1
|
Pratiwi NKC, Tayara H, Chong KT. An Ensemble Classifiers for Improved Prediction of Native-Non-Native Protein-Protein Interaction. Int J Mol Sci 2024; 25:5957. [PMID: 38892144 PMCID: PMC11172808 DOI: 10.3390/ijms25115957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
In this study, we present an innovative approach to improve the prediction of protein-protein interactions (PPIs) through the utilization of an ensemble classifier, specifically focusing on distinguishing between native and non-native interactions. Leveraging the strengths of various base models, including random forest, gradient boosting, extreme gradient boosting, and light gradient boosting, our ensemble classifier integrates these diverse predictions using a logistic regression meta-classifier. Our model was evaluated using a comprehensive dataset generated from molecular dynamics simulations. While the gains in AUC and other metrics might seem modest, they contribute to a model that is more robust, consistent, and adaptable. To assess the effectiveness of various approaches, we compared the performance of logistic regression to four baseline models. Our results indicate that logistic regression consistently underperforms across all evaluated metrics. This suggests that it may not be well-suited to capture the complex relationships within this dataset. Tree-based models, on the other hand, appear to be more effective for problems involving molecular dynamics simulations. Extreme gradient boosting (XGBoost) and light gradient boosting (LightGBM) are optimized for performance and speed, handling datasets effectively and incorporating regularizations to avoid over-fitting. Our findings indicate that the ensemble method enhances the predictive capability of PPIs, offering a promising tool for computational biology and drug discovery by accurately identifying potential interaction sites and facilitating the understanding of complex protein functions within biological systems.
Collapse
Affiliation(s)
- Nor Kumalasari Caecar Pratiwi
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea;
- Department of Electrical Engineering, Telkom University, Bandung 40257, West Java, Indonesia
| | - Hilal Tayara
- School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Kil To Chong
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea;
- Advances Electronics and Information Research Centre, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
2
|
Nikam R, Yugandhar K, Gromiha MM. DeepBSRPred: deep learning-based binding site residue prediction for proteins. Amino Acids 2023; 55:1305-1316. [PMID: 36574037 DOI: 10.1007/s00726-022-03228-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022]
Abstract
MOTIVATION Proteins-protein interactions (PPIs) are important to govern several cellular activities. Amino acid residues, which are located at the interface are known as the binding sites and the information about binding sites helps to understand the binding affinities and functions of protein-protein complexes. RESULTS We have developed a deep neural network-based method, DeepBSRPred, for predicting the binding sites using protein sequence information and predicted structures from AlphaFold2. Specific sequence and structure-based features include position-specific scoring matrix (PSSM), solvent accessible surface area, conservation score and amino acid properties, and residue depth, respectively. Our method predicted the binding sites with an average F1 score of 0.73 in a dataset of 1236 proteins. Further, we compared the performance with other existing methods in the literature using four benchmark datasets and our method outperformed those methods. AVAILABILITY AND IMPLEMENTATION The DeepBSRPred web server can be found at https://web.iitm.ac.in/bioinfo2/deepbsrpred/index.html , along with all datasets used in this study. The trained models, the DeepBSRPred standalone source code, and the feature computation pipeline are freely available at https://web.iitm.ac.in/bioinfo2/deepbsrpred/download.html .
Collapse
Affiliation(s)
- Rahul Nikam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Kumar Yugandhar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
- Department of Computational Biology, Cornell University, New York, NY, USA
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
3
|
Nedyalkova M, Vasighi M, Azmoon A, Naneva L, Simeonov V. Sequence-Based Prediction of Plant Allergenic Proteins: Machine Learning Classification Approach. ACS OMEGA 2023; 8:3698-3704. [PMID: 36743013 PMCID: PMC9893444 DOI: 10.1021/acsomega.2c02842] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/21/2022] [Indexed: 06/18/2023]
Abstract
This Article proposes a novel chemometric approach to understanding and exploring the allergenic nature of food proteins. Using machine learning methods (supervised and unsupervised), this work aims to predict the allergenicity of plant proteins. The strategy is based on scoring descriptors and testing their classification performance. Partitioning was based on support vector machines (SVM), and a k-nearest neighbor (KNN) classifier was applied. A fivefold cross-validation approach was used to validate the KNN classifier in the variable selection step as well as the final classifier. To overcome the problem of food allergies, a robust and efficient method for protein classification is needed.
Collapse
Affiliation(s)
- Miroslava Nedyalkova
- Faculty
of Chemistry and Pharmacy, Inorganic Chemistry, University of Sofia, 1172Sofia, Bulgaria
- Department
of Chemistry, University of Fribourg, Chemin de Muse 9, CH-1700Fribourg, Switzerland
| | - Mahdi Vasighi
- Department
of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan45137, Iran
| | - Amirreza Azmoon
- Department
of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan45137, Iran
| | | | - Vasil Simeonov
- Department
of Inorganic Chemistry, University of Sofia, 1172Sofia, Bulgaria
| |
Collapse
|
4
|
Jung Y, Geng C, Bonvin AMJJ, Xue LC, Honavar VG. MetaScore: A Novel Machine-Learning-Based Approach to Improve Traditional Scoring Functions for Scoring Protein-Protein Docking Conformations. Biomolecules 2023; 13:121. [PMID: 36671507 PMCID: PMC9855734 DOI: 10.3390/biom13010121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/11/2023] Open
Abstract
Protein-protein interactions play a ubiquitous role in biological function. Knowledge of the three-dimensional (3D) structures of the complexes they form is essential for understanding the structural basis of those interactions and how they orchestrate key cellular processes. Computational docking has become an indispensable alternative to the expensive and time-consuming experimental approaches for determining the 3D structures of protein complexes. Despite recent progress, identifying near-native models from a large set of conformations sampled by docking-the so-called scoring problem-still has considerable room for improvement. We present MetaScore, a new machine-learning-based approach to improve the scoring of docked conformations. MetaScore utilizes a random forest (RF) classifier trained to distinguish near-native from non-native conformations using their protein-protein interfacial features. The features include physicochemical properties, energy terms, interaction-propensity-based features, geometric properties, interface topology features, evolutionary conservation, and also scores produced by traditional scoring functions (SFs). MetaScore scores docked conformations by simply averaging the score produced by the RF classifier with that produced by any traditional SF. We demonstrate that (i) MetaScore consistently outperforms each of the nine traditional SFs included in this work in terms of success rate and hit rate evaluated over conformations ranked among the top 10; (ii) an ensemble method, MetaScore-Ensemble, that combines 10 variants of MetaScore obtained by combining the RF score with each of the traditional SFs outperforms each of the MetaScore variants. We conclude that the performance of traditional SFs can be improved upon by using machine learning to judiciously leverage protein-protein interfacial features and by using ensemble methods to combine multiple scoring functions.
Collapse
Affiliation(s)
- Yong Jung
- Bioinformatics & Genomics Graduate Program, Pennsylvania State University, University Park, PA 16802, USA
- Artificial Intelligence Research Laboratory, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Cunliang Geng
- Bijvoet Centre for Biomolecular Research, Faculty of Science—Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Alexandre M. J. J. Bonvin
- Bijvoet Centre for Biomolecular Research, Faculty of Science—Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Li C. Xue
- Bijvoet Centre for Biomolecular Research, Faculty of Science—Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Center for Molecular and Biomolecular Informatics, Radboudumc, Greet Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
| | - Vasant G. Honavar
- Bioinformatics & Genomics Graduate Program, Pennsylvania State University, University Park, PA 16802, USA
- Artificial Intelligence Research Laboratory, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Clinical and Translational Sciences Institute, Pennsylvania State University, University Park, PA 16802, USA
- College of Information Sciences & Technology, Pennsylvania State University, University Park, PA 16802, USA
- Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Center for Big Data Analytics and Discovery Informatics, Pennsylvania State University, University Park, PA 16823, USA
| |
Collapse
|
5
|
Zhang F, Li M, Zhang J, Shi W, Kurgan L. DeepPRObind: Modular Deep Learner that Accurately Predicts Structure and Disorder-Annotated Protein Binding Residues. J Mol Biol 2023:167945. [PMID: 36621533 DOI: 10.1016/j.jmb.2023.167945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/15/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023]
Abstract
Current sequence-based predictors of protein-binding residues (PBRs) belong to two distinct categories: structure-trained vs. intrinsic disorder-trained. Since disordered PBRs differ from structured PBRs in several ways, including ability to bind multiple partners by folding into different conformations and enrichment in different amino acids, the structure-trained and disorder-trained predictors were shown to provide inaccurate results for the other annotation type. A simple consensus-based solution that combines structure- and disorder-trained methods provides limited levels of predictive performance and generates relatively many cross-predictions, where residues that interact with other ligand types are predicted as PBRs. We address this unsolved problem by designing a novel and fast deep-learner, DeepPRObind, that relies on carefully designed modular convolutional architecture and uses innovative aggregate input features. Comparative empirical tests on a low-similarity test dataset reveal that DeepPRObind generates accurate predictions of structured and disordered PBRs and low amounts of cross-predictions, outperforming a comprehensive collection of 12 predictors of PBRs. Given the relatively low runtime of DeepPRObind (40 seconds per protein), we further validate its results based on an analysis of putative PBRs in the yeast proteome, confirming that interactions in disordered regions are enriched among hub proteins. We release DeepPRObind as a convenient web server at https://www.csuligroup.com/DeepPRObind/.
Collapse
Affiliation(s)
- Fuhao Zhang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Min Li
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China.
| | - Jian Zhang
- School of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, China
| | - Wenbo Shi
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA.
| |
Collapse
|
6
|
Li M, Wu Z, Wang W, Lu K, Zhang J, Zhou Y, Chen Z, Li D, Zheng S, Chen P, Wang B. Protein-Protein Interaction Sites Prediction Based on an Under-Sampling Strategy and Random Forest Algorithm. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3646-3654. [PMID: 34705656 DOI: 10.1109/tcbb.2021.3123269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The computational methods of protein-protein interaction sites prediction can effectively avoid the shortcomings of high cost and time in traditional experimental approaches. However, the serious class imbalance between interface and non-interface residues on the protein sequences limits the prediction performance of these methods. This work therefore proposed a new strategy, NearMiss-based under-sampling for unbalancing datasets and Random Forest classification (NM-RF), to predict protein interaction sites. Herein, the residues on protein sequences were represented by the PSSM-derived features, hydropathy index (HI) and relative solvent accessibility (RSA). In order to resolve the class imbalance problem, an under-sampling method based on NearMiss algorithm is adopted to remove some non-interface residues, and then the random forest algorithm is used to perform binary classification on the balanced feature datasets. Experiments show that the accuracy of NM-RF model reaches 87.6% and 84.3% on Dtestset72 and PDBtestset164 respectively, which demonstrate the effectiveness of the proposed NM-RF method in differentiating the interface or non-interface residues.
Collapse
|
7
|
Robin V, Bodein A, Scott-Boyer MP, Leclercq M, Périn O, Droit A. Overview of methods for characterization and visualization of a protein-protein interaction network in a multi-omics integration context. Front Mol Biosci 2022; 9:962799. [PMID: 36158572 PMCID: PMC9494275 DOI: 10.3389/fmolb.2022.962799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022] Open
Abstract
At the heart of the cellular machinery through the regulation of cellular functions, protein-protein interactions (PPIs) have a significant role. PPIs can be analyzed with network approaches. Construction of a PPI network requires prediction of the interactions. All PPIs form a network. Different biases such as lack of data, recurrence of information, and false interactions make the network unstable. Integrated strategies allow solving these different challenges. These approaches have shown encouraging results for the understanding of molecular mechanisms, drug action mechanisms, and identification of target genes. In order to give more importance to an interaction, it is evaluated by different confidence scores. These scores allow the filtration of the network and thus facilitate the representation of the network, essential steps to the identification and understanding of molecular mechanisms. In this review, we will discuss the main computational methods for predicting PPI, including ones confirming an interaction as well as the integration of PPIs into a network, and we will discuss visualization of these complex data.
Collapse
Affiliation(s)
- Vivian Robin
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Antoine Bodein
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Marie-Pier Scott-Boyer
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Mickaël Leclercq
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Olivier Périn
- Digital Sciences Department, L'Oréal Advanced Research, Aulnay-sous-bois, France
| | - Arnaud Droit
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| |
Collapse
|
8
|
Bioinformatic Analyses of Peroxiredoxins and RF-Prx: A Random Forest-Based Predictor and Classifier for Prxs. Methods Mol Biol 2022; 2499:155-176. [PMID: 35696080 PMCID: PMC9844236 DOI: 10.1007/978-1-0716-2317-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Peroxiredoxins (Prxs) are a protein superfamily, present in all organisms, that play a critical role in protecting cellular macromolecules from oxidative damage but also regulate intracellular and intercellular signaling processes involving redox-regulated proteins and pathways. Bioinformatic approaches using computational tools that focus on active site-proximal sequence fragments (known as active site signatures) and iterative clustering and searching methods (referred to as TuLIP and MISST) have recently enabled the recognition of over 38,000 peroxiredoxins, as well as their classification into six functionally relevant groups. With these data providing so many examples of Prxs in each class, machine learning approaches offer an opportunity to extract additional information about features characteristic of these protein groups.In this study, we developed a novel computational method named "RF-Prx" based on a random forest (RF) approach integrated with K-space amino acid pairs (KSAAP) to identify peroxiredoxins and classify them into one of six subgroups. Our process performed in a superior manner compared to other machine learning classifiers. Thus the RF approach integrated with K-space amino acid pairs enabled the detection of class-specific conserved sequences outside the known functional centers and with potential importance. For example, drugs designed to target Prx proteins would likely suffer from cross-reactivity among distinct Prxs if targeted to conserved active sites, but this may be avoidable if remote, class-specific regions could be targeted instead.
Collapse
|
9
|
Tang M, Wu L, Yu X, Chu Z, Jin S, Liu J. Prediction of Protein-Protein Interaction Sites Based on Stratified Attentional Mechanisms. Front Genet 2021; 12:784863. [PMID: 34880910 PMCID: PMC8647646 DOI: 10.3389/fgene.2021.784863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 11/19/2022] Open
Abstract
Proteins are the basic substances that undertake human life activities, and they often perform their biological functions through interactions with other biological macromolecules, such as cell transmission and signal transduction. Predicting the interaction sites between proteins can deepen the understanding of the principle of protein interactions, but traditional experimental methods are time-consuming and labor-intensive. In this study, a new hierarchical attention network structure, named HANPPIS, by adding six effective features of protein sequence, position-specific scoring matrix (PSSM), secondary structure, pre-training vector, hydrophilic, and amino acid position, is proposed to predict protein–protein interaction (PPI) sites. The experiment proved that our model has obtained very effective results, which was better than the existing advanced calculation methods. More importantly, we used the double-layer attention mechanism to improve the interpretability of the model and to a certain extent solved the problem of the “black box” of deep neural networks, which can be used as a reference for location positioning on the biological level.
Collapse
Affiliation(s)
- Minli Tang
- Department of Computer Science and Technology, Xiamen University, Xiamen, China.,School of Big Data Engineering, Kaili University, Kaili, China
| | - Longxin Wu
- Department of Computer Science and Technology, Xiamen University, Xiamen, China
| | - Xinyu Yu
- Department of Computer Science and Technology, Xiamen University, Xiamen, China
| | - Zhaoqi Chu
- Department of Instrumental and Electrical Engineering, School of Aerospace Engineering, Xiamen University, Xiamen, China
| | - Shuting Jin
- Department of Computer Science and Technology, Xiamen University, Xiamen, China.,National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Juan Liu
- Department of Instrumental and Electrical Engineering, School of Aerospace Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
10
|
Li Y, Golding GB, Ilie L. DELPHI: accurate deep ensemble model for protein interaction sites prediction. Bioinformatics 2021; 37:896-904. [PMID: 32840562 DOI: 10.1093/bioinformatics/btaa750] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
MOTIVATION Proteins usually perform their functions by interacting with other proteins, which is why accurately predicting protein-protein interaction (PPI) binding sites is a fundamental problem. Experimental methods are slow and expensive. Therefore, great efforts are being made towards increasing the performance of computational methods. RESULTS We propose DEep Learning Prediction of Highly probable protein Interaction sites (DELPHI), a new sequence-based deep learning suite for PPI-binding sites prediction. DELPHI has an ensemble structure which combines a CNN and a RNN component with fine tuning technique. Three novel features, HSP, position information and ProtVec are used in addition to nine existing ones. We comprehensively compare DELPHI to nine state-of-the-art programmes on five datasets, and DELPHI outperforms the competing methods in all metrics even though its training dataset shares the least similarities with the testing datasets. In the most important metrics, AUPRC and MCC, it surpasses the second best programmes by as much as 18.5% and 27.7%, respectively. We also demonstrated that the improvement is essentially due to using the ensemble model and, especially, the three new features. Using DELPHI it is shown that there is a strong correlation with protein-binding residues (PBRs) and sites with strong evolutionary conservation. In addition, DELPHI's predicted PBR sites closely match known data from Pfam. DELPHI is available as open-sourced standalone software and web server. AVAILABILITY AND IMPLEMENTATION The DELPHI web server can be found at delphi.csd.uwo.ca/, with all datasets and results in this study. The trained models, the DELPHI standalone source code, and the feature computation pipeline are freely available at github.com/lucian-ilie/DELPHI. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Computer Science, The University of Western Ontario London, ON N6A 5B7, Canada
| | - G Brian Golding
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Lucian Ilie
- Department of Computer Science, The University of Western Ontario London, ON N6A 5B7, Canada
| |
Collapse
|
11
|
Islam MM, Alam MJ, Ahmed FF, Hasan MM, Mollah MNH. Improved Prediction of Protein-Protein Interaction Mapping on Homo Sapiens by Using Amino Acid Sequence Features in a Supervised Learning Framework. Protein Pept Lett 2021; 28:74-83. [PMID: 32520672 DOI: 10.2174/0929866527666200610141258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Protein-Protein Interaction (PPI) has emerged as a key role in the control of many biological processes including protein function, disease incidence, and therapy design. However, the identification of PPI by wet lab experiment is a challenging task, since it is laborious, time consuming and expensive. Therefore, computational prediction of PPI is now given emphasis before going to the experimental validation, since it is simultaneously less laborious, time saver and cost minimizer. OBJECTIVE The objective of this study is to develop an improved computational method for PPI prediction mapping on Homo sapiens by using the amino acid sequence features in a supervised learning framework. METHODS The experimentally validated 91 positive-PPI pairs of human protein sequences were collected from IntAct Molecular Interaction Database. Then we constructed three balanced datasets with ratios 1:1, 1:2 and 1:3 of positive and negative PPI samples. Then we partitioned each dataset into training (80%) and independent test (20%) datasets. Again each training dataset was partitioned into four mutually exclusive groups of equal sizes for interchanging each group with independent test group to perform 5-fold cross validation (CV). Then we trained candidate seven classifiers (NN, SVM, LR, NB, KNN, AB and RF) with each ratio case to obtain the better PPI predictor by comparing their performance scores. RESULTS The random forest (RF) based predictor that was trained with 1:2 ratio of positive-PPI and negative-PPI samples based on AAC encoding features provided the most accurate PPI prediction by producing the highest average performance scores of accuracy (93.50%), sensitivity (95.0%), MCC (85.2%), AUC (0.941) and pAUC (0.236) with the 5-fold cross-validation. It also achieved the highest average performance scores of accuracy (92.0%), sensitivity (94.0%), MCC (83.6%), AUC (0.922) and pAUC (0.207) with the independent test datasets in a comparison of the other candidate and existing predictors. CONCLUSION The final resultant prediction strongly recommend that the RF based predictor is a better prediction model of PPI mapping on Homo sapiens.
Collapse
Affiliation(s)
- Md Merajul Islam
- Bioinformatics Laboratory, Department of Statistics, Rajshahi University, Rajshahi-6205, Bangladesh
| | - Md Jahangir Alam
- Bioinformatics Laboratory, Department of Statistics, Rajshahi University, Rajshahi-6205, Bangladesh
| | - Fee Faysal Ahmed
- Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Mehedi Hasan
- Deptartment of Bioscience and Bioinformatics, Kyushu Institute of Technology, Kawazu, Iizuka, Fukuoka, Japan
| | - Md Nurul Haque Mollah
- Bioinformatics Laboratory, Department of Statistics, Rajshahi University, Rajshahi-6205, Bangladesh
| |
Collapse
|
12
|
Zhang J, Ghadermarzi S, Kurgan L. Prediction of protein-binding residues: dichotomy of sequence-based methods developed using structured complexes versus disordered proteins. Bioinformatics 2021; 36:4729-4738. [PMID: 32860044 DOI: 10.1093/bioinformatics/btaa573] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/22/2020] [Accepted: 06/10/2020] [Indexed: 01/08/2023] Open
Abstract
MOTIVATION There are over 30 sequence-based predictors of the protein-binding residues (PBRs). They use either structure-annotated or disorder-annotated training datasets, potentially creating a dichotomy where the structure-/disorder-specific models may not be able to cross-over to accurately predict the other type. Moreover, the structure-trained predictors were shown to substantially cross-predict PBRs among residues that interact with non-protein partners (nucleic acids and small ligands). We address these issues by performing first-of-its-kind comparative study of a representative collection of disorder- and structure-trained predictors using a comprehensive benchmark set with the structure- and disorder-derived annotations of PBRs (to analyze the cross-over) and the protein-, nucleic acid- and small ligand-binding proteins (to study the cross-predictions). RESULTS Three predictors provide accurate results: SCRIBER, ANCHOR and disoRDPbind. Some of the structure-trained methods make accurate predictions on the structure-annotated proteins. Similarly, the disorder-trained predictors predict well on the disorder-annotated proteins. However, the considered predictors generally fail to cross-over, with the exception of SCRIBER. Our study also reveals that virtually all methods substantially cross-predict PBRs, except for SCRIBER for the structure-annotated proteins and disoRDPbind for the disorder-annotated proteins. We formulate a novel hybrid predictor, hybridPBRpred, that combines results produced by disoRDPbind and SCRIBER to accurately predict disorder- and structure-annotated PBRs. HybridPBRpred generates accurate results that cross-over structure- and disorder-annotated proteins and produces relatively low amount of cross-predictions, offering an accurate alternative to predict PBRs. AVAILABILITY AND IMPLEMENTATION HybridPBRpred webserver, benchmark dataset and supplementary information are available at http://biomine.cs.vcu.edu/servers/hybridPBRpred/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jian Zhang
- School of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, China
| | - Sina Ghadermarzi
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
13
|
Zhang F, Shi W, Zhang J, Zeng M, Li M, Kurgan L. PROBselect: accurate prediction of protein-binding residues from proteins sequences via dynamic predictor selection. Bioinformatics 2020; 36:i735-i744. [DOI: 10.1093/bioinformatics/btaa806] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 12/13/2022] Open
Abstract
Abstract
Motivation
Knowledge of protein-binding residues (PBRs) improves our understanding of protein−protein interactions, contributes to the prediction of protein functions and facilitates protein−protein docking calculations. While many sequence-based predictors of PBRs were published, they offer modest levels of predictive performance and most of them cross-predict residues that interact with other partners. One unexplored option to improve the predictive quality is to design consensus predictors that combine results produced by multiple methods.
Results
We empirically investigate predictive performance of a representative set of nine predictors of PBRs. We report substantial differences in predictive quality when these methods are used to predict individual proteins, which contrast with the dataset-level benchmarks that are currently used to assess and compare these methods. Our analysis provides new insights for the cross-prediction concern, dissects complementarity between predictors and demonstrates that predictive performance of the top methods depends on unique characteristics of the input protein sequence. Using these insights, we developed PROBselect, first-of-its-kind consensus predictor of PBRs. Our design is based on the dynamic predictor selection at the protein level, where the selection relies on regression-based models that accurately estimate predictive performance of selected predictors directly from the sequence. Empirical assessment using a low-similarity test dataset shows that PROBselect provides significantly improved predictive quality when compared with the current predictors and conventional consensuses that combine residue-level predictions. Moreover, PROBselect informs the users about the expected predictive quality for the prediction generated from a given input protein.
Availability and implementation
PROBselect is available at http://bioinformatics.csu.edu.cn/PROBselect/home/index.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Fuhao Zhang
- Hunan Provincial Key Laboratory on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Wenbo Shi
- Hunan Provincial Key Laboratory on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Jian Zhang
- School of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, China
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Min Zeng
- Hunan Provincial Key Laboratory on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Min Li
- Hunan Provincial Key Laboratory on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
14
|
Zhang J, Kurgan L. SCRIBER: accurate and partner type-specific prediction of protein-binding residues from proteins sequences. Bioinformatics 2020; 35:i343-i353. [PMID: 31510679 PMCID: PMC6612887 DOI: 10.1093/bioinformatics/btz324] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Motivation Accurate predictions of protein-binding residues (PBRs) enhances understanding of molecular-level rules governing protein–protein interactions, helps protein–protein docking and facilitates annotation of protein functions. Recent studies show that current sequence-based predictors of PBRs severely cross-predict residues that interact with other types of protein partners (e.g. RNA and DNA) as PBRs. Moreover, these methods are relatively slow, prohibiting genome-scale use. Results We propose a novel, accurate and fast sequence-based predictor of PBRs that minimizes the cross-predictions. Our SCRIBER (SeleCtive pRoteIn-Binding rEsidue pRedictor) method takes advantage of three innovations: comprehensive dataset that covers multiple types of binding residues, novel types of inputs that are relevant to the prediction of PBRs, and an architecture that is tailored to reduce the cross-predictions. The dataset includes complete protein chains and offers improved coverage of binding annotations that are transferred from multiple protein–protein complexes. We utilize innovative two-layer architecture where the first layer generates a prediction of protein-binding, RNA-binding, DNA-binding and small ligand-binding residues. The second layer re-predicts PBRs by reducing overlap between PBRs and the other types of binding residues produced in the first layer. Empirical tests on an independent test dataset reveal that SCRIBER significantly outperforms current predictors and that all three innovations contribute to its high predictive performance. SCRIBER reduces cross-predictions by between 41% and 69% and our conservative estimates show that it is at least 3 times faster. We provide putative PBRs produced by SCRIBER for the entire human proteome and use these results to hypothesize that about 14% of currently known human protein domains bind proteins. Availability and implementation SCRIBER webserver is available at http://biomine.cs.vcu.edu/servers/SCRIBER/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jian Zhang
- School of Computer and Information Technology, Xinyang Normal University, Xinyang, China.,Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
15
|
Arian R, Hariri A, Mehridehnavi A, Fassihi A, Ghasemi F. Protein kinase inhibitors' classification using K-Nearest neighbor algorithm. Comput Biol Chem 2020; 86:107269. [PMID: 32413830 DOI: 10.1016/j.compbiolchem.2020.107269] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 03/15/2020] [Accepted: 04/20/2020] [Indexed: 10/24/2022]
Abstract
Protein kinases are enzymes acting as a source of phosphate through ATP to regulate protein biological activities by phosphorylating groups of specific amino acids. For that reason, inhibiting protein kinases with an active small molecule plays a significant role in cancer treatment. To achieve this aim, computational drug design, especially QSAR model, is one of the best economical approaches to reduce time and save in costs. In this respect, active inhibitors are attempted to be distinguished from inactive ones using hybrid QSAR model. Therefore, genetic algorithm and K-Nearest Neighbor method were suggested as a dimensional reduction and classification model, respectively. Finally, to evaluate the proposed model's performance, support vector machine and Naïve Bayesian algorithm were examined. The outputs of the proposed model demonstrated significant superiority to other QSAR models.
Collapse
Affiliation(s)
- Roya Arian
- Department of Bioinformatics and Systems Biology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirali Hariri
- School of Pharmacology and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Mehridehnavi
- Department of Bioinformatics and Systems Biology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Fassihi
- School of Pharmacology and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fahimeh Ghasemi
- Department of Bioinformatics and Systems Biology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
16
|
RF-MaloSite and DL-Malosite: Methods based on random forest and deep learning to identify malonylation sites. Comput Struct Biotechnol J 2020; 18:852-860. [PMID: 32322367 PMCID: PMC7160427 DOI: 10.1016/j.csbj.2020.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/27/2020] [Accepted: 02/19/2020] [Indexed: 12/19/2022] Open
Abstract
Malonylation, which has recently emerged as an important lysine modification, regulates diverse biological activities and has been implicated in several pervasive disorders, including cardiovascular disease and cancer. However, conventional global proteomics analysis using tandem mass spectrometry can be time-consuming, expensive and technically challenging. Therefore, to complement and extend existing experimental methods for malonylation site identification, we developed two novel computational methods for malonylation site prediction based on random forest and deep learning machine learning algorithms, RF-MaloSite and DL-MaloSite, respectively. DL-MaloSite requires the primary amino acid sequence as an input and RF-MaloSite utilizes a diverse set of biochemical, physiochemical and sequence-based features. While systematic assessment of performance metrics suggests that both ‘RF-MaloSite’ and ‘DL-MaloSite’ perform well in all metrics tested, our methods perform particularly well in the areas of accuracy, sensitivity and overall method performance (assessed by the Matthew’s Correlation Coefficient). For instance, RF-MaloSite exhibited MCC scores of 0.42 and 0.40 using 10-fold cross-validation and an independent test set, respectively. Meanwhile, DL-MaloSite was characterized by MCC scores of 0.51 and 0.49 based on 10-fold cross-validation and an independent set, respectively. Importantly, both methods exhibited efficiency scores that were on par or better than those achieved by existing malonylation site prediction methods. The identification of these sites may also provide important insights into the mechanisms of crosstalk between malonylation and other lysine modifications, such as acetylation, glutarylation and succinylation. To facilitate their use, both methods have been made freely available to the research community at https://github.com/dukkakc/DL-MaloSite-and-RF-MaloSite.
Collapse
|
17
|
Xie Z, Deng X, Shu K. Prediction of Protein-Protein Interaction Sites Using Convolutional Neural Network and Improved Data Sets. Int J Mol Sci 2020; 21:E467. [PMID: 31940793 PMCID: PMC7013409 DOI: 10.3390/ijms21020467] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/23/2019] [Accepted: 01/08/2020] [Indexed: 12/20/2022] Open
Abstract
Protein-protein interaction (PPI) sites play a key role in the formation of protein complexes, which is the basis of a variety of biological processes. Experimental methods to solve PPI sites are expensive and time-consuming, which has led to the development of different kinds of prediction algorithms. We propose a convolutional neural network for PPI site prediction and use residue binding propensity to improve the positive samples. Our method obtains a remarkable result of the area under the curve (AUC) = 0.912 on the improved data set. In addition, it yields much better results on samples with high binding propensity than on randomly selected samples. This suggests that there are considerable false-positive PPI sites in the positive samples defined by the distance between residue atoms.
Collapse
Affiliation(s)
- Zengyan Xie
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
| | | | - Kunxian Shu
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
| |
Collapse
|
18
|
Meruelo AD, Jacobus J, Idy E, Nguyen-Louie T, Brown G, Tapert SF. Early adolescent brain markers of late adolescent academic functioning. Brain Imaging Behav 2020; 13:945-952. [PMID: 29911279 DOI: 10.1007/s11682-018-9912-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Academic performance in adolescence strongly influences adult prospects. Intelligence quotient (IQ) has historically been considered a strong predictor of academic performance. Less objectively explored have been morphometric features. We analyzed brain MRI morphometry metrics in early adolescence (age 12-14 years) as quantitative predictors of academic performance over high school using a naïve Bayesian classifier approach with n = 170 subjects. Based on the mean GPA, subjects were divided into high (GPA ≥3.54; n = 87) and low (GPA <3.54; n = 83) academic performers. Covariance analysis was performed to look at the influence of subject demographics. We examined predictive features from the 343 available regions (surface areas, cortical thickness, and subcortical volumes) and applied 4 algorithms for selection and reduction of attributes using Weka. Cortical thickness measures performed better than surface areas or subcortical volumes as predictors of academic performance. We identified 15 cortical thickness regions most predictive of academic performance, three of which have not been described in the literature predictive of academic performance. These were in the left hemisphere fusiform, bilateral insula, and left hemisphere paracentral regions. Prediction had a sensitivity of 0.65 and specificity of 0.73 with independent validation. Follow-up independent t-test analyses between high and low academic achievers on 10 of 15 regions showed between-group significance at the p < 0.05 level. High achievers demonstrated thicker cortices than low achievers. These newly identified regions may help pinpoint new targets for further study in understanding the developing adolescent brain in the classroom setting.
Collapse
Affiliation(s)
- Alejandro Daniel Meruelo
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive #0603V, La Jolla, CA, 92093, USA.
| | - Joanna Jacobus
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive #0603V, La Jolla, CA, 92093, USA
| | - Erick Idy
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive #0603V, La Jolla, CA, 92093, USA
| | - Tam Nguyen-Louie
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Gregory Brown
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive #0603V, La Jolla, CA, 92093, USA.,VA San Diego Healthcare System, La Jolla, CA, USA
| | - Susan Frances Tapert
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive #0603V, La Jolla, CA, 92093, USA
| |
Collapse
|
19
|
Using Naive Bayes Classifier to predict osteonecrosis of the femoral head with cannulated screw fixation. Injury 2018; 49:1865-1870. [PMID: 30097310 DOI: 10.1016/j.injury.2018.07.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/03/2018] [Accepted: 07/26/2018] [Indexed: 02/02/2023]
Abstract
Predictive models permitting personalized prognostication for patients with cannulated screw fixation for the femoral neck fracture before operation are lacking. The objective of this study was to train, test, and cross-validate a Naive Bayes Classifier to predict the occurrence of postoperative osteonecrosis of cannulated screw fixation before the patient underwent the operation. The data for the classifier model were obtained from a ambispective cohort of 120 patients who had undergone closed reduction and cannulated screw fixation from January 2011 to June 2013. Three spatial displaced parameters of femoral neck: displacement of centre of femoral head, displacement of deepest of femoral head foveae and rotational displacement were measured from preoperative CT scans using a 3-dimensional software. The Naive Bayes Classifier was modelled with age, gender, side of fractures, mechanism of injury, preoperative traction, Pauwels angle and the three spatial parameters. After modelling, the ten-fold cross-validation method was used in this study to validate its performance. The ten-fold cross-validation method uses the whole dataset to be trained and tested by the given algorithm. Two of the three spatial parameters of femoral neck (displacement of center of femoral head and rotational displacement) were included successfully in the final Naive Bayes Classifier. The Classifier achieved good performance of the accuracy (74.4%), sensitivity (74.2%), specificity (75%), positive predictive value (92%), negative predictive value (42.9%) and AUC (0.746). We showed that the Naive Bayes Classifier have the potential utility to be used to predict the osteonecrosis of femoral head within 5 years after surgery. Although this study population was restricted to patients treated with cannulated screws fixation, Bayesian-derived models may be developed for application to patients with other surgical procedures at risk of osteonecrosis.
Collapse
|
20
|
Zhang J, Kurgan L. Review and comparative assessment of sequence-based predictors of protein-binding residues. Brief Bioinform 2017; 19:821-837. [DOI: 10.1093/bib/bbx022] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Indexed: 12/31/2022] Open
Affiliation(s)
- Jian Zhang
- School of Computer and Information Technology, Xinyang Normal University
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
21
|
Cai Y, Liao Z, Ju Y, Liu J, Mao Y, Liu X. Resistance gene identification from Larimichthys crocea with machine learning techniques. Sci Rep 2016; 6:38367. [PMID: 27922074 PMCID: PMC5138596 DOI: 10.1038/srep38367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/08/2016] [Indexed: 12/11/2022] Open
Abstract
The research on resistance genes (R-gene) plays a vital role in bioinformatics as it has the capability of coping with adverse changes in the external environment, which can form the corresponding resistance protein by transcription and translation. It is meaningful to identify and predict R-gene of Larimichthys crocea (L.Crocea). It is friendly for breeding and the marine environment as well. Large amounts of L.Crocea's immune mechanisms have been explored by biological methods. However, much about them is still unclear. In order to break the limited understanding of the L.Crocea's immune mechanisms and to detect new R-gene and R-gene-like genes, this paper came up with a more useful combination prediction method, which is to extract and classify the feature of available genomic data by machine learning. The effectiveness of feature extraction and classification methods to identify potential novel R-gene was evaluated, and different statistical analyzes were utilized to explore the reliability of prediction method, which can help us further understand the immune mechanisms of L.Crocea against pathogens. In this paper, a webserver called LCRG-Pred is available at http://server.malab.cn/rg_lc/.
Collapse
Affiliation(s)
- Yinyin Cai
- School of Information Science and Technology, Xiamen University, Xiamen, Fujian 361005, China
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352000, China
| | - Zhijun Liao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Ying Ju
- School of Information Science and Technology, Xiamen University, Xiamen, Fujian 361005, China
| | - Juan Liu
- School of Aerospace Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yong Mao
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352000, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Xiangrong Liu
- School of Information Science and Technology, Xiamen University, Xiamen, Fujian 361005, China
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352000, China
| |
Collapse
|