounds, especially those derived from food, improvement of intestinal barrier function, modulation of immune responses, antitoxic function, apoptosis, and anti-proliferative effects.
Collapse
Affiliation(s)
- Amir Saber
- a Biotechnology Research Center, Faculty of Nutrition, Tabriz University of Medical Sciences , Tabriz , Iran.,b Student Research Committee, Faculty of Nutrition, Tabriz University of Medical Sciences , Tabriz , Iran.,c Department of Biochemistry and Diet Therapy , Faculty of Nutrition, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Beitollah Alipour
- c Department of Biochemistry and Diet Therapy , Faculty of Nutrition, Tabriz University of Medical Sciences , Tabriz , Iran.,d Nutrition Research Center, Faculty of Nutrition, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Zeinab Faghfoori
- e Faculty of Medicine, Semnan University of Medical Sciences , Semnan , Iran
| | - Ahmad Yari Khosroushahi
- f Drug Applied Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran.,g Department of Pharmacognosy , Faculty of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
18
|
Giovati L, Magliani W, Ciociola T, Santinoli C, Conti S, Polonelli L. AFM₁ in Milk: Physical, Biological, and Prophylactic Methods to Mitigate Contamination. Toxins (Basel) 2015; 7:4330-49. [PMID: 26512694 PMCID: PMC4626737 DOI: 10.3390/toxins7104330] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/15/2015] [Accepted: 10/19/2015] [Indexed: 11/30/2022] Open
Abstract
Aflatoxins (AFs) are toxic, carcinogenic, immunosuppressive secondary metabolites produced by some Aspergillus species which colonize crops, including many dietary staple foods and feed components. AFB₁ is the prevalent and most toxic among AFs. In the liver, it is biotransformed into AFM₁, which is then excreted into the milk of lactating mammals, including dairy animals. AFM₁ has been shown to be cause of both acute and chronic toxicoses. The presence of AFM₁ in milk and dairy products represents a worldwide concern since even small amounts of this metabolite may be of importance as long-term exposure is concerned. Contamination of milk may be mitigated either directly, decreasing the AFM₁ content in contaminated milk, or indirectly, decreasing AFB₁ contamination in the feed of dairy animals. Current strategies for AFM₁ mitigation include good agricultural practices in pre-harvest and post-harvest management of feed crops (including storage) and physical or chemical decontamination of feed and milk. However, no single strategy offers a complete solution to the issue.
Collapse
Affiliation(s)
- Laura Giovati
- Department of Biomedical, Biotechnological, and Translational Sciences, Microbiology and Virology Unit, University of Parma, Parma 43125, Italy.
| | - Walter Magliani
- Department of Biomedical, Biotechnological, and Translational Sciences, Microbiology and Virology Unit, University of Parma, Parma 43125, Italy.
| | - Tecla Ciociola
- Department of Biomedical, Biotechnological, and Translational Sciences, Microbiology and Virology Unit, University of Parma, Parma 43125, Italy.
| | - Claudia Santinoli
- Department of Biomedical, Biotechnological, and Translational Sciences, Microbiology and Virology Unit, University of Parma, Parma 43125, Italy.
| | - Stefania Conti
- Department of Biomedical, Biotechnological, and Translational Sciences, Microbiology and Virology Unit, University of Parma, Parma 43125, Italy.
| | - Luciano Polonelli
- Department of Biomedical, Biotechnological, and Translational Sciences, Microbiology and Virology Unit, University of Parma, Parma 43125, Italy.
| |
Collapse
|