1
|
Yao L, Wang J, Wu Z, Du Q, Yang X, Li M, Zheng J. Parallel processing model for low-dose computed tomography image denoising. Vis Comput Ind Biomed Art 2024; 7:14. [PMID: 38865022 PMCID: PMC11169366 DOI: 10.1186/s42492-024-00165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024] Open
Abstract
Low-dose computed tomography (LDCT) has gained increasing attention owing to its crucial role in reducing radiation exposure in patients. However, LDCT-reconstructed images often suffer from significant noise and artifacts, negatively impacting the radiologists' ability to accurately diagnose. To address this issue, many studies have focused on denoising LDCT images using deep learning (DL) methods. However, these DL-based denoising methods have been hindered by the highly variable feature distribution of LDCT data from different imaging sources, which adversely affects the performance of current denoising models. In this study, we propose a parallel processing model, the multi-encoder deep feature transformation network (MDFTN), which is designed to enhance the performance of LDCT imaging for multisource data. Unlike traditional network structures, which rely on continual learning to process multitask data, the approach can simultaneously handle LDCT images within a unified framework from various imaging sources. The proposed MDFTN consists of multiple encoders and decoders along with a deep feature transformation module (DFTM). During forward propagation in network training, each encoder extracts diverse features from its respective data source in parallel and the DFTM compresses these features into a shared feature space. Subsequently, each decoder performs an inverse operation for multisource loss estimation. Through collaborative training, the proposed MDFTN leverages the complementary advantages of multisource data distribution to enhance its adaptability and generalization. Numerous experiments were conducted on two public datasets and one local dataset, which demonstrated that the proposed network model can simultaneously process multisource data while effectively suppressing noise and preserving fine structures. The source code is available at https://github.com/123456789ey/MDFTN .
Collapse
Affiliation(s)
- Libing Yao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Jiping Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Zhongyi Wu
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
| | - Qiang Du
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Xiaodong Yang
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Ming Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
| | - Jian Zheng
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| |
Collapse
|
2
|
X-ray CT image denoising with MINF: A modularized iterative network framework for data from multiple dose levels. Comput Biol Med 2023; 152:106419. [PMID: 36527781 DOI: 10.1016/j.compbiomed.2022.106419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/30/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
In clinical applications, multi-dose scan protocols will cause the noise levels of computed tomography (CT) images to fluctuate widely. The popular low-dose CT (LDCT) denoising network outputs denoised images through an end-to-end mapping between an LDCT image and its corresponding ground truth. The limitation of this method is that the reduced noise level of the image may not meet the diagnostic needs of doctors. To establish a denoising model adapted to the multi-noise levels robustness, we proposed a novel and efficient modularized iterative network framework (MINF) to learn the feature of the original LDCT and the outputs of the previous modules, which can be reused in each following module. The proposed network can achieve the goal of gradual denoising, outputting clinical images with different denoising levels, and providing the reviewing physicians with increased confidence in their diagnosis. Moreover, a multi-scale convolutional neural network (MCNN) module is designed to extract as much feature information as possible during the network's training. Extensive experiments on public and private clinical datasets were carried out, and comparisons with several state-of-the-art methods show that the proposed method can achieve satisfactory results for noise suppression of LDCT images. In further comparisons with modularized adaptive processing neural network (MAP-NN), the proposed network shows superior step-by-step or gradual denoising performance. Considering the high quality of gradual denoising results, the proposed method can obtain satisfactory performance in terms of image contrast and detail protection as the level of denoising increases, which shows its potential to be suitable for a multi-dose levels denoising task.
Collapse
|
3
|
Hu D, Liu J, Lv T, Zhao Q, Zhang Y, Quan G, Feng J, Chen Y, Luo L. Hybrid-Domain Neural Network Processing for Sparse-View CT Reconstruction. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3011413] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Wang S, Wu W, Feng J, Liu F, Yu H. Low-dose spectral CT reconstruction based on image-gradient L 0-norm and adaptive spectral PICCS. Phys Med Biol 2020; 65:245005. [PMID: 32693399 DOI: 10.1088/1361-6560/aba7cf] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The photon-counting detector based spectral computed tomography (CT) is promising for lesion detection, tissue characterization, and material decomposition. However, the lower signal-to-noise ratio within multi-energy projection dataset can result in poorly reconstructed image quality. Recently, as prior information, a high-quality spectral mean image was introduced into the prior image constrained compressed sensing (PICCS) framework to suppress noise, leading to spectral PICCS (SPICCS). In the original SPICCS model, the image gradient L1-norm is employed, and it can cause blurred edge structures in the reconstructed images. Encouraged by the advantages in edge preservation and finer structure recovering, the image gradient L0-norm was incorporated into the PICCS model. Furthermore, due to the difference of energy spectrum in different channels, a weighting factor is introduced and adaptively adjusted for different channel-wise images, leading to an L0-norm based adaptive SPICCS (L0-ASPICCS) algorithm for low-dose spectral CT reconstruction. The split-Bregman method is employed to minimize the objective function. Extensive numerical simulations and physical phantom experiments are performed to evaluate the proposed method. By comparing with the state-of-the-art algorithms, such as the simultaneous algebraic reconstruction technique, total variation minimization, and SPICCS, the advantages of our proposed method are demonstrated in terms of both qualitative and quantitative evaluation results.
Collapse
Affiliation(s)
- Shaoyu Wang
- Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, People's Republic of China. Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA 01854, United States of America. Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing 400044, People's Republic of China
| | | | | | | | | |
Collapse
|
5
|
Yu H, Wu W, Chen P, Gong C, Jiang J, Wang S, Liu F, Yu H. Image gradient L 0-norm based PICCS for swinging multi-source CT reconstruction. OPTICS EXPRESS 2019; 27:5264-5279. [PMID: 30876127 PMCID: PMC6410921 DOI: 10.1364/oe.27.005264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/24/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Dynamic computed tomography (CT) is usually employed to image motion objects, such as beating heart, coronary artery and cerebral perfusion, etc. Recently, to further improve the temporal resolution for aperiodic industrial process imaging, the swinging multi-source CT (SMCT) systems and the corresponding swinging multi-source prior image constrained compressed sensing (SM-PICCS) method were developed. Since the SM-PICCS uses the L1-norm of image gradient, the edge structures in the reconstructed images are blurred and motion artifacts are still present. Inspired by the advantages in terms of image edge preservation and fine structure recovering, the L0-norm of image gradient is incorporated into the prior image constrained compressed sensing, leading to an L0-PICCS Algorithm 1Table 1The parameters of L0-PICCS (δ1,δ2,λ1*,λ2*) for numerical simulation.Sourceswδ1(10-2)δ2(10-2)λ1*(10-2)λ2*(10-8)Noise-free510522.001.525522.001.55035002.00471014.33332.00500025522.00500050222.005000Noise51062002.505002554502.501.55054502.901.571027.385.91.5810000258.285.91.5850050522.001.5. The experimental results confirm that the L0-PICCS outperforms the SM-PICCS in both visual inspection and quantitative analysis.
Collapse
Affiliation(s)
- Haijun Yu
- Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
- Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing 400044, China
- College of Mechanical Engineering, Chongqing University, Chongqing 400044, China
- These authors contributed equally to the work
| | - Weiwen Wu
- Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
- Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing 400044, China
- These authors contributed equally to the work
| | - Peijun Chen
- Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Changcheng Gong
- Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
- Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Junru Jiang
- College of Mechanical Engineering, Chongqing University, Chongqing 400044, China
| | - Shaoyu Wang
- Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
- Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Fenglin Liu
- Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
- Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Hengyong Yu
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
6
|
Trinca D, Libin E. Performance of the sinogram-based iterative reconstruction in sparse view X-ray computed tomography. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2019; 27:37-49. [PMID: 30400126 DOI: 10.3233/xst-180404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Performing X-ray computed tomography (CT) examinations with less radiation has recently received increasing interest: in medical imaging this means less (potentially harmful) radiation for the patient; in non-destructive testing of materials/objects such as testing jet engines, the reduction of the number of projection angles (which for large objects is in general high) leads to a substantial decreasing of the experiment time. In the experiment, less radiation is usually achieved by either (1) reducing the radiation dose used at each projection angle or (2) using sparse view X-ray CT, which means significantly less projection angles are used during the examination. In this work, we study the performance of the recently proposed sinogram-based iterative reconstruction algorithm in sparse view X-ray CT and show that it provides, in some cases, reconstruction accuracy better than that obtained by some of the Total Variation regularization techniques. The provided accuracy is obtained with computation times comparable to other techniques. An important feature of the sinogram-based iterative reconstruction algorithm is that it is simpler and without the many parameters specific to other techniques.
Collapse
Affiliation(s)
- Dragos Trinca
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences Vila Real, Portugal
| | - Eduard Libin
- Research Institute of Applied Mathematics and Mechanics Tomsk, Russian Federation
| |
Collapse
|