1
|
Richard SA. The pivotal role of autophagy in the pathogenesis and therapy of medulloblastoma. Future Oncol 2024; 20:3313-3324. [PMID: 39513232 PMCID: PMC11633412 DOI: 10.1080/14796694.2024.2420629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
Medulloblastoma (MB) is the most frequent malignant brain tumor in children. MB originates from neural precursor cells in distinctive regions of the rhombic lip and their maturation occurs in the cerebellum or the brain stem during embryonal development. Autophagy is also referred to as self-eating' which is a catabolic process that often triggers cellular homeostasis through the salvaging of degenerated proteins as well as organelles. Autophagy influence cell survival via aberrant proteins that could accumulate within the cell and influence potential signaling and transport mechanisms. The role of autophagy in MB aggressiveness as well as tumorigenesis is a very complex process. This review targets specifically data reporting the key roles of autophagy in the pathogenesis and therapy of MB.
Collapse
Affiliation(s)
- Seidu A. Richard
- Department of Biochemistry and Forensic Sciences, School of Chemistry and Biochemical Science, C. K. Tedam University of Technology and Applied Sciences, P. O. Box 24, Navrongo, Ghana
- Institute of Neuroscience, Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052,China
| |
Collapse
|
2
|
Nazam N, Erwin MH, Julson JR, Quinn CH, Beierle AM, Bownes LV, Stewart JE, Kang KD, Butey S, Mroczek-Musulman E, Ohlmeyer M, Beierle EA. PP2A activation overcomes leptomeningeal dissemination in group 3 medulloblastoma. J Biol Chem 2024; 300:107892. [PMID: 39419284 DOI: 10.1016/j.jbc.2024.107892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/01/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024] Open
Abstract
Leptomeningeal dissemination (LMD) is the primary cause of treatment failure in children with group 3 medulloblastoma (MB). Building on our previous work on protein phosphatase 2A (PP2A) activation in MB, here we present preclinical and molecular data on the effects of two novel classes of PP2A activators on disease processes of LMD in group 3 MB. The PP2A activators used in this study are ATUX-6156 and ATUX-6954 (diarylmethylcycloamine sulfonylureas), and ATUX-1215 and ATUX-5800 (diarylmethyl-4-aminotetrahydropyran-sulfonamides). Treatment with these compounds led to suppression of the endogenous PP2A inhibitor, cancerous inhibitor of PP2A (CIP2A), enhanced phosphatase activity (10-60%), and reduced MB viability, migration, and invasion, prerequisites for MB cells to access the cerebrospinal fluid, affecting the initiation stage of LMD. PP2A activator treatment of MB cells led to apoptosis mediated via caspase 9/PARP signaling due to decreased phosphorylation of Bad, impeding the dispersal stage of LMD. Cell proliferation and LMD-driving cellular traits and molecules pertinent to the third stage, colonization, were also affected. Treatment with ATUX-1215 or ATUX-5800 prevented LMD in an intraventricular murine model of MB, possibly mediated by disruption of the CCL2-CCR2 axis by altered NF-kB phosphorylation via disrupted AKT signaling. The present investigation offers proof-of-principle data for PP2A-based reactivation therapy for Group 3 MB and provides the first indications that PP2A reactivation may challenge the current paradigm in targeting the 3-stage process of MB LMD. Further investigations of PP2A activators are warranted as these compounds may prove beneficial as therapeutics for MB.
Collapse
Affiliation(s)
- Nazia Nazam
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael H Erwin
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Janet R Julson
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Colin H Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Andee M Beierle
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Laura V Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jerry E Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kyung-Don Kang
- Division of Hematology Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Swatika Butey
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | - Elizabeth A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
3
|
Mariotto E, Rampazzo E, Bortolozzi R, Rruga F, Zeni I, Manfreda L, Marchioro C, Canton M, Cani A, Magni R, Luchini A, Bresolin S, Viola G, Persano L. Molecular and functional profiling of chemotolerant cells unveils nucleoside metabolism-dependent vulnerabilities in medulloblastoma. Acta Neuropathol Commun 2023; 11:183. [PMID: 37978570 PMCID: PMC10655385 DOI: 10.1186/s40478-023-01679-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
Chemotherapy resistance is considered one of the main causes of tumor relapse, still challenging researchers for the identification of the molecular mechanisms sustaining its emergence. Here, we setup and characterized chemotherapy-resistant models of Medulloblastoma (MB), one of the most lethal pediatric brain tumors, to uncover targetable vulnerabilities associated to their resistant phenotype. Integration of proteomic, transcriptomic and kinomic data revealed a significant deregulation of several pathways in resistant MB cells, converging to cell metabolism, RNA/protein homeostasis, and immune response, eventually impacting on patient outcome. Moreover, resistant MB cell response to a large library of compounds through a high-throughput screening (HTS), highlighted nucleoside metabolism as a relevant vulnerability of chemotolerant cells, with peculiar antimetabolites demonstrating increased efficacy against them and even synergism with conventional chemotherapeutics. Our results suggest that drug-resistant cells significantly rewire multiple cellular processes, allowing their adaptation to a chemotoxic environment, nevertheless exposing alternative actionable susceptibilities for their specific targeting.
Collapse
Affiliation(s)
- Elena Mariotto
- Department of Women's and Children's Health, University of Padova, Via Giustiniani 3, 35128, Padua, Italy
- Pediatric Research Institute, Corso Stati Uniti 4, 35127, Padua, Italy
- Unit of Biostatistics, Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Loredan 18, 35131, Padua, Italy
| | - Elena Rampazzo
- Department of Women's and Children's Health, University of Padova, Via Giustiniani 3, 35128, Padua, Italy.
- Pediatric Research Institute, Corso Stati Uniti 4, 35127, Padua, Italy.
| | - Roberta Bortolozzi
- Department of Women's and Children's Health, University of Padova, Via Giustiniani 3, 35128, Padua, Italy.
- Pediatric Research Institute, Corso Stati Uniti 4, 35127, Padua, Italy.
- Section of Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo Meneghetti 2, 35131, Padua, Italy.
| | - Fatlum Rruga
- Department of Women's and Children's Health, University of Padova, Via Giustiniani 3, 35128, Padua, Italy
- Pediatric Research Institute, Corso Stati Uniti 4, 35127, Padua, Italy
| | - Ilaria Zeni
- Department of Women's and Children's Health, University of Padova, Via Giustiniani 3, 35128, Padua, Italy
| | - Lorenzo Manfreda
- Department of Women's and Children's Health, University of Padova, Via Giustiniani 3, 35128, Padua, Italy
- Pediatric Research Institute, Corso Stati Uniti 4, 35127, Padua, Italy
| | - Chiara Marchioro
- Department of Women's and Children's Health, University of Padova, Via Giustiniani 3, 35128, Padua, Italy
- Pediatric Research Institute, Corso Stati Uniti 4, 35127, Padua, Italy
| | - Martina Canton
- Department of Women's and Children's Health, University of Padova, Via Giustiniani 3, 35128, Padua, Italy
- Pediatric Research Institute, Corso Stati Uniti 4, 35127, Padua, Italy
| | - Alice Cani
- Department of Women's and Children's Health, University of Padova, Via Giustiniani 3, 35128, Padua, Italy
- Pediatric Research Institute, Corso Stati Uniti 4, 35127, Padua, Italy
| | - Ruben Magni
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MSN 1A9, Manassas, VA, 20110, USA
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MSN 1A9, Manassas, VA, 20110, USA
| | - Silvia Bresolin
- Department of Women's and Children's Health, University of Padova, Via Giustiniani 3, 35128, Padua, Italy
- Pediatric Research Institute, Corso Stati Uniti 4, 35127, Padua, Italy
| | - Giampietro Viola
- Department of Women's and Children's Health, University of Padova, Via Giustiniani 3, 35128, Padua, Italy
- Pediatric Research Institute, Corso Stati Uniti 4, 35127, Padua, Italy
| | - Luca Persano
- Department of Women's and Children's Health, University of Padova, Via Giustiniani 3, 35128, Padua, Italy
- Pediatric Research Institute, Corso Stati Uniti 4, 35127, Padua, Italy
| |
Collapse
|
4
|
KIF26B Is Overexpressed in Medulloblastoma and Promotes Malignant Progression by Activating the PI3K/AKT Pathway. Anal Cell Pathol (Amst) 2022; 2022:2552397. [PMID: 35866054 PMCID: PMC9296275 DOI: 10.1155/2022/2552397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Medulloblastoma is one of the most common malignant tumors of the central nervous system in children. Although KIF2B was reported as an oncogene in several malignant tumor types, its role in medulloblastoma has not been studied so far. The PCR results of our study showed that KIF26B is highly expressed in medulloblastoma, and its high expression is associated with a high clinical stage. Knockdown the expression of KIF26B could significantly impair the proliferation and migration of medulloblastoma cells. KIF26B promotes the malignant progression of medulloblastoma by affecting the expression of phosphorylation of key proteins in the PI3K/AKT signaling pathway. With the help of 740 Y-P, activating the pi3k signaling pathway can partially rescue the phenotype. Therefore, our experimental results suggest that KIF26B is a potential target for medulloblastoma.
Collapse
|
5
|
Wang H, Wang Y, Wang Y. MiR-222-3p inhibits formation of medulloblastoma stem-like cells by targeting Notch2/c-myc signaling pathway. Immunopharmacol Immunotoxicol 2022; 44:548-555. [PMID: 35379056 DOI: 10.1080/08923973.2022.2062381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Medulloblastoma (MB) is an embryonal tumor of the cerebellum, which commonly occurs in childhood. Herein, we investigated the effects of miR-222-3p on the formation of MB stem-like cells via the Notch2/c-myc pathway. METHODS Quantitative real-time PCR (qRT-PCR) or western blotting was performed to determine the expression of miR-222-3p and Notch2, c-myc, proliferating cell nuclear antigen (PCNA), and caspase-3. Luciferase reporter gene, RNA immunoprecipitation (RIP), and RNA pull-down assay were applied to confirm the interaction between miR-222-3p and Notch2. Cell growth was examined by Cell Counting Kit-8. Cell cycle distribution and the number of stem cell marker CD133+ cells were examined using flow cytometry. The sphere formation assay was performed. RESULTS miR-222-3p expression was decreased and Notch2 expression was increased in human medulloblastoma cells. miR-222-3p overexpression inhibited cell viability and the sphere formation, induced cell cycle arrest, decreased the number of CD133+ cells, and up-regulated caspase-3 expression and down-regulated PCNA, Notch2, and c-myc expression. However, Notch2 overexpression counteracted these effects of miR-222-3p overexpression. Simultaneous overexpression of Notch2 and miR-222-3p increased the c-myc promoter luciferase activity which was decreased by miR-222-3p overexpression. Luciferase reporter gene, RIP, and RNA pull-down assay revealed that miR-222-3p targeted Notch2. CONCLUSION MiR-222-3p suppressed cell viability, altered cell cycle distribution, and inhibited the formation of MB stem-like cells via the Notch2/c-myc pathway.
Collapse
Affiliation(s)
- Hongxin Wang
- Department of Clinical Laboratory, Henan Provincial People' s Hospital, Zhengzhou University People' s Hospital, Henan University People' s Hospital, Zhengzhou; 450003, China
| | - Yushe Wang
- Department of Neurosurgery, Henan Provincial People' s Hospital, Zhengzhou University People' s Hospital, Henan University People' s Hospital, Zhengzhou, China
| | - Yong Wang
- Department of Neurosurgery, Henan Provincial People' s Hospital, Zhengzhou University People' s Hospital, Henan University People' s Hospital, Zhengzhou, China
| |
Collapse
|
6
|
Arjmand B, Hamidpour SK, Alavi-Moghadam S, Yavari H, Shahbazbadr A, Tavirani MR, Gilany K, Larijani B. Molecular Docking as a Therapeutic Approach for Targeting Cancer Stem Cell Metabolic Processes. Front Pharmacol 2022; 13:768556. [PMID: 35264950 PMCID: PMC8899123 DOI: 10.3389/fphar.2022.768556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) are subpopulation of cells which have been demonstrated in a variety of cancer models and involved in cancer initiation, progression, and development. Indeed, CSCs which seem to form a small percentage of tumor cells, display resembling characteristics to natural stem cells such as self-renewal, survival, differentiation, proliferation, and quiescence. Moreover, they have some characteristics that eventually can demonstrate the heterogeneity of cancer cells and tumor progression. On the other hand, another aspect of CSCs that has been recognized as a central concern facing cancer patients is resistance to mainstays of cancer treatment such as chemotherapy and radiation. Owing to these details and the stated stemness capabilities, these immature progenitors of cancerous cells can constantly persist after different therapies and cause tumor regrowth or metastasis. Further, in both normal development and malignancy, cellular metabolism and stemness are intricately linked and CSCs dominant metabolic phenotype changes across tumor entities, patients, and tumor subclones. Hence, CSCs can be determined as one of the factors that correlate to the failure of common therapeutic approaches in cancer treatment. In this context, researchers are searching out new alternative or complementary therapies such as targeted methods to fight against cancer. Molecular docking is one of the computational modeling methods that has a new promise in cancer cell targeting through drug designing and discovering programs. In a simple definition, molecular docking methods are used to determine the metabolic interaction between two molecules and find the best orientation of a ligand to its molecular target with minimal free energy in the formation of a stable complex. As a comprehensive approach, this computational drug design method can be thought more cost-effective and time-saving compare to other conventional methods in cancer treatment. In addition, increasing productivity and quality in pharmaceutical research can be another advantage of this molecular modeling method. Therefore, in recent years, it can be concluded that molecular docking can be considered as one of the novel strategies at the forefront of the cancer battle via targeting cancer stem cell metabolic processes.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Babak Arjmand, ; Bagher Larijani,
| | - Shayesteh Kokabi Hamidpour
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Yavari
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ainaz Shahbazbadr
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kambiz Gilany
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Babak Arjmand, ; Bagher Larijani,
| |
Collapse
|
7
|
Microfluidic Lab-on-a-Chip Based on UHF-Dielectrophoresis for Stemness Phenotype Characterization and Discrimination among Glioblastoma Cells. BIOSENSORS-BASEL 2021; 11:bios11100388. [PMID: 34677344 PMCID: PMC8534203 DOI: 10.3390/bios11100388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/02/2022]
Abstract
Glioblastoma (GBM) is one of the most aggressive solid tumors, particularly due to the presence of cancer stem cells (CSCs). Nowadays, the characterization of this cell type with an efficient, fast and low-cost method remains an issue. Hence, we have developed a microfluidic lab-on-a-chip based on dielectrophoresis (DEP) single cell electro-manipulation to measure the two crossover frequencies: fx01 in the low-frequency range (below 500 kHz) and fx02 in the ultra-high-frequency range (UHF, above 50 MHz). First, in vitro conditions were investigated. An U87-MG cell line was cultured in different conditions in order to induce an undifferentiated phenotype. Then, ex vivo GBM cells from patients’ primary cell culture were passed through the developed microfluidic system and characterized in order to reflect clinical conditions. This article demonstrates that the usual exploitation of low-frequency range DEP does not allow the discrimination of the undifferentiated GBM cells from the differentiated one. However, the presented study highlights the use of UHF-DEP as a relevant discriminant parameter. The proposed microfluidic lab-on-a-chip is able to follow the kinetics of U87-MG phenotype transformation in a CSC enrichment medium and the cancer stem cells phenotype acquirement.
Collapse
|
8
|
Ceccarelli M, D'Andrea G, Micheli L, Gentile G, Cavallaro S, Merlino G, Papoff G, Tirone F. Tumor Growth in the High Frequency Medulloblastoma Mouse Model Ptch1 +/-/Tis21 KO Has a Specific Activation Signature of the PI3K/AKT/mTOR Pathway and Is Counteracted by the PI3K Inhibitor MEN1611. Front Oncol 2021; 11:692053. [PMID: 34395258 PMCID: PMC8362831 DOI: 10.3389/fonc.2021.692053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
We have previously generated a mouse model (Ptch1+/−/Tis21KO), which displays high frequency spontaneous medulloblastoma, a pediatric tumor of the cerebellum. Early postnatal cerebellar granule cell precursors (GCPs) of this model show, in consequence of the deletion of Tis21, a defect of the Cxcl3-dependent migration. We asked whether this migration defect, which forces GCPs to remain in the proliferative area at the cerebellar surface, would be the only inducer of their high frequency transformation. In this report we show, by further bioinformatic analysis of our microarray data of Ptch1+/−/Tis21KO GCPs, that, in addition to the migration defect, they show activation of the PI3K/AKT/mTOR pathway, as the mRNA levels of several activators of this pathway (e.g., Lars, Rraga, Dgkq, Pdgfd) are up-regulated, while some inhibitors (e.g. Smg1) are down-regulated. No such change is observed in the Ptch1+/− or Tis21KO background alone, indicating a peculiar synergy between these two genotypes. Thus we investigated, by mRNA and protein analysis, the role of PI3K/AKT/mTOR signaling in MBs and in nodules from primary Ptch1+/−/Tis21KO MB allografted in the flanks of immunosuppressed mice. Activation of the PI3K/AKT/mTOR pathway is seen in full-blown Ptch1+/−/Tis21KO MBs, relative to Ptch1+/−/Tis21WT MBs. In Ptch1+/−/Tis21KO MBs we observe that the proliferation of neoplastic GCPs increases while apoptosis decreases, in parallel with hyper-phosphorylation of the mTOR target S6, and, to a lower extent, of AKT. In nodules derived from primary Ptch1+/−/Tis21KO MBs, treatment with MEN1611, a novel PI3K inhibitor, causes a dramatic reduction of tumor growth, inhibiting proliferation and, conversely, increasing apoptosis, also of tumor CD15+ stem cells, responsible for long-term relapses. Additionally, the phosphorylation of AKT, S6 and 4EBP1 was significantly inhibited, indicating inactivation of the PI3K/AKT/mTOR pathway. Thus, PI3K/AKT/mTOR pathway activation contributes to Ptch1+/−/Tis21KO MB development and to high frequency tumorigenesis, observed when the Tis21 gene is down-regulated. MEN1611 could provide a promising therapy for MB, especially for patient with down-regulation of Btg2 (human ortholog of the murine Tis21 gene), which is frequently deregulated in Shh-type MBs.
Collapse
Affiliation(s)
- Manuela Ceccarelli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| | - Giorgio D'Andrea
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| | - Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| | - Giulia Gentile
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Catania, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Catania, Italy
| | | | - Giuliana Papoff
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| |
Collapse
|
9
|
Lhermitte B, Blandin AF, Coca A, Guerin E, Durand A, Entz-Werlé N. Signaling pathway deregulation and molecular alterations across pediatric medulloblastomas. Neurochirurgie 2021; 67:39-45. [PMID: 29776650 DOI: 10.1016/j.neuchi.2018.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/06/2018] [Accepted: 01/13/2018] [Indexed: 12/21/2022]
Abstract
Medulloblastomas (MBs) account for 15% of brain tumors in children under the age of 15. To date, the overall 5-year survival rate for all children is only around 60%. Recent advances in cancer genomics have led to a fundamental change in medulloblastoma classification and is evolving along with the genomic discoveries, allowing to regularly reclassify this disease. The previous molecular classification defined 4 groups (WNT-activated MB, SHH-activated MB and the groups 3 and 4 characterized partially by NMYC and MYC driven MBs). This stratification moved forward recently to better define these groups and their correlation to outcome. This new stratification into 7 novel subgroups was helpful to lay foundations and complementary data on the understanding regarding molecular pathways and gene mutations underlying medulloblastoma biology. This review was aimed at answering the recent key questions on MB genomics and go further in the relevance of those genes in MB development as well as in their targeted therapies.
Collapse
Affiliation(s)
- B Lhermitte
- Laboratoire de Pathologie, CHU Hautepierre, 1, avenue Molière, 67098 Strasbourg, France
| | - A F Blandin
- EA3430, Progression tumorale et microenvironnement, approches translationnelles et épidémiologie, université de Strasbourg, 3, avenue Molière, 67000 Strasbourg, France
| | - A Coca
- Service de Neurochirurgie, CHU Hautepierre, 1, avenue Molière, 67098 Strasbourg, France
| | - E Guerin
- Laboratoire de biologie moléculaire et plateforme régionale d'oncobiologie d'Alsace, CHU Hautepierre, 1, avenue Molière, 67098 Strasbourg, France
| | - A Durand
- EA3430, Progression tumorale et microenvironnement, approches translationnelles et épidémiologie, université de Strasbourg, 3, avenue Molière, 67000 Strasbourg, France
| | - N Entz-Werlé
- EA3430, Progression tumorale et microenvironnement, approches translationnelles et épidémiologie, université de Strasbourg, 3, avenue Molière, 67000 Strasbourg, France; Service de pédiatrie onco-hématologie, CHU Hautepierre, 1, avenue Molière, 67098 Strasbourg, France.
| |
Collapse
|
10
|
Gronseth E, Gupta A, Koceja C, Kumar S, Kutty RG, Rarick K, Wang L, Ramchandran R. Astrocytes influence medulloblastoma phenotypes and CD133 surface expression. PLoS One 2020; 15:e0235852. [PMID: 32628717 PMCID: PMC7337293 DOI: 10.1371/journal.pone.0235852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/24/2020] [Indexed: 12/28/2022] Open
Abstract
The medulloblastoma (MB) microenvironment is diverse, and cell-cell interactions within this milieu is of prime importance. Astrocytes, a major component of the microenvironment, have been shown to impact primary tumor cell phenotypes and metastasis. Based on proximity of MB cells and astrocytes in the brain microenvironment, we investigated whether astrocytes may influence MB cell phenotypes directly. Astrocyte conditioned media (ACM) increased Daoy MB cell invasion, adhesion, and in vivo cellular protrusion formation. ACM conditioning of MB cells also increased CD133 surface expression, a key cancer stem cell marker of MB. Additional neural stem cell markers, Nestin and Oct-4A, were also increased by ACM conditioning, as well as neurosphere formation. By knocking down CD133 using short interfering RNA (siRNA), we showed that ACM upregulated CD133 expression in MB plays an important role in invasion, adhesion and neurosphere formation. Collectively, our data suggests that astrocytes influence MB cell phenotypes by regulating CD133 expression, a key protein with defined roles in MB tumorgenicity and survival.
Collapse
Affiliation(s)
- Emily Gronseth
- Department of Pediatrics, Division of Neonatology, Developmental Vascular Biology Program, Children’s Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Ankan Gupta
- Department of Pediatrics, Division of Neonatology, Developmental Vascular Biology Program, Children’s Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Chris Koceja
- Versiti, Milwaukee, Wisconsin, United States of America
| | - Suresh Kumar
- Division of Pediatric Pathology, Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Raman G. Kutty
- Medical College of Wisconsin Affiliated Hospitals, Acsension St. Joseph Hospital, Milwaukee, Wisconsin, United States of America
| | - Kevin Rarick
- Department of Pediatrics, Division of Critical Care, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Ling Wang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Ramani Ramchandran
- Department of Pediatrics, Division of Neonatology, Developmental Vascular Biology Program, Children’s Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
11
|
Niesen J, Ohli J, Sedlacik J, Dührsen L, Hellwig M, Spohn M, Holsten T, Schüller U. Pik3ca mutations significantly enhance the growth of SHH medulloblastoma and lead to metastatic tumour growth in a novel mouse model. Cancer Lett 2020; 477:10-18. [PMID: 32112900 DOI: 10.1016/j.canlet.2020.02.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
Medulloblastoma (MB) is the most frequent malignant brain tumour in children with a poor outcome. Divided into four molecular subgroups, MB of the Sonic hedgehog (SHH) subgroup accounts for approximately 25% of the cases and is driven by mutations within components of the SHH pathway, such as its receptors PTCH1 or SMO. A fraction of these cases additionally harbour PIK3CA mutations, the relevance of which is so far unknown. To unravel the role of Pik3ca mutations alone or in combination with a constitutively activated SHH signalling pathway, transgenic mice were used. These mice show mutated variants within Smo, Ptch1 or Pik3ca genes in cerebellar granule neuron precursors, which represent the cellular origin of SHH MB. Our results show that Pik3ca mutations alone are insufficient to cause developmental alterations or to initiate MB. However, they significantly accelerate the growth of Shh MB, induce tumour spread throughout the cerebrospinal fluid, and result in lower survival rates of mice with a double Pik3caH1047R/SmoM2 or Pik3caH1047R/Ptch1 mutation. Therefore, PIK3CA mutations in SHH MB may represent a therapeutic target for first and second line combination treatments.
Collapse
Affiliation(s)
- Judith Niesen
- Department of Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Research Institute Children's Cancer Centre Hamburg, Hamburg, Germany
| | - Jasmin Ohli
- Centre for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jan Sedlacik
- Department of Neuroradiology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Lasse Dührsen
- Department of Neurosurgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Hellwig
- Department of Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Research Institute Children's Cancer Centre Hamburg, Hamburg, Germany
| | - Michael Spohn
- Research Institute Children's Cancer Centre Hamburg, Hamburg, Germany
| | - Till Holsten
- Department of Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Research Institute Children's Cancer Centre Hamburg, Hamburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Research Institute Children's Cancer Centre Hamburg, Hamburg, Germany; Institute of Neuropathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
12
|
Bahmad HF, Poppiti RJ. Medulloblastoma cancer stem cells: molecular signatures and therapeutic targets. J Clin Pathol 2020; 73:243-249. [PMID: 32034059 DOI: 10.1136/jclinpath-2019-206246] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Abstract
Medulloblastoma (MB) is the most common malignant primary intracranial neoplasm diagnosed in childhood. Although numerous efforts have been made during the past few years to exploit novel targeted therapies for this aggressive neoplasm, there still exist substantial hitches hindering successful management of MB. Lately, progress in cancer biology has shown evidence that a subpopulation of cells within the tumour, namely cancer stem cells (CSCs), are thought to be responsible for the resistance to most chemotherapeutic agents and radiation therapy, accounting for cancer recurrence. Hence, it is crucial to identify the molecular signatures and genetic aberrations that characterise those CSCs and develop therapies that specifically target them. In this review, we aim to give an overview of the main genetic and molecular cues that depict MB-CSCs and provide a synopsis of the novel therapeutic approaches that specifically target this population of cells to attain enhanced antitumorous effects and therefore overcome resistance to therapy.
Collapse
Affiliation(s)
- Hisham F Bahmad
- Arkadi M Rywlin MD Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, Florida, USA.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Robert J Poppiti
- Arkadi M Rywlin MD Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, Florida, USA .,Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| |
Collapse
|
13
|
Human Medulloblastoma Cell Lines: Investigating on Cancer Stem Cell-Like Phenotype. Cancers (Basel) 2020; 12:cancers12010226. [PMID: 31963405 PMCID: PMC7016648 DOI: 10.3390/cancers12010226] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 01/06/2023] Open
Abstract
Medulloblastoma (MB) is the most common malignant pediatric brain tumor. Despite the progress of new treatments, the risk of recurrence, morbidity, and death remains significant and the long-term adverse effects in survivors are substantial. The fraction of cancer stem-like cells (CSCs) because of their self-renewal ability and multi-lineage differentiation potential is critical for tumor initiation, growth, and resistance to therapies. For the development of new CSC-targeted therapies, further in-depth studies are needed using enriched and stable MB-CSCs populations. This work, aimed at identifying the amount of CSCs in three available human cell lines (DAOY, D341, and D283), describes different approaches based on the expression of stemness markers. First, we explored potential differences in gene and protein expression patterns of specific stem cell markers. Then, in order to identify and discriminate undifferentiated from differentiated cells, MB cells were characterized using a physical characterization method based on a high-frequency dielectrophoresis approach. Finally, we compared their tumorigenic potential in vivo, through engrafting in nude mice. Concordantly, our findings identified the D283 human cell line as an ideal model of CSCs, providing important evidence on the use of a commercial human MB cell line for the development of new strategic CSC-targeting therapies.
Collapse
|
14
|
Eckerdt F, Clymer J, Bell JB, Beauchamp EM, Blyth GT, Goldman S, Platanias LC. Pharmacological mTOR targeting enhances the antineoplastic effects of selective PI3Kα inhibition in medulloblastoma. Sci Rep 2019; 9:12822. [PMID: 31492956 PMCID: PMC6731286 DOI: 10.1038/s41598-019-49299-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
Despite recent advances in the treatment of medulloblastoma, patients in high-risk categories still face very poor outcomes. Evidence indicates that a subpopulation of cancer stem cells contributes to therapy resistance and tumour relapse in these patients. To prevent resistance and relapse, the development of treatment strategies tailored to target subgroup specific signalling circuits in high-risk medulloblastomas might be similarly important as targeting the cancer stem cell population. We have previously demonstrated potent antineoplastic effects for the PI3Kα selective inhibitor alpelisib in medulloblastoma. Here, we performed studies aimed to enhance the anti-medulloblastoma effects of alpelisib by simultaneous catalytic targeting of the mTOR kinase. Pharmacological mTOR inhibition potently enhanced the suppressive effects of alpelisib on cancer cell proliferation, colony formation and apoptosis and additionally blocked sphere-forming ability of medulloblastoma stem-like cancer cells in vitro. We identified the HH effector GLI1 as a target for dual PI3Kα and mTOR inhibition in SHH-type medulloblastoma and confirmed these results in HH-driven Ewing sarcoma cells. Importantly, pharmacologic mTOR inhibition greatly enhanced the inhibitory effects of alpelisib on medulloblastoma tumour growth in vivo. In summary, these findings highlight a key role for PI3K/mTOR signalling in GLI1 regulation in HH-driven cancers and suggest that combined PI3Kα/mTOR inhibition may be particularly interesting for the development of effective treatment strategies in high-risk medulloblastomas.
Collapse
Affiliation(s)
- Frank Eckerdt
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA. .,Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Jessica Clymer
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Division of Hematology/Oncology/Neuro Oncology/Stem Cell Transplantation, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Jonathan B Bell
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Elspeth M Beauchamp
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Medicine Service, Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Gavin T Blyth
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Stewart Goldman
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Division of Hematology/Oncology/Neuro Oncology/Stem Cell Transplantation, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.,Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Medicine Service, Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
15
|
Sonic Hedgehog Medulloblastoma Cancer Stem Cells Mirnome and Transcriptome Highlight Novel Functional Networks. Int J Mol Sci 2018; 19:ijms19082326. [PMID: 30096798 PMCID: PMC6121264 DOI: 10.3390/ijms19082326] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022] Open
Abstract
Molecular classification has improved the knowledge of medulloblastoma (MB), the most common malignant brain tumour in children, however current treatments cause severe side effects in patients. Cancer stem cells (CSCs) have been described in MB and represent a sub population characterised by self-renewal and the ability to generate tumour cells, thus representing the reservoir of the tumour. To investigate molecular pathways that characterise this sub population, we isolated CSCs from Sonic Hedgehog Medulloblastoma (SHH MB) arisen in Patched 1 (Ptch1) heterozygous mice, and performed miRNA- and mRNA-sequencing. Comparison of the miRNA-sequencing of SHH MB CSCs with that obtained from cerebellar Neural Stem Cells (NSCs), allowed us to obtain a SHH MB CSC miRNA differential signature. Pathway enrichment analysis in SHH MB CSCs mirnome and transcriptome was performed and revealed a series of enriched pathways. We focused on the putative targets of the SHH MB CSC miRNAs that were involved in the enriched pathways of interest, namely pathways in cancer, PI3k-Akt pathway and protein processing in endoplasmic reticulum pathway. In silico analysis was performed in SHH MB patients and identified several genes, whose expression was associated with worse overall survival of SHH MB patients. This study provides novel candidates whose functional role should be further investigated in SHH MB.
Collapse
|
16
|
Aldaregia J, Odriozola A, Matheu A, Garcia I. Targeting mTOR as a Therapeutic Approach in Medulloblastoma. Int J Mol Sci 2018; 19:ijms19071838. [PMID: 29932116 PMCID: PMC6073374 DOI: 10.3390/ijms19071838] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/12/2018] [Accepted: 06/20/2018] [Indexed: 12/11/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a master signaling pathway that regulates organismal growth and homeostasis, because of its implication in protein and lipid synthesis, and in the control of the cell cycle and the cellular metabolism. Moreover, it is necessary in cerebellar development and stem cell pluripotency maintenance. Its deregulation has been implicated in the medulloblastoma and in medulloblastoma stem cells (MBSCs). Medulloblastoma is the most common malignant solid tumor in childhood. The current therapies have improved the overall survival but they carry serious side effects, such as permanent neurological sequelae and disability. Recent studies have given rise to a new molecular classification of the subgroups of medulloblastoma, specifying 12 different subtypes containing novel potential therapeutic targets. In this review we propose the targeting of mTOR, in combination with current therapies, as a promising novel therapeutic approach.
Collapse
Affiliation(s)
- Juncal Aldaregia
- Cellular Oncology Group, Biodonostia Research Institute, 20014 Donostia-San Sebastián, Spain.
| | - Ainitze Odriozola
- Cellular Oncology Group, Biodonostia Research Institute, 20014 Donostia-San Sebastián, Spain.
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Research Institute, 20014 Donostia-San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
- CIBER de fragilidad y envejecimiento saludable (CIBERfes), 28029 Madrid, Spain.
| | - Idoia Garcia
- Cellular Oncology Group, Biodonostia Research Institute, 20014 Donostia-San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
- CIBER de fragilidad y envejecimiento saludable (CIBERfes), 28029 Madrid, Spain.
- Physiology Department, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
| |
Collapse
|
17
|
Gong C, Valduga J, Chateau A, Richard M, Pellegrini-Moïse N, Barberi-Heyob M, Chastagner P, Boura C. Stimulation of medulloblastoma stem cells differentiation by a peptidomimetic targeting neuropilin-1. Oncotarget 2018; 9:15312-15325. [PMID: 29632646 PMCID: PMC5880606 DOI: 10.18632/oncotarget.24521] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 02/10/2018] [Indexed: 12/19/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant pediatric brain tumor. Despite the progress of new treatments, the risk of recurrence, morbidity, and death remains important. The neuropilin-1 (NRP-1) receptor has recently been implicated in tumor progression of MB, which seems to play an important role in the phenotype of cancer stem cells. Targeting this receptor appears as an interesting strategy to promote MB stem cells differentiation. Cancer stem-like cells of 3 MB cell lines (DAOY, D283-Med and D341-Med), classified in the more pejorative molecular subgroups, were obtained by in vitro enrichment. These models were characterized by an increase of NRP-1 and cancer stem cell markers (CD15, CD133 and Sox2), meanwhile a decrease of the differentiated cell marker Neurofilament-M (NF-M) was observed. Our previous work investigated potential innovative peptidomimetics that specifically target NRP-1 and showed that MR438 had a good affinity for NRP-1. This small molecule decreased the self-renewal capacity of MB stem cells for the 3 cell lines and reduced the invasive ability of DAOY and D283 stem cells while NRP-1 expression and cancer stem cell markers decreased at the same time. Possible molecular mechanisms were explored and showed that the activation of PI3K/AKT and MAPK pathways significantly decreased for DAOY cells after treatment. Finally, our results highlighted that targeting NRP-1 with MR438 could be a potential new strategy to differentiate MB stem cells and could limit medulloblastoma progression.
Collapse
Affiliation(s)
- Caifeng Gong
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
| | - Julie Valduga
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France.,Service d'Onco-Hématologie Pédiatrique, CHRU-Nancy, F-54000 Nancy, France
| | - Alicia Chateau
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
| | - Mylène Richard
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | | | | | - Pascal Chastagner
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France.,Service d'Onco-Hématologie Pédiatrique, CHRU-Nancy, F-54000 Nancy, France
| | - Cédric Boura
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
| |
Collapse
|
18
|
Tang SL, Gao YL, Wen-Zhong H. Knockdown of TRIM37 suppresses the proliferation, migration and invasion of glioma cells through the inactivation of PI3K/Akt signaling pathway. Biomed Pharmacother 2018; 99:59-64. [PMID: 29324313 DOI: 10.1016/j.biopha.2018.01.054] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/12/2017] [Accepted: 01/05/2018] [Indexed: 12/14/2022] Open
Abstract
Tripartite motif 37 (TRIM37), a member of the TRIM protein family, was involved in the tumorigenesis of several types of cancer. However, the expression pattern and role of TRIM37 in glioma remain unclear. Therefore, the aim of the present study was to investigate the role of TRIM37 in glioma, and to determine the molecular mechanisms. Our results demonstrated that TRIM37 was highly expressed in human glioma tissues and cell liens. Additionally, knockdown of TRIM37 dramatically inhibited the proliferation, migration/invasion, and the epithelial-mesenchymal transition (EMT) phenotype in glioma cells. Furthermore, knockdown of TRIM37 significantly reduced the levels of phosphorylated PI3K and Akt in U87MG cells, and an activator of PI3K/Akt signaling (SC79) partly reversed the inhibitory effects of si-TRIM37 on glioma cell proliferation and migration. Taken together, our results demonstrated that TRIM37 functions as an oncogene in the development and progression of glioma. TRIM37 knockdown inhibited the proliferation and invasion of human glioma cells at least in part through the inactivation of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Shi-Lei Tang
- Department of Neurosurgery, Huaihe Hospital of Henan University, Kaifeng 475000, Henan Province, China
| | - Yuan-Lin Gao
- Department of Neurology, Kaifeng Central Hospital, Kaifeng 475000, Henan Province, China
| | - Hu Wen-Zhong
- Department of Neurosurgery, Huaihe Hospital of Henan University, Kaifeng 475000, Henan Province, China.
| |
Collapse
|
19
|
BKM120 induces apoptosis and inhibits tumor growth in medulloblastoma. PLoS One 2017; 12:e0179948. [PMID: 28662162 PMCID: PMC5491106 DOI: 10.1371/journal.pone.0179948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/07/2017] [Indexed: 11/19/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children, accounting for nearly 20 percent of all childhood brain tumors. New treatment strategies are needed to improve patient survival outcomes and to reduce adverse effects of current therapy. The phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) intracellular signaling pathway plays a key role in cellular metabolism, proliferation, survival and angiogenesis, and is often constitutively activated in human cancers, providing unique opportunities for anticancer therapeutic intervention. The aim of this study was to evaluate the pre-clinical activity of BKM120, a selective pan-class I PI3K inhibitor, on MB cell lines and primary samples. IC50 values of BKM120 in the twelve MB cell lines tested ranged from 0.279 to 4.38 μM as determined by cell viability assay. IncuCyte ZOOM Live-Cell Imaging system was used for kinetic monitoring of cytotoxicity of BKM120 and apoptosis in MB cells. BKM120 exhibited cytotoxicity in MB cells in a dose and time-dependent manner by inhibiting activation of downstream signaling molecules AKT and mTOR, and activating caspase-mediated apoptotic pathways. Furthermore, BKM120 decreased cellular glycolytic metabolic activity in MB cell lines in a dose-dependent manner demonstrated by ATP level per cell. In MB xenograft mouse study, DAOY cells were implanted in the flank of nude mice and treated with vehicle, BKM120 at 30 mg/kg and 60 mg/kg via oral gavage daily. BKM120 significantly suppressed tumor growth and prolonged mouse survival. These findings help to establish a basis for clinical trials of BKM120, which could be a novel therapy for the treatment of medulloblastoma patients.
Collapse
|
20
|
Combination Treatment with PPAR γ Ligand and Its Specific Inhibitor GW9662 Downregulates BIS and 14-3-3 Gamma, Inhibiting Stem-Like Properties in Glioblastoma Cells. BIOMED RESEARCH INTERNATIONAL 2017. [PMID: 28642874 PMCID: PMC5470001 DOI: 10.1155/2017/5832824] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PPARγ is a nuclear receptor that regulates differentiation and proliferation and is highly expressed in many cancer cells. Its synthetic ligands, such as rosiglitazone and ciglitazone, and its inhibitor GW9662, were shown to induce cellular differentiation, inhibit proliferation, and lead to apoptosis. Glioblastoma is a common brain tumor with poor survival prospects. Recently, glioblastoma stem cells (GSCs) have been examined as a potential target for anticancer therapy; however, little is known about the combined effect of various agents on GSCs. In this study, we found that cotreatment with PPARγ ligands and GW9662 inhibited stem-like properties in GSC-like spheres, which significantly express SOX2. In addition, this treatment decreased the activation of STAT3 and AKT and decreased the amounts of 14-3-3 gamma and BIS proteins. Moreover, combined administration of small-interfering RNA (siRNA) transfection with PPARγ ligands induced downregulation of SOX2 and MMP2 activity together with inhibition of sphere-forming activity regardless of poly(ADP-ribose) polymerase (PARP) cleavage. Taken together, our findings suggest that a combination therapy using PPARγ ligands and its inhibitor could be a potential therapeutic strategy targeting GSCs.
Collapse
|
21
|
Immunohistochemical investigation of topoIIβ, H3K27me3 and JMJD3 expressions in medulloblastoma. Pathol Res Pract 2017; 213:975-981. [PMID: 28554742 DOI: 10.1016/j.prp.2017.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/23/2017] [Accepted: 04/12/2017] [Indexed: 01/14/2023]
Abstract
Topoisomerase IIβ (topoIIβ) is a nuclear enzyme specifically expressed in neurons, and plays an important role in the development of the cerebellum. To date, the expression of topoIIβ protein in medulloblastoma (MB) has not been investigated. In this study, 16 MB specimens including 10 classical subtypes of MB and 6 desmoplastic subtypes of MB (DMB), along with 5 normal cerebellum samples, were obtained from clinics. With immunohistochemical staining, prominently expressed topoIIβ was seen in normal cerebellar tissues, while there was no or less pronounced staining in classical MB cells. Interestingly, on comparing topoIIβ expression in different regions of DMB samples, relatively high levels of topoIIβ were revealed within nodules composed of differentiated neurocytic cells, which are known to predict a favorable clinical outcome for MB. We also examined the expression of two epigenetic factors, H3K27me3 and JMJD3 in the different tissues. Very high levels of H3K27me3 were found in all MB samples, except the intranodules of DMB, where JMJD3 expression was more prominent. Furthermore, a negative correlation between topoIIβ and H3K27me3 in MB was revealed in this study. Thus, our data primarily indicate that topoIIβ can be used to estimate neuronal differentiation in MB, and may serve as a target for improving the survival rates for this condition. We speculate that H3K27me3 repression of topoIIβ at the transcriptional level may occur, although this needs to be verified using larger numbers of MB samples in future experiments.
Collapse
|
22
|
Li D, Wei X, Ma M, Jia H, Zhang Y, Kang W, Wang T, Shi X. FFJ-3 inhibits PKM2 protein expression via the PI3K/Akt signaling pathway and activates the mitochondrial apoptosis signaling pathway in human cancer cells. Oncol Lett 2017; 13:2607-2614. [PMID: 28454440 PMCID: PMC5403336 DOI: 10.3892/ol.2017.5761] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/23/2016] [Indexed: 11/23/2022] Open
Abstract
Pyruvate kinase isoenzyme M2 (PKM2) has previously been identified as a tumor biomarker and potential therapeutic target for the treatment of cancer. In the present study, FFJ-3, a structurally modified version of mollugin, an extract of the Traditional Chinese herbal medicine Rubia tinctorum (madder) was used in order to determine the anticancer activity of the compound and investigate the potential mechanisms underlying this effect in human cancer cells. The results of the present study revealed that FFJ-3 inhibited the survival of HepG2 human hepatoma cells, MCF-7 human breast cancer cells and A549 human lung adenocarcinoma cells using the MTT assay. In addition, FFJ-3 arrested cell cycle progression at G2/M and G1 in HepG2 and A549 cells, respectively. Further analyses demonstrated that FFJ-3 attenuated the expression of PKM2 protein via the inhibition of the phosphoinositide 3-kinase (PI3K)/Akt serine/threonine kinase (Akt) signaling pathway. Furthermore, treatment of all three cell types with FFJ-3 significantly increased apoptosis and decreased the mitochondrial membrane potential compared with the untreated control group. In addition, FFJ-3 treatment increased the ratio of B-cell lymphoma-2 (Bcl-2)/Bcl-2 associated X and activated the caspase-3 cascade. In conclusion, the inhibition of the PI3K/Akt signaling pathway and activation of the caspase-3 cascade by FFJ-3 were primarily responsible for the inhibition of cell proliferation and induction of apoptosis in MCF-7, HepG2 and A549 cells. The results of the present study suggest a potential therapeutic role for FFJ-3 in the treatment of human cancer.
Collapse
Affiliation(s)
- Dengyun Li
- College of Pharmacy, Institute of Traditional Chinese Medicine, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Xiaoli Wei
- College of Pharmacy, Institute of Traditional Chinese Medicine, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Mingming Ma
- College of Pharmacy, Institute of Traditional Chinese Medicine, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Huina Jia
- College of Pharmacy, Institute of Traditional Chinese Medicine, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Yu Zhang
- College of Pharmacy, Institute of Traditional Chinese Medicine, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Wenyi Kang
- College of Pharmacy, Institute of Traditional Chinese Medicine, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Tianxiao Wang
- College of Pharmacy, Institute of Traditional Chinese Medicine, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Xiaoyan Shi
- College of Pharmacy, Institute of Traditional Chinese Medicine, Henan University, Kaifeng, Henan 475004, P.R. China
| |
Collapse
|
23
|
Blockade of Inhibitors of Apoptosis Proteins in Combination with Conventional Chemotherapy Leads to Synergistic Antitumor Activity in Medulloblastoma and Cancer Stem-Like Cells. PLoS One 2016; 11:e0161299. [PMID: 27537345 PMCID: PMC4990200 DOI: 10.1371/journal.pone.0161299] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 08/03/2016] [Indexed: 11/19/2022] Open
Abstract
Background Medulloblastoma (MB) is the most common pediatric primary malignant brain tumor. Approximately one-third of MB patients succumb to treatment failure and some survivors suffer detrimental side effects. Hence, the purpose of this study is to explore new therapeutic regimens to overcome chemotherapeutic agent resistance or reduce chemotherapy-induced toxicity. Methods We detected the expression of inhibitors of apoptosis proteins (IAPs) in MB and CD133+ MB cell lines and MB tissues using immunoblotting and immunohistochemical staining. The antitumor effects of inhibitors against IAPs on MB or CD133+ MB cells were evaluated by MTT assay, Annexin V/PI analysis, and caspase-3/7 activity. Autophagy was assessed by the conversion of light chain (LC) 3-I to LC3-II and Cyto-ID autophagy detection kit. Results MB cells showed higher expression of IAPs compared to normal astrocytes and normal brain tissues. Conventional chemotherapeutic agents combined with small-molecule IAP inhibitors (LCL161 or LBW242) showed a synergistic effect in MB cells. Combined treatments triggered apoptosis in MB cells through activation of caspase-3/7 and autophagic flux simultaneously. In addition, we found that CD133+ MB cells with features of cancer stem cells displayed higher levels of X-linked inhibitor of apoptosis (XIAP) and cellular inhibitor of apoptosis 1/2 (cIAP1/2), and were hypersensitive to treatment with IAP inhibitors. Conclusions These results shed light on the biological effects of combination therapy on MB cells and illustrate that IAP inhibitors are more effective for CD133+ stem-like MB cells.
Collapse
|
24
|
Mansouri S, Nejad R, Karabork M, Ekinci C, Solaroglu I, Aldape KD, Zadeh G. Sox2: regulation of expression and contribution to brain tumors. CNS Oncol 2016; 5:159-73. [PMID: 27230973 DOI: 10.2217/cns-2016-0001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tumors of the CNS are composed of a complex mixture of neoplastic cells, in addition to vascular, inflammatory and stromal components. Similar to most other tumors, brain tumors contain a heterogeneous population of cells that are found at different stages of differentiation. The cancer stem cell hypothesis suggests that all tumors are composed of subpopulation of cells with stem-like properties, which are capable of self-renewal, display resistance to therapy and lead to tumor recurrence. One of the most important transcription factors that regulate cancer stem cell properties is SOX2. In this review, we focus on SOX2 and the complex network of signaling molecules and transcription factors that regulate its expression and function in brain tumor initiating cells. We also highlight important findings in the literature about the role of SOX2 in glioblastoma and medulloblastoma, where it has been more extensively studied.
Collapse
Affiliation(s)
- Sheila Mansouri
- McFeeters-Hamilton Center for Neuro-Oncology Research, 101 College St., Toronto, ON, M5G 1L7, Canada
| | - Romina Nejad
- McFeeters-Hamilton Center for Neuro-Oncology Research, 101 College St., Toronto, ON, M5G 1L7, Canada
| | - Merve Karabork
- School of Medicine, Koç University, Rumelifeneri Yolu, 34450, Sariyer, Istanbul, Turkey
| | - Can Ekinci
- School of Medicine, Koç University, Rumelifeneri Yolu, 34450, Sariyer, Istanbul, Turkey
| | - Ihsan Solaroglu
- School of Medicine, Koç University, Rumelifeneri Yolu, 34450, Sariyer, Istanbul, Turkey.,School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Kenneth D Aldape
- McFeeters-Hamilton Center for Neuro-Oncology Research, 101 College St., Toronto, ON, M5G 1L7, Canada
| | - Gelareh Zadeh
- McFeeters-Hamilton Center for Neuro-Oncology Research, 101 College St., Toronto, ON, M5G 1L7, Canada.,Division of Neurosurgery, Toronto Western Hospital, Toronto, M5T 2S8, Canada
| |
Collapse
|