1
|
Wu N, Cai J, Jiang J, Lin Y, Wang X, Zhang W, Kang M, Zhang P. Biomarkers of lymph node metastasis in esophageal cancer. Front Immunol 2024; 15:1457612. [PMID: 39399490 PMCID: PMC11466839 DOI: 10.3389/fimmu.2024.1457612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Esophageal cancer (EC) is among the most aggressive malignancies, ranking as the seventh most prevalent malignant tumor worldwide. Lymph node metastasis (LNM) indicates localized spread of cancer and often correlates with a poorer prognosis, emphasizing the necessity for neoadjuvant systemic therapy before surgery. However, accurate identification of LNM in EC presents challenges due to the lack of satisfactory diagnostic techniques. Imaging techniques, including ultrasound and computerized tomography scans, have low sensitivity and accuracy in assessing LNM. Additionally, the existing serological detection lacks precise biomarkers. The intricate and not fully understood molecular processes involved in LNM of EC contribute to current detective limitations. Recent research has shown potential in using various molecules, circulating tumor cells (CTCs), and changes in the microbiota to identify LNM in individuals with EC. Through summarizing potential biomarkers associated with LNM in EC and organizing the underlying mechanisms involved, this review aims to provide insights that facilitate biomarker development, enhance our understanding of the underlying mechanisms, and ultimately address the diagnostic challenges of LNM in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital,
Fuzhou, China
| | - Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital,
Fuzhou, China
| |
Collapse
|
2
|
Wei QY, Jin F, Wang ZY, Li BJ, Cao WB, Sun ZY, Mo SJ. MicroRNAs: A novel signature in the metastasis of esophageal squamous cell carcinoma. World J Gastroenterol 2024; 30:1497-1523. [PMID: 38617454 PMCID: PMC11008420 DOI: 10.3748/wjg.v30.i11.1497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a malignant epithelial tumor, characterized by squamous cell differentiation, it is the sixth leading cause of cancer-related deaths globally. The increased mortality rate of ESCC patients is predominantly due to the advanced stage of the disease when discovered, coupled with higher risk of metastasis, which is an exceedingly malignant characteristic of cancer, frequently leading to a high mortality rate. Unfortunately, there is currently no specific and effective marker to predict and treat metastasis in ESCC. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules, approximately 22 nucleotides in length. miRNAs are vital in modulating gene expression and serve pivotal regulatory roles in the occurrence, progression, and prognosis of cancer. Here, we have examined the literature to highlight the intimate correlations between miRNAs and ESCC metastasis, and show that ESCC metastasis is predominantly regulated or regulated by genetic and epigenetic factors. This review proposes a potential role for miRNAs as diagnostic and therapeutic biomarkers for metastasis in ESCC metastasis, with the ultimate aim of reducing the mortality rate among patients with ESCC.
Collapse
Affiliation(s)
- Qi-Ying Wei
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Feng Jin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zhong-Yu Wang
- Department of Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Bing-Jie Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Wen-Bo Cao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zhi-Yan Sun
- Division of Special Service, Department of Basic Oncology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Sai-Jun Mo
- Department of Basic Science of Oncology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
3
|
Wang Y, Li X, Wei X, Li L, Bai H, Yan X, Zhang H, Zhao L, Zhou W, Zhao L. Identification of combinatorial miRNA panels derived from extracellular vesicles as biomarkers for esophageal squamous cell carcinoma. MedComm (Beijing) 2023; 4:e377. [PMID: 37731947 PMCID: PMC10507283 DOI: 10.1002/mco2.377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023] Open
Abstract
MicroRNAs (miRNAs) are relatively stable in blood, emerging as one of the most promising biomarkers in tumor liquid biopsy. Both total and extracellular vesicles (EVs) encapsulated miRNA have been studied for prognostic potential in a variety of cancers. Here, we systematically compared and verified the total and vesicle-derived miRNA expression profiles from plasma samples in healthy controls and patients with esophageal squamous cell carcinoma (ESCC). In the present study, four miRNA species miR-636, miR-7641, miR-28-3p, and miR-1246 that were differentially expressed in ESCC patients were chosen for further study. We first elucidated their essential function in ESCC progression and further explored their preliminary mechanism by identifying target proteins and involving signal pathways. Subsequently, the prognostic miRNA panels including miR-636, miR-7641, miR-1246, and miR-28-3p for ESCC diagnosis were constructed and validated using different cohort. Our results showed that the panel including the above four miRNAs derived from plasma EVs was most effective in distinguishing tumor patients from normal subjects, while integrated plasma EVs-derived miR-1246, miR-28-3p and total plasma miRNAs miR-636, miR-7641 showed the best capability in predicting lymph node metastasis. In summary, our studies revealed that plasma EVs-derived miRNAs could be emerged as promising biomarkers for ESCC diagnosis.
Collapse
Affiliation(s)
- Yaojie Wang
- Research CenterThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy of Hebei ProvinceShijiazhuangChina
| | - Xiaoya Li
- Research CenterThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy of Hebei ProvinceShijiazhuangChina
| | - Xiaojian Wei
- Research CenterThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy of Hebei ProvinceShijiazhuangChina
| | - Lei Li
- Research CenterThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy of Hebei ProvinceShijiazhuangChina
| | - Hanyu Bai
- Research CenterThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy of Hebei ProvinceShijiazhuangChina
| | - Xi Yan
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy of Hebei ProvinceShijiazhuangChina
| | - Hongtao Zhang
- University of Pennsylvania School of Medicine PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Libo Zhao
- Research CenterThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy of Hebei ProvinceShijiazhuangChina
| | - Wei Zhou
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
| | - Lianmei Zhao
- Research CenterThe Fourth Hospital of Hebei Medical UniversityShijiazhuangChina
- Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy of Hebei ProvinceShijiazhuangChina
| |
Collapse
|
4
|
Zhang WT, Wang YJ, Zhang GX, Zhang YH, Gao SS. Diagnostic value of circulating microRNAs for esophageal cancer: a meta-analysis based on Asian data. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2023; 115:504-514. [PMID: 35040334 DOI: 10.17235/reed.2022.8348/2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVE esophageal cancer (EC) is one of the most common gastrointestinal malignant diseases. We conducted a comprehensive meta-analysis to explore the clinical applicability of circulating microRNA for the diagnosis of EC. METHODS as of September 10, 2021, a comprehensive literature search was conducted on PubMed, Embase, Web of Science, Cochrane Library, Wanfang Database, and China National Knowledge Infrastructure (CNKI) to identify eligible studies. The sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the curve (AUC) were pooled to evaluate the test performance. The potential sources of heterogeneity were analyzed by subgroup analysis. Deeks' funnel plot was used to assess publication bias. RESULTS 85 studies from 50 articles were included in the current meta-analysis. The overall pooled sensitivity was 0.82 (95 % CI, 0.79-0.84), specificity was 0.84 (95 % CI, 0.81-0.86), PLR was 4.9 (95 % CI, 4.2-5.9), NLR was 0.22 (95 % CI, 0.19-0.25), DOR was 22 (95 % CI, 17-29) and AUC was 0.89 (95 % CI, 0.86-0.92), respectively. Subgroup analysis suggested that miRNA clusters with a large sample size showed better diagnostic accuracy. Publication bias was not found. CONCLUSIONS circulating miRNAs can be used as a potential non-invasive biomarker for the diagnosis of EC in Asian populations.
Collapse
|
5
|
GHOLIPOUR M, MIKAELI J, MOWLA SJ, BAKHTIARIZADEH MR, SAGHAEIAN JAZI M, JAVID N, FAZLOLLAHI N, KHOSHNIA M, BEHNAMPOUR N, MORADI A. Identification of differentially expressed microRNAs in primary esophageal achalasia by next-generation sequencing. Turk J Biol 2021; 45:262-274. [PMID: 34377051 PMCID: PMC8313935 DOI: 10.3906/biy-2101-61] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/08/2021] [Indexed: 11/29/2022] Open
Abstract
Molecular knowledge regarding the primary esophageal achalasia is essential for the early diagnosis and treatment of this neurodegenerative motility disorder. Therefore, there is a need to find the main microRNAs (miRNAs) contributing to the mechanisms of achalasia. This study was conducted to determine some patterns of deregulated miRNAs in achalasia. This case-control study was performed on 52 patients with achalasia and 50 nonachalasia controls. The miRNA expression profiling was conducted on the esophageal tissue samples using the next-generation sequencing (NGS). Differential expression of miRNAs was analyzed by the edgeR software. The selected dysregulated miRNAs were additionally confirmed using the quantitative reverse transcription polymerase chain reaction (qRT-PCR). Fifteen miRNAs were identified that were significantly altered in the tissues of the patients with achalasia. Among them, three miRNAs including miR-133a-5p, miR-143-3p, and miR-6507-5p were upregulated. Also, six miRNAs including miR-215-5p, miR-216a-5p, miR-216b-5p, miR-217, miR-7641 and miR-194-5p were downregulated significantly. The predicted targets for the dysregulated miRNAs showed significant disease-associated pathways like neuronal cell apoptosis, neuromuscular balance, nerve growth factor signaling, and immune response regulation. Further analysis using qRT-PCR showed significant down-regulation of hsa-miR-217 (p-value = 0.004) in achalasia tissue. Our results may serve as a basis for more future functional studies to investigate the role of candidate miRNAs in the etiology of achalasia and their application in the diagnosis and probably treatment of the disease.
Collapse
Affiliation(s)
- Mahin GHOLIPOUR
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, GorganIran
| | - Javad MIKAELI
- Autoimmune and Motility Disorders Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, TehranIran
| | - Seyed Javad MOWLA
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, TehranIran
| | | | - Marie SAGHAEIAN JAZI
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, GorganIran
| | - Naeme JAVID
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, GorganIran
| | - Narges FAZLOLLAHI
- Autoimmune and Motility Disorders Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, TehranIran
| | - Masoud KHOSHNIA
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, GorganIran
| | - Naser BEHNAMPOUR
- Department of Biostatistics, Faculty of Health, Golestan University of Medical Sciences, GorganIran
| | - Abdolvahab MORADI
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, GorganIran
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, GorganIran
| |
Collapse
|
6
|
Geens M, Stappers S, Konings H, De Winter BY, Specenier P, Van Meerbeeck JP, Verpooten GA, Abrams S, Janssens A, Peeters M, Van de Heyning P, Vanderveken OM, Ledeganck KJ. Epidermal growth factor as a potential prognostic and predictive biomarker of response to platinum-based chemotherapy. PLoS One 2021; 16:e0252646. [PMID: 34115785 PMCID: PMC8195347 DOI: 10.1371/journal.pone.0252646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/19/2021] [Indexed: 11/28/2022] Open
Abstract
In this study, we investigated serum epidermal growth factor (EGF) in an oncological population of head- and neck and pulmonary neoplasms and whether serum EGF could serve as a prognostic marker of survival and as a predictive marker for treatment response to platinum-based chemotherapy. A total of 59 oncological patients and a control group of age- and sex-matched healthy volunteers were included in this study. Pre-treatment serum EGF from both groups was determined. Patient's and tumour characteristics and mortality were recorded during a 5-year follow up period. Baseline serum EGF significantly differed between the oncological patients and the healthy volunteers (p<0.001). Serum EGF was associated with lymph node metastasis (p = 0.004) but not with sex (p = 0.753), age (p = 1.00), TNM stage (p = 0.191) or tumour size (p = 0.077). Neither serum EGF (p = 0.81) nor age (p = 0.55) showed an effect on the patient's survival. Tumour location was significantly associated with overall 5-year survival (p = 0.003). The predictive capacity of serum EGF of response to chemotherapy was limited (AUC = 0.606), a sensitivity of 80% and a specificity of 56% was observed resulting in a likelihood ratio of a positive and negative test equal to 1.81 and 0.36, respectively. In conclusion, serum EGF levels are 5.5 times higher in an oncological population compared to a control group. Within the oncological population, low serum EGF values are associated with the presence of lymph node metastasis. Further investigation is necessary to determine if the serum EGF levels could serve as a diagnostic biomarker.
Collapse
Affiliation(s)
- Margot Geens
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Sofie Stappers
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Heleen Konings
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Benedicte Y. De Winter
- Laboratorium of Experimental Medicine and Pediatrics and Member of the Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Pol Specenier
- Department of Oncology, Antwerp University Hospital, Edegem, Belgium
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium
| | - Jan P. Van Meerbeeck
- Laboratorium of Experimental Medicine and Pediatrics and Member of the Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Pneumology, Antwerp University Hospital, Edegem, Belgium
| | - Gert A. Verpooten
- Laboratorium of Experimental Medicine and Pediatrics and Member of the Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Steven Abrams
- Global Health Institute, Family Medicine and Population Health, University of Antwerp, Antwerp, Belgium
- Data Science Institute, Interuniversity Institute for Biostatistics and Statistical Bioinformatics, UHasselt, Diepenbeek, Belgium
| | - Annelies Janssens
- Department of Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Marc Peeters
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium
- Department of Oncology, Multidisciplinary Oncological Center Antwerp, Antwerp University Hospital, Edegem, Belgium
| | - Paul Van de Heyning
- Department of Otorhinolaryngology-Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
- Department of Translational Neurosciences, University of Antwerp, Antwerp, Belgium
| | - Olivier M. Vanderveken
- Department of Oncology, Multidisciplinary Oncological Center Antwerp, Antwerp University Hospital, Edegem, Belgium
- Department of Translational Neurosciences, University of Antwerp, Antwerp, Belgium
| | - Kristien J. Ledeganck
- Laboratorium of Experimental Medicine and Pediatrics and Member of the Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
7
|
Sun CX, Zhu F, Qi L. Demethylated miR-216a Regulates High Mobility Group Box 3 Promoting Growth of Esophageal Cancer Cells Through Wnt/β-Catenin Pathway. Front Oncol 2021; 11:622073. [PMID: 33842327 PMCID: PMC8025835 DOI: 10.3389/fonc.2021.622073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
Background Esophageal cancer (EC) is the eighth most common cause of cancer-associated mortality in humans. Recent studies have revealed the important roles of microRNAs (miRs) in mediating tumor initiation and progression. miR-216a has been found to be involved in the progression of EC, but the underlying mechanisms remain largely unknown. The aim of this study is to explore the mechanism of miR-216a and the downstream molecules in esophageal cancer. Materials and Methods The degree of methylation of miR-216a promoter in EC tissues and cell lines was determined with methylation specific polymerase chain reaction (MSP). The levels of miR-216a and HMGB3 in EC cells were quantified by quantitative PCR (qPCR) and Western blot (WB). EC cell lines were treated with DNA methylation inhibitor 5-aza-2’-deoxycytidine (5-AZ), miR-216a mimics, and HMGB3 siRNA to explore the effects of miR-216a and HMGB3 on the proliferation, migration, invasion, and apoptosis of cells. Dual-luciferase reporter assay was employed to verify the binding of miR-216a to the 3’UTR of HMGB2 mRNA. Results The promoter of MiR-216a was hypermethylated and the expression of miR-216a was down-regulated in EC, while HMGB3 was up-regulated. Dual luciferase reporter assay confirmed the binding of miR-216a to the 3’UTR of HMGB3 mRNA. Demethylated miR-216a and miR-216a mimics elevated miR-216a expression and down-regulated HMGB3, as well as inhibited cell proliferation, migration, and invasion. Inhibiting the expression of HMGB3 played an important role in inducing apoptosis, suppressing cell expansion, and down-regulating the activity of Wnt/β-catenin pathway. Conclusions Hypermethylation in the promoter of miR-216a upregulated HMGB3 and the Wnt/β-catenin pathway, resulting in enhanced EC progression.
Collapse
Affiliation(s)
- Cheng-Xi Sun
- Department of Clinical Laboratory, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Feng Zhu
- Department of Thoracic Surgery, Shandong Provincial Chest Hospital, Jinan, China
| | - Lei Qi
- Department of Thoracic Surgery, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
8
|
Matsushita D, Arigami T, Okubo K, Sasaki K, Noda M, Kita Y, Mori S, Uenosono Y, Ohtsuka T, Natsugoe S. The Diagnostic and Prognostic Value of a Liquid Biopsy for Esophageal Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 2020; 12:3070. [PMID: 33096708 PMCID: PMC7589026 DOI: 10.3390/cancers12103070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/11/2022] Open
Abstract
Esophageal cancer is among the most aggressive diseases, and circulating tumor cells (CTCs) have been recognized as novel biomarkers for various cancers over the past two decades, including esophageal cancer. CTCs might provide crucial clinical information for predicting cancer prognosis, monitoring therapeutic responses or recurrences, or elucidating the mechanism of metastasis. The isolation of CTCs is among the applications of a "liquid biopsy". There are various technologies for liquid biopsies, and they are classified into two main methods: cytometric or non-cytometric techniques. Here, we review a total of 57 eligible articles to summarize various technologies for the use of a liquid biopsy in esophageal cancer and perform a meta-analysis to assess the clinical utility of liquid biopsies as a prognostic and diagnostic biomarker technique. For prognostic evaluation, the pooled hazard ratio in the cytometric assay is relatively higher than that of the non-cytometric assay. On the other hand, a combination of multiple molecules, using a non-cytometric assay, might be a favorable biomarker technique for the early diagnosis of esophageal cancer. Although determining strong evidence for a biomarker by using a liquid biopsy is still challenging, our meta-analysis might be a milestone for the future development of liquid biopsies in use with esophageal cancer.
Collapse
Affiliation(s)
- Daisuke Matsushita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (K.O.); (K.S.); (M.N.); (Y.K.); (S.M.); (T.O.)
| | - Takaaki Arigami
- Department of Onco-biological Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan;
| | - Keishi Okubo
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (K.O.); (K.S.); (M.N.); (Y.K.); (S.M.); (T.O.)
| | - Ken Sasaki
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (K.O.); (K.S.); (M.N.); (Y.K.); (S.M.); (T.O.)
| | - Masahiro Noda
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (K.O.); (K.S.); (M.N.); (Y.K.); (S.M.); (T.O.)
| | - Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (K.O.); (K.S.); (M.N.); (Y.K.); (S.M.); (T.O.)
| | - Shinichiro Mori
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (K.O.); (K.S.); (M.N.); (Y.K.); (S.M.); (T.O.)
| | - Yoshikazu Uenosono
- Department of Surgery, Jiaikai Imamura General Hospital, Kagoshima 890-0064, Japan;
| | - Takao Ohtsuka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; (K.O.); (K.S.); (M.N.); (Y.K.); (S.M.); (T.O.)
| | - Shoji Natsugoe
- Department of Surgery, Gyokushoukai Kajiki Onsen Hospital, Aira 899-5241, Japan;
| |
Collapse
|
9
|
Liu WH, Qiao HY, Xu J, Wang WQ, Wu YL, Wu X. LINC00473 contributes to the radioresistance of esophageal squamous cell carcinoma by regulating microRNA‑497‑5p and cell division cycle 25A. Int J Mol Med 2020; 46:571-582. [PMID: 32468021 PMCID: PMC7307861 DOI: 10.3892/ijmm.2020.4616] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNA (lncRNA) LINC00473 plays a carcinogenic role in a variety of different tumor types. Nevertheless, the mechanisms through which LINC00473 regulates the radiosensitivity of esophageal squamous cell carcinoma (ESCC) cells remains elusive. In the present study, reverse transcription-quantitative PCR was used to quantify the expression of LINC00473, microRNA (miRNA/miR)-497-5p and cell division cycle 25A (CDC25A) in ESCC tissues. The association between LINC00473 expression and the clinicopathological characteristics of patients with ESCC was also assessed. Furthermore, Cell Counting kit-8 and colony formation assays were carried out to monitor the proliferation of ESCC cells exposed to X-ray radiation. A dual-luciferase reporter assay was also conducted to analyze the interaction between LINC00473 and miR-497-5p, as well as the interaction between CDC25A and miR-497-5p. The findings of the present study demonstrated that in ESCC tissues and cells, the expression levels of LINC00473 and CDC25A were significantly upregulated, while the expression of miR-497-5p was downregulated. The high expression level of LINC00473 was associated with a higher T stage, lymph node metastasis stage and a lower tumor differentiation grade in patients with ESCC. Following irradiation, transfection with miR-497-5p mimics reduced the promoting effect of LINC00473 overexpression on ESCC cell proliferation, and partially impeded the resistance of ESCC cells to X-ray radiation induced by LINC00473 overexpression. Moreover, transfection with miR-497-5p inhibitors partially alleviated the inhibitory effects of LINC00473 knockdown on cellular proliferation, and partly reversed the sensitivity of cells to X-ray irradiation induced by LINC00473 knockdown. Furthermore, it was confirmed that miR-497-5p was able to bind LINC00473 and the 3′-untranslated region of CDC25A. On the whole, the findings of the present study demonstrate that LINC00473 reduces the radiosensitivity of ESCC cells by modulating the miR-497-5p/CDC25A axis.
Collapse
Affiliation(s)
- Wei-Hua Liu
- Department of Radiology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| | - Han-Yong Qiao
- Department of Special Inspection, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| | - Jian Xu
- Department of Radiology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| | - Wei-Qing Wang
- Department of Radiology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| | - Yi-Lei Wu
- Department of Oncology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| | - Xia Wu
- Department of Oncology, The Third People's Hospital of Linyi, Linyi, Shandong 276023, P.R. China
| |
Collapse
|
10
|
Mu Y, Wang Q, Tan L, Lin L, Zhang B. microRNA-144 inhibits cell proliferation and invasion by directly targeting TIGAR in esophageal carcinoma. Oncol Lett 2020; 19:3079-3088. [PMID: 32256808 PMCID: PMC7074326 DOI: 10.3892/ol.2020.11420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/18/2019] [Indexed: 12/21/2022] Open
Abstract
microRNAs (miRNAs) have been identified to play vital roles in the development and progression of numerous different types of human malignancy, including esophageal squamous cell carcinoma (ESCC). In the present study, the biological function of microRNA-144 (miR-144) was investigated, as well as its underlying molecular mechanism in ESCC. The results revealed that miR-144 expression was significantly decreased, whereas the expression of TP53-inducible glycolysis and apoptosis regulator (TIGAR) was significantly increased in human ESCC tissues when compared with adjacent non-tumor tissues. An increase in TIGAR was significantly associated with tumor size and Tumor-Node-Metastasis staging in patients. Functional analysis revealed that the overexpression of miR-144 using lentivirus particles significantly inhibited cell proliferation and tumor colony formation, and induced cell apoptosis in EC9706 and EC109 cells. The autophagy activity was also enhanced by miR-144 activity. In addition, overexpression of miR-144 significantly inhibited tumor growth in vivo. In the present study, TIGAR was confirmed to be the downstream target of miR-144 in ESCC. siRNA-mediated downregulation of TIGAR inversely regulated the inhibition effect of miR-144 on ESCC cells. To conclude, the present study demonstrated that miR-144 inhibits proliferation and invasion in esophageal cancer by directly targeting TIGAR.
Collapse
Affiliation(s)
- Yushu Mu
- Department of Thoracic Surgery, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000, P.R. China
| | - Qifei Wang
- Department of Thoracic Surgery, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000, P.R. China
| | - Lei Tan
- Department of Thoracic Surgery, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Lin Lin
- Department of Digestive Medicine, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Benhua Zhang
- Department of Oncology, Affiliated Hospital of Taishan Medical University, Tai'an, Shandong 271000, P.R. China
| |
Collapse
|
11
|
Tian YS, Zhong D, Liu QQ, Zhao XL, Sun HX, Jin J, Wang HN, Li GZ. Upregulation of miR-216a exerts neuroprotective effects against ischemic injury through negatively regulating JAK2/STAT3-involved apoptosis and inflammatory pathways. J Neurosurg 2019; 130:977-988. [PMID: 29521586 DOI: 10.3171/2017.5.jns163165] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/08/2017] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Ischemic stroke remains a significant cause of death and disability in industrialized nations. Janus tyrosine kinase (JAK) and signal transducer and activator of transcription (STAT) of the JAK2/STAT3 pathway play important roles in the downstream signal pathway regulation of ischemic stroke-related inflammatory neuronal damage. Recently, microRNAs (miRNAs) have emerged as major regulators in cerebral ischemic injury; therefore, the authors aimed to investigate the underlying molecular mechanism between miRNAs and ischemic stroke, which may provide potential therapeutic targets for ischemic stroke. METHODS The JAK2- and JAK3-related miRNA (miR-135, miR-216a, and miR-433) expression levels were detected by real-time quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) and Western blot analysis in both oxygen-glucose deprivation (OGD)-treated primary cultured neuronal cells and mouse brain with middle cerebral artery occlusion (MCAO)-induced ischemic stroke. The miR-135, miR-216a, and miR-433 were determined by bioinformatics analysis that may target JAK2, and miR-216a was further confirmed by 3' untranslated region (3'UTR) dual-luciferase assay. The study further detected cell apoptosis, the level of lactate dehydrogenase, and inflammatory mediators (inducible nitric oxide synthase [iNOS], matrix metalloproteinase-9 [MMP-9], tumor necrosis factor-α [TNF-α], and interleukin-1β [IL-1β]) after cells were transfected with miR-NC (miRNA negative control) or miR-216a mimics and subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) damage with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, annexin V-FITC/PI, Western blots, and enzyme-linked immunosorbent assay detection. Furthermore, neurological deficit detection and neurological behavior grading were performed to determine the infarction area and neurological deficits. RESULTS JAK2 showed its highest level while miR-216a showed its lowest level at day 1 after ischemic reperfusion. However, miR-135 and miR-433 had no obvious change during the process. The luciferase assay data further confirmed that miR-216a can directly target the 3'UTR of JAK2, and overexpression of miR-216a repressed JAK2 protein levels in OGD/R-treated neuronal cells as well as in the MCAO model ischemic region. In addition, overexpression of miR-216a mitigated cell apoptosis both in vitro and in vivo, which was consistent with the effect of knockdown of JAK2. Furthermore, the study found that miR-216a obviously inhibited the inflammatory mediators after OGD/R, including inflammatory enzymes (iNOS and MMP-9) and cytokines (TNF-α and IL-1β). Upregulating miR-216a levels reduced ischemic infarction and improved neurological deficit. CONCLUSIONS These findings suggest that upregulation of miR-216a, which targets JAK2, could induce neuroprotection against ischemic injury in vitro and in vivo, which provides a potential therapeutic target for ischemic stroke.
Collapse
|
12
|
He J, Sun M, Geng H, Tian S. Long non-coding RNA Linc00518 promotes paclitaxel resistance of the human prostate cancer by sequestering miR-216b-5p. Biol Cell 2018; 111:39-50. [PMID: 30462844 DOI: 10.1111/boc.201800054] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/03/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Junhui He
- Department of Urology Surgery; Heze Municipal Hospital; Heze 274000 China
| | - Mingchong Sun
- Department of Urology Surgery; Heze Municipal Hospital; Heze 274000 China
| | - Huaizhen Geng
- Department of Urology Surgery; Heze Municipal Hospital; Heze 274000 China
| | - Sujian Tian
- Department of Urology Surgery; Heze Municipal Hospital; Heze 274000 China
| |
Collapse
|
13
|
Yao C, Liu HN, Wu H, Chen YJ, Li Y, Fang Y, Shen XZ, Liu TT. Diagnostic and Prognostic Value of Circulating MicroRNAs for Esophageal Squamous Cell Carcinoma: a Systematic Review and Meta-analysis. J Cancer 2018; 9:2876-2884. [PMID: 30123356 PMCID: PMC6096380 DOI: 10.7150/jca.25351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 06/11/2018] [Indexed: 01/08/2023] Open
Abstract
Background and Aim: MicroRNAs, dysregulated in the circulation of esophageal squamous cell carcinoma (ESCC) patient, have been assumed to be with great potential in the diagnosis and prognosis of esophageal cancer. We aimed to review previous articles on ESCC. Methods: A search of electronic databases was performed before Nov 12, 2017. We summarized the identification of microRNA imbalance in the blood of ESCC compared with the healthy controls, with the objective to evaluate the efficiency of microRNAs in diagnosing and forecasting ESCC. Results: A total of 35 studies investigating plasma or serum microRNAs were included in the meta-analysis. Based on the consequences of the quality assessment of each study, the articles involved were appropriate for quantitative synthesis. For diagnostic meta-analysis. The overall pooled sensitivity, specificity, and area under the curve of circulating microRNA is 0.794 (95% CI: 0.765 - 0.820), 0.779 (95%CI: 0.746 - 0.808), 0.86 (95%CI: 0.82 - 0.88). The diagnostic value of each microRNA was calculated respectively. For prognostic meta-analysis, the overall pooled hazard ratios of higher microRNA expression in circulation was 1.34 (95% CI: 1.14-1.58), which could significantly predict poorer survival in ESCC. Conclusions: Circulating microRNAs distinguish patients with ESCC from healthy controls with high sensitivity and specificity, compared to other invasive currently used screening methods. Simultaneously, there was prognostic value for the prognosis of ESCC.
Collapse
Affiliation(s)
- Can Yao
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Hai-Ning Liu
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Hao Wu
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Yan-Jie Chen
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Yu Li
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Ying Fang
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Xi-Zhong Shen
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China.,Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Tao-Tao Liu
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
14
|
Identification of molecular targets for esophageal carcinoma diagnosis using miRNA-seq and RNA-seq data from The Cancer Genome Atlas: a study of 187 cases. Oncotarget 2018; 8:35681-35699. [PMID: 28415685 PMCID: PMC5482608 DOI: 10.18632/oncotarget.16051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/28/2017] [Indexed: 12/14/2022] Open
Abstract
Esophageal carcinoma (ESCA) is one of the most common malignancies worldwide, and its pathogenesis is complex. In this study, we identified differentially expressed miRNAs (DEMs) and genes (DEGs) of ESCA from The Cancer Genome Atlas (TCGA) database. The diagnostic values of DEMs were determined by receiver operating characteristic (ROC) analyses and validated based on data from Gene Expression Omnibus (GEO). The top five DEMs with the best diagnostic values were selected, and their potential targets were predicted by various in silico methods. These target genes were then identified among the DEGs from TCGA. Furthermore, the overlapping genes were subjected to protein-protein interaction (PPI) analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The miRNA-transcription factor (TF) regulatory relations were determined using CircuitsDB and TransmiR. Finally, the regulatory networks of miRNA-TF and miRNA-gene were constructed and analyzed. A total of 136 DEMs and 3541 DEGs were identified in ESCA. The top five DEMs with the highest area under the receiver operating characteristic curve (AUC) values were miRNA-93 (0.953), miRNA-21 (0.928), miRNA-4746 (0.915), miRNA-196a-1 (0.906) and miRNA-196a-2 (0.906). The combined AUC of these five DEMs was 0.985. The KEGG analysis with 349 overlapping genes showed that the calcium signaling pathway and the neuroactive ligand-receptor interaction were the most relevant pathways. The regulatory networks of miRNA-TF and miRNA-gene, including 38 miRNA-TF and 560 miRNA-gene pairs, were successfully established. Our findings may provide new insights into the molecular mechanisms of ESCA pathogenesis. Future research will aim to explore the role of novel miRNAs in the pathogenesis and improve the early diagnosis of ESCA.
Collapse
|
15
|
The role of microRNAs in the occurrence and development of esophageal squamous cell carcinoma. ACTA ACUST UNITED AC 2017. [DOI: 10.31491/csrc.2017.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Meta-analysis of microRNAs as potential biomarkers for detecting esophageal carcinoma in Asian populations. Int J Biol Markers 2017; 32:e375-e383. [PMID: 28862713 DOI: 10.5301/ijbm.5000296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND: An Increasing number of studies in the literature have shown that microRNAs (miRNAs) can be used as early diagnostic markers for esophageal carcinoma (EC), but their conclusions remain controversial. Hence, we performed this meta-analysis to evaluate the diagnostic accuracy of using miRNAs in EC and to provide an experimental basis for early diagnosis of the disease. METHODS: This meta-analysis included 39 Asian studies from 18 articles, which covered 3,708 EC patients and 2,689 healthy controls. We used a bivariate random-effects model, the chi-square test and the I² test to assess sensitivity and heterogeneity. RESULTS: Pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio and diagnostic odds ratio of miRNAs for diagnosis of EC in Asians reached 0.798, 0.785, 3.705, 0.257 and 14.391, respectively. Additionally, the area under the summary receiver operating characteristic curve was 0.86. Subgroup analysis based on research country (China vs. Japan), sample types (plasma vs. serum) and miRNAs (single vs. multiple; singly reported miRNAs vs. repeatedly reported miRNAs) showed no significant difference in accuracy of diagnosis for each subgroup. CONCLUSIONS: MiRNAs can distinguish EC patients from healthy controls. Blood-based miRNAs have better diagnostic value in detecting EC than saliva-based miRNAs, whereas both serum and plasma are recommended for clinical specimens for miRNA detection.
Collapse
|
17
|
Sun J, Li X, Wang W, Li W, Gao S, Yan J. Mir-483-5p promotes the malignant transformation of immortalized human esophageal epithelial cells by targeting HNF4A. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:9391-9399. [PMID: 31966811 PMCID: PMC6965935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/20/2017] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that promote the progression of cancer by negatively regulating gene expression. Down-regulation of miR-483-5p was reported in a number of cancers. However, the biological functions of miR-483-5p in esophageal squamous cell carcinomas are not fully understood. In this study, the expression levels of miRNAs in the immortalized human esophageal epithelial cell line SHEE and the malignantly transformed esophageal carcinoma cell line SHEEC were examined by miRNA microarray chip. The expression level of miR-483-5p was verified by a quantitative reverse transcription-polymerase chain reaction. Growth, apoptosis, and colony formation ability were also examined in SHEEC cells after transfection with inhibitors targeting miR-483-5p. And the target genes of miR-483-5p were predicted using bioinformatics approaches and the expression profile of SHEEC cells transfected with the miRNA inhibitors. protein levels of the target gene in SHEEC cells with a control or miRNA inhibitors were measured using Western blotting. The expression of miR-483-5p was elevated in SHEEC cells as compared to the SHEE cells. Silencing of miR-483-5p expression in SHEEC cells inhibited both the proliferation and formation of colonies and increased apoptosis. We also identified hepatocyte nuclear factor 4α (HNF4A) as a target of miR-483-5p in SHEEC cells. Knockdown of HNF4A recapitulated the effects of miR-483-5p. Our data showed that the miR-483-5p/HNF4A axis affected the malignant transformation of immortalized human esophageal epithelial cells and is a potential therapeutic target for ESCC.
Collapse
Affiliation(s)
- Jiachun Sun
- Henan Key Laboratory of Cancer Epigenetics, Cancer InstituteHenan, China
| | - Xiangming Li
- Department of Orthopedics, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and TechnologyLuoyang 471003, China
| | - Wei Wang
- Henan Key Laboratory of Cancer Epigenetics, Cancer InstituteHenan, China
| | - Wanying Li
- Henan Key Laboratory of Cancer Epigenetics, Cancer InstituteHenan, China
| | - Shegan Gao
- Henan Key Laboratory of Cancer Epigenetics, Cancer InstituteHenan, China
| | - Junqiang Yan
- Department of Neurological Diseases Institute, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and TechnologyLuoyang 471003, China
| |
Collapse
|
18
|
Hu J, Wu C, Zhao X, Liu C. The prognostic value of decreased miR-101 in various cancers: a meta-analysis of 12 studies. Onco Targets Ther 2017; 10:3709-3718. [PMID: 28769574 PMCID: PMC5533486 DOI: 10.2147/ott.s141652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND A consensus regarding the prognostic value of decreased miR-101 in human cancers has not been reached. This study aimed to comprehensively investigate the internal associations between loss of miR-101 expression and prognostic implications in patients with cancer. MATERIALS AND METHODS All relevant literature in electronic databases, including PubMed, ISI Web of Science, and Embase, up to March 1, 2017 were searched. Correlations between decreased miR-101 and clinicopathological parameters were defined by odds ratios (ORs). The degree of association between reduced miR-101 and survival outcome was evaluated by pooled hazard ratios (HRs) and relevant 95% CIs. RESULTS Twelve eligible studies with 2,088 patients were included in this meta-analysis. Decreased miR-101 expression was closely connected with poor overall survival, with a pooled HR of 2.15 (95% CI 1.71-2.7, P<0.001). This correlation was also revealed when stratified analysis was conducted with respect to ethnicity, cancer type, sample size, specimen source, and analysis model. However, decreased miR-101 was not associated with disease-free survival, recurrence-free survival, or progression-free survival, with a pooled HR of 1.59 (95% CI 0.83-3.03, P=0.128), despite a positive trend. In addition, reduced miR-101 was intimately related to poorer tumor differentiation (OR 2.17, 95% CI 1.14-4.13; P=0.019), advanced tumor classification (OR 5.25, 95% CI 3.39-8.12; P<0.001), and higher TNM stage (OR 6.18, 95% CI 3.79-10.09; P<0.001). CONCLUSION Our findings suggest that loss of miR-101 expression is correlated with worse overall survival in a variety of cancers, and could serve as a predictive indicator for clinicopathological features. Furthermore, miR-101 may become a feasible therapeutic target in most human cancers.
Collapse
Affiliation(s)
- Jianpei Hu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunyu Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueying Zhao
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chaodong Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Corrigendum to "Predictive Value of Plasma MicroRNA-216a/b in the Diagnosis of Esophageal Squamous Cell Carcinoma". DISEASE MARKERS 2017; 2017:3437679. [PMID: 28386155 PMCID: PMC5366225 DOI: 10.1155/2017/3437679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/12/2016] [Indexed: 11/18/2022]
|