1
|
Russo A, Patanè GT, Putaggio S, Lombardo GE, Ficarra S, Barreca D, Giunta E, Tellone E, Laganà G. Mechanisms Underlying the Effects of Chloroquine on Red Blood Cells Metabolism. Int J Mol Sci 2024; 25:6424. [PMID: 38928131 PMCID: PMC11203553 DOI: 10.3390/ijms25126424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Chloroquine (CQ) is a 4-aminoquinoline derivative largely employed in the management of malaria. CQ treatment exploits the drug's ability to cross the erythrocyte membrane, inhibiting heme polymerase in malarial trophozoites. Accumulation of CQ prevents the conversion of heme to hemozoin, causing its toxic buildup, thus blocking the survival of Plasmodium parasites. Recently, it has been reported that CQ is able to exert antiviral properties, mainly against HIV and SARS-CoV-2. This renewed interest in CQ treatment has led to the development of new studies which aim to explore its side effects and long-term outcome. Our study focuses on the effects of CQ in non-parasitized red blood cells (RBCs), investigating hemoglobin (Hb) functionality, the anion exchanger 1 (AE1) or band 3 protein, caspase 3 and protein tyrosine phosphatase 1B (PTP-1B) activity, intra and extracellular ATP levels, and the oxidative state of RBCs. Interestingly, CQ influences the functionality of both Hb and AE1, the main RBC proteins, affecting the properties of Hb oxygen affinity by shifting the conformational structure of the molecule towards the R state. The influence of CQ on AE1 flux leads to a rate variation of anion exchange, which begins at a concentration of 2.5 μM and reaches its maximum effect at 20 µM. Moreover, a significant decrease in intra and extracellular ATP levels was observed in RBCs pre-treated with 10 µM CQ vs. erythrocytes under normal conditions. This effect is related to the PTP-1B activity which is reduced in RBCs incubated with CQ. Despite these metabolic alterations to RBCs caused by exposure to CQ, no signs of variations in oxidative state or caspase 3 activation were recorded. Our results highlight the antithetical effects of CQ on the functionality and metabolism of RBCs, and encourage the development of new research to better understand the multiple potentiality of the drug.
Collapse
Affiliation(s)
| | - Giuseppe Tancredi Patanè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.T.P.); (S.P.); (S.F.); (E.T.); (G.L.)
| | - Stefano Putaggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.T.P.); (S.P.); (S.F.); (E.T.); (G.L.)
| | | | - Silvana Ficarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.T.P.); (S.P.); (S.F.); (E.T.); (G.L.)
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.T.P.); (S.P.); (S.F.); (E.T.); (G.L.)
| | - Elena Giunta
- Virology and Microbiology AOOR Papardo-Piemonte, 98166 Messina, Italy;
| | - Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.T.P.); (S.P.); (S.F.); (E.T.); (G.L.)
| | - Giuseppina Laganà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.T.P.); (S.P.); (S.F.); (E.T.); (G.L.)
| |
Collapse
|
2
|
Obukohwo OM, Ben-Azu B, Nwangwa EK, Ohwin EP, Igweh JC, Adeogun Adetomiwa E. Adverse hematological profiles associated with chlorpromazine antipsychotic treatment in male rats: Preventive and reversal mechanisms of taurine and coenzyme-Q10. Toxicol Rep 2024; 12:448-462. [PMID: 38693965 PMCID: PMC11061245 DOI: 10.1016/j.toxrep.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/01/2024] [Accepted: 04/13/2024] [Indexed: 05/03/2024] Open
Abstract
Chlorpromazine (CPZ) is one of the most effective antipsychotic drugs used for managing psychotic related disorders owing to its dopamine receptor blocking action. However, pharmacological investigations against CPZ's cytotoxic effect have remained scarce. Hence, this study investigated the preventive and reversal effects of taurine and coenzyme-Q10 (COQ-10), which are compounds with proven natural antioxidant properties, against CPZ-induced hematological impairments in male rats. In the preventive study, rats received oral saline (10 ml/kg), taurine (150 mg/kg/day), COQ-10 (10 mg/kg/day) or in combination for 56 days, alongside CPZ (30 mg/kg, p.o.) between days 29-56. In the reversal protocol, rats had CPZ repeatedly for 56 days before taurine and COQ-10 treatments or their combination from days 29-56. Rats were also given taurine (150 mg/kg/day), and COQ-10 (10 mg/kg/day) alone for 56 days. Serums were extracted and assayed for hematological, with oxidative and inflammatory markers. CPZ induced decreased red/white blood cells, erythropoietin, platelet count, packed cell volume and hemoglobin, neutrophil, and lymphocyte, which were prevented and reversed by taurine and COQ-10, or their combination. Taurine and COQ-10 improved mean corpuscular volume, hemoglobin concentration, with increased erythropoietin levels relative to CPZ groups. CPZ-induced increased malondialdehyde, tumor necrosis factor-alpha and interleukin-6 levels with decreased interleukin-10, glutathione, and superoxide-dismutase were prevented and reversed by taurine and COQ-10 in comparison with CPZ groups. Taurine and COQ-10 alone notably improved the antioxidant/anti-inflammatory status relative to controls. Among other mechanisms, taurine and COQ-10 abated CPZ-induced hematological deficiencies, via decreased serum levels of oxidative stress, and pro-inflammatory cytokines release, with increased antioxidants and anti-inflammation function.
Collapse
Affiliation(s)
- Oyovwi Mega Obukohwo
- Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria
| | - Benneth Ben-Azu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Eze Kingsley Nwangwa
- Department of Physiology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Ejiro Peggy Ohwin
- Department of Physiology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - John C. Igweh
- Department of Physiology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Delta State, Nigeria
| | | |
Collapse
|
3
|
Impellitteri F, Yunko K, Calabrese G, Porretti M, Martyniuk V, Gnatyshyna L, Nava V, Potortì AG, Piccione G, Di Bella G, Stoliar O, Faggio C. Chlorpromazine's impact on Mytilus galloprovincialis: a multi-faceted investigation. CHEMOSPHERE 2024; 350:141079. [PMID: 38160957 DOI: 10.1016/j.chemosphere.2023.141079] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
The antipsychotic chlorpromazine (Cpz) has raised concern as a pharmaceutical effluent due to its wide medical applications. Moreover, its potent pro-oxidant properties and impact on the cell viability of the marine mollusc Mytilus galloprovincialis, even at low concentrations (ng/L), have been noted. Based on this evidence, in this study, we investigated the physiological effects of Cpz on M. galloprovincialis, to elucidate its fate within the organism, in terms of bioaccumulation, biotransformation, byssus changes and stress responses of the cellular thiolome. Histological and indicators of vitality analyses were also performed to better evaluate the influence of the drug on the morphology and cell viability of the digestive gland. To this end, two different concentrations of Cpz (Cpz I (12 ng/L or 37 pM) and Cpz II (12 μg/L or 37 nM)) were administered to mussels over 14 days. Cpz accumulation in the digestive gland significantly increased with water concentration (BCF of Cpz I and Cpz II). Biochemical analyses indicated lysosomal dysfunction, reflected in elevated total Cathepsin D activity and compromised lysosomal membrane stability. Stress-related and metal-buffering proteins (GST and metallothionein) responded to both Cpz concentrations. Cpz I induced phase I biotransformation activity (CYP450-dependent EROD), while Cpz II triggered caspase-3 activation, indicative of detoxification overload. Histological analysis revealed digestive gland atrophy, epithelial thinning, haemocyte infiltration, and brown cell presence. Byssus analysis showed significant alterations. In conclusion, our study underscores Cpz-induced physiological and histological changes in M. galloprovincialis, posing potential implications for mussel health and confirming the utilisation of this mussel as an indication of Cpz ecotoxicity.
Collapse
Affiliation(s)
- Federica Impellitteri
- Dept. of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci Snc, 98168, Messina, Italy.
| | - Katerina Yunko
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027, Ternopil, Ukraine.
| | - Giovanna Calabrese
- Dept. of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Miriam Porretti
- Dept. of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy.
| | - Viktoria Martyniuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027, Ternopil, Ukraine.
| | - Lesya Gnatyshyna
- I.Ya. Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001, Ternopil, Ukraine.
| | - Vincenzo Nava
- University of Messina, Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), 98100, Messina, Italy.
| | - Angela Giorgia Potortì
- University of Messina, Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), 98100, Messina, Italy.
| | - Giuseppe Piccione
- Dept. of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci Snc, 98168, Messina, Italy.
| | - Giuseppa Di Bella
- University of Messina, Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), 98100, Messina, Italy.
| | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027, Ternopil, Ukraine; Dept. of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy.
| | - Caterina Faggio
- Dept. of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy; Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
4
|
Singh N, Mudassir M, Ansari S, Chosdol K, Sinha S, Chattopadhyay P. Poly(lactic-co-glycolic) acid nanoparticles localize in vesicles after diffusing into cells and are retained by intracellular traffic modulators. Nanomedicine (Lond) 2023; 18:1907-1919. [PMID: 38078434 DOI: 10.2217/nnm-2023-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Aim: We investigated our previous finding of increased retention of poly(lactic-co-glycolic) acid nanoparticles (PLGA-NPs) with metabolic inhibitors (MI) and studied the effect of some small molecule inhibitors on PLGA-NP assimilation. Materials & methods: Intracellular PLGA-NP colocalization in the presence of MI was investigated by confocal microscopy. Intracellular retention of PLGA-NPs by some small molecules was estimated by fluorescence microscopy and flow cytometry after Pulse/Chase experiments. Results: MI caused PLGA-NP colocalization in intracellular membranous structures, mainly endosomes and lysosomes. Some small molecule inhibitors demonstrated increased intracellular PLGA-NP accumulation. Conclusion: This study elucidates the movement of PLGA-NP in cells and suggests that clinically used small molecules can reduce their extrusion by enhancing their stay within intracellular vesicles, with possible clinically beneficial consequences.
Collapse
Affiliation(s)
- Neha Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Madeeha Mudassir
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
- Department of Obstetrics and Gynaecology, University College of Medical Sciences, GTB Hospital, Delhi, 110095, India
| | - Shiba Ansari
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
- Department of Biochemistry, University College of Medical Sciences, GTB Hospital, Delhi, 110095, India
| | - Kunzang Chosdol
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | |
Collapse
|
5
|
Impellitteri F, Yunko K, Martyniuk V, Khoma V, Piccione G, Stoliar O, Faggio C. Cellular and oxidative stress responses of Mytilus galloprovincialis to chlorpromazine: implications of an antipsychotic drug exposure study. Front Physiol 2023; 14:1267953. [PMID: 37772055 PMCID: PMC10526897 DOI: 10.3389/fphys.2023.1267953] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023] Open
Abstract
Introduction: Bivalve molluscs like Mytilus galloprovincialis are valuable bioindicators due to their filter-feeding lifestyle, wide distribution, and ability to concentrate xenobiotics. Studying the effects of pharmaceuticals on these molluscs is crucial given their presence in surface waters. This study investigated the response of M. galloprovincialis to chlorpromazine (Cpz), an antipsychotic with antiviral activity against influenza, HIV, and coronaviruses in human cells. Methods: In this study, we examined the 14-day impact of chlorpromazine (Cpz) on the model species M. galloprovincialis at two concentrations (Cpz 1: 12 ng L-1 or 37 pM; Cpz 2: 12 µg L-1 or 37 nM). To ensure controlled exposure, a stock solution of Cpz was prepared and introduced into the tanks to match the intended concentrations. Seawater and stock solutions were refreshed every 48 h. The primary focus of this study centered on evaluating cell viability, cell volume regulation, and oxidative stress indicators. Results: Although cell volume regulation, as assessed by decreasing regulatory volume Regulation volume decrease, did not show statistically significant changes during the experiment, digestive cell viability, on the other hand, showed a significant decrease (p < 0.01) in the Cpz 2 group, suggesting effects on the general health and survival of these cells. Biochemically, in both Cpz 1 and Cpz 2, superoxide dismutase activity increased, while catalase (CAT) decreased, causing an elevated lipid peroxidation thiobarbituric acid-reactive substances and protein carbonyls, particularly in the Cpz 2 group. The level of reduced glutathione (GSH) increased in both exposures, whereas the level of GSSG increased only in the Cpz 1 group. Consequently, the GSH/GSSG ratio was elevated in the Cpz 2 group only. Discussion: A comparison of the magnitudes of anti- and pro-oxidative manifestations indicated a pro-oxidative shift in both exposures. These findings show that Cpz induces non-specific symptoms of biochemical and cellular disturbances in M. galloprovincialis even at the low picomolar concentration.
Collapse
Affiliation(s)
| | - Kateryna Yunko
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Viktoria Martyniuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Vira Khoma
- Ternopil Scientific Research Forensic Center of the Ministry of Internal Affairs of Ukraine, Ternopil, Ukraine
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
6
|
Yang M, Wang C, Zhao G, Kong D, Liu L, Yuan S, Chen W, Feng C, Li Z. Comparative Analysis of the Pre- and Post-Medication Effects of Antipsychotic Agents on the Blood-Based Oxidative Stress Biomarkers in Patients with Schizophrenia: A Meta-Analysis. Curr Neuropharmacol 2023; 21:340-352. [PMID: 35794775 PMCID: PMC10190148 DOI: 10.2174/1570159x20666220706101021] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 04/19/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Studies have shown that oxidative stress (OS) is related to the pathophysiology of schizophrenia (SCZ), but whether antipsychotics can induce OS has not been investigated well. Moreover, antipsychotics have differential effects on the OS level modulation, i.e., different types of antipsychotics have different effects on the cellular antioxidants or pro-oxidants. METHODS We followed the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines and investigated the OS indicators including both enzymatic and nonenzymatic markers, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), malondialdehyde (MDA), glutathione (GSH), vitamin C, etc., of SCZ patients at baseline and follow-up of mono-medication. RESULTS Twenty studies met the inclusion criteria, with a total of 1162 patients enrolled at baseline, and 1105 patients completed the follow-up. OS markers were changed after a period of antipsychotic treatment in SCZ patients. The GPx activity and MDA level decreased in the whole blood (P<0.05), also the serum MDA level decreased (P<0.05). For the first-episode SCZ patients, the activity of GPx and the level of MDA decreased, while the level of vitamin C increased (all P<0.05). The levels of MDA in patients receiving atypical antipsychotics decreased (P<0.05), while the level of GSH in patients with typical antipsychotics decreased (P=0.05). CONCLUSION Antipsychotic medication may cause changes in the levels of OS markers in different blood samples of SCZ patients. However, the available studies might not be sufficient to reveal the underlying facts accurately due to the poor quality of experimental designs in the published literature.
Collapse
Affiliation(s)
- Mi Yang
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Chunzhi Wang
- Department of Psychiatry, Qingdao Mental Health Center, Qingdao, China
| | - Guocheng Zhao
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Di Kong
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Liju Liu
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Shuai Yuan
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Wei Chen
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Can Feng
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Zezhi Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Psychiatry, Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| |
Collapse
|
7
|
Sfera A, Hazan S, Anton JJ, Sfera DO, Andronescu CV, Sasannia S, Rahman L, Kozlakidis Z. Psychotropic drugs interaction with the lipid nanoparticle of COVID-19 mRNA therapeutics. Front Pharmacol 2022; 13:995481. [PMID: 36160443 PMCID: PMC9503827 DOI: 10.3389/fphar.2022.995481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
The messenger RNA (mRNA) vaccines for COVID-19, Pfizer-BioNTech and Moderna, were authorized in the US on an emergency basis in December of 2020. The rapid distribution of these therapeutics around the country and the world led to millions of people being vaccinated in a short time span, an action that decreased hospitalization and death but also heightened the concerns about adverse effects and drug-vaccine interactions. The COVID-19 mRNA vaccines are of particular interest as they form the vanguard of a range of other mRNA therapeutics that are currently in the development pipeline, focusing both on infectious diseases as well as oncological applications. The Vaccine Adverse Event Reporting System (VAERS) has gained additional attention during the COVID-19 pandemic, specifically regarding the rollout of mRNA therapeutics. However, for VAERS, absence of a reporting platform for drug-vaccine interactions left these events poorly defined. For example, chemotherapy, anticonvulsants, and antimalarials were documented to interfere with the mRNA vaccines, but much less is known about the other drugs that could interact with these therapeutics, causing adverse events or decreased efficacy. In addition, SARS-CoV-2 exploitation of host cytochrome P450 enzymes, reported in COVID-19 critical illness, highlights viral interference with drug metabolism. For example, patients with severe psychiatric illness (SPI) in treatment with clozapine often displayed elevated drug levels, emphasizing drug-vaccine interaction.
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, San Bernardino, CA, United States
- Department of Psychiatry, University of California, Riverside, Riverside, CA, United States
| | - Sabine Hazan
- Department of Psychiatry, University of California, Riverside, Riverside, CA, United States
| | - Jonathan J. Anton
- Patton State Hospital, San Bernardino, CA, United States
- Department of Biology, California Baptist University, Riverside, CA, United States
| | - Dan O. Sfera
- Patton State Hospital, San Bernardino, CA, United States
| | | | | | - Leah Rahman
- Department of Medicine, University of Oregon, Eugene, OR, United States
| | - Zisis Kozlakidis
- International Agency For Research On Cancer (IARC), Lyon, France
| |
Collapse
|
8
|
Red blood cells serve as a vehicle for PEDV transmission. Vet Microbiol 2021; 257:109081. [PMID: 33901803 DOI: 10.1016/j.vetmic.2021.109081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/18/2021] [Indexed: 01/02/2023]
Abstract
As the most abundant cell type in the blood, red blood cells (RBCs) are serving for transporting oxygen. However, the mechanism by which RBCs binding virus remains largely unknown. Here, we demonstrated that porcine epidemic diarrhea virus (PEDV), a kind of coronavirus, could hijack RBCs and cause typical diarrhea in neonatal piglets. In an epidemiology investigation of PEDV, the RBCs samples from diarrheic pigs in several pig farms were found to be PEDV-positive. PEDV could bind to neonatal RBCs through CD71 and clathrin-mediated endocytosis, and its viability was maintained for 12 h. PEDV-loaded RBCs could transfer the virus to CD3+ T cells by conjugation and reach the intestine mucosa, where it caused infection. Finally, a further animal challenge revealed that transfusing with PEDV-loaded RBCs could cause intestinal epithelial cells (IECs) infection and typical diarrhea symptom. Therefore, our studies illustrated the mechanism by which PEDV could cause intestinal infection through hijacking RBCs, further providing a novel insight into the role of RBCs as potential cells for viral transmission in coronavirus pathogenesis.
Collapse
|
9
|
Madireddy S, Madireddy S. Regulation of Reactive Oxygen Species-Mediated Damage in the Pathogenesis of Schizophrenia. Brain Sci 2020; 10:brainsci10100742. [PMID: 33081261 PMCID: PMC7603028 DOI: 10.3390/brainsci10100742] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/06/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
The biochemical integrity of the brain is paramount to the function of the central nervous system, and oxidative stress is a key contributor to cerebral biochemical impairment. Oxidative stress, which occurs when an imbalance arises between the production of reactive oxygen species (ROS) and the efficacy of the antioxidant defense mechanism, is believed to play a role in the pathophysiology of various brain disorders. One such disorder, schizophrenia, not only causes lifelong disability but also induces severe emotional distress; however, because of its onset in early adolescence or adulthood and its progressive development, consuming natural antioxidant products may help regulate the pathogenesis of schizophrenia. Therefore, elucidating the functions of ROS and dietary antioxidants in the pathogenesis of schizophrenia could help formulate improved therapeutic strategies for its prevention and treatment. This review focuses specifically on the roles of ROS and oxidative damage in the pathophysiology of schizophrenia, as well as the effects of nutrition, antipsychotic use, cognitive therapies, and quality of life on patients with schizophrenia. By improving our understanding of the effects of various nutrients on schizophrenia, it may become possible to develop nutritional strategies and supplements to treat the disorder, alleviate its symptoms, and facilitate long-term recovery.
Collapse
Affiliation(s)
- Samskruthi Madireddy
- Independent Researcher, 1353 Tanaka Drive, San Jose, CA 95131, USA
- Correspondence: ; Tel.: +1-408-9214162
| | - Sahithi Madireddy
- Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA;
| |
Collapse
|
10
|
Is a dangerous blood clot formation a reversible process? Introduction of new characteristic parameter for thermodynamic clot blood characterization: Possible molecular mechanisms and pathophysiologic applications. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.04.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Expanding the Repertoire of Dielectric Fractional Models: A Comprehensive Development and Functional Applications to Predict Metabolic Alterations in Experimentally-Inaccessible Cells or Tissues. FLUIDS 2018. [DOI: 10.3390/fluids3010009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Plenge-Tellechea F, Domínguez-Solís CA, Díaz-Sánchez ÁG, Meléndez-Martínez D, Vargas-Medrano J, Sierra-Fonseca JA. Chlorpromazine and dimethyl sulfoxide modulate the catalytic activity of the plasma membrane Ca 2+-ATPase from human erythrocyte. J Bioenerg Biomembr 2018; 50:59-69. [PMID: 29313294 DOI: 10.1007/s10863-017-9741-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/28/2017] [Indexed: 01/03/2023]
Abstract
The plasma membrane Ca2+-ATPase (PMCA) removes Ca2+ from the cytosol into the extracellular space. Its catalytic activity can be stimulated by calmodulin (CaM) or by limited proteolysis. We evaluated the effect of chlorpromazine (CPZ) and dimethyl sulfoxide (DMSO) over the hydrolytic activity of PMCA. Activity was monitored in three different forms: native, CaM-activated and proteolyzed by trypsin. CPZ appears to inhibit PMCA without directly interfering with the C-terminal site, since it is affected by CaM and proteolysis. Although the treatment of PMCA with trypsin and CaM produces an activation, it also produces an enzymatic form that is more sensitive to inhibition by CPZ. The same case was observed in the DMSO inhibition experiments. In the absence of CPZ, DMSO produces a progressive loss of activity, but in the presence of CPZ the profile of activity against DMSO changes and produces a recovery of activity, indicating a possible partition of CPZ by the solvent. Increasing Ca2+ concentrations indicated that CPZ interacts with PMCA rather than with CaM. This observation is supported by docking analysis that suggests that the CPZ-PMCA interaction is non-competitive. We propose that CPZ interacts with the state of lower affinity for Ca2 +.
Collapse
Affiliation(s)
- Fernando Plenge-Tellechea
- Laboratorio de Biología Molecular y Bioquímica (Edif. T-216), Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, C. P. 32310, Ciudad Juárez, CHI, Mexico. .,Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Plutarco Elías Calles #1210, Fovissste Chamizal, Ciudad Juárez, C.P. 32310, Chihuahua, Mexico.
| | - Carlos A Domínguez-Solís
- Laboratorio de Biología Molecular y Bioquímica (Edif. T-216), Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, C. P. 32310, Ciudad Juárez, CHI, Mexico
| | - Ángel G Díaz-Sánchez
- Laboratorio de Biología Molecular y Bioquímica (Edif. T-216), Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, C. P. 32310, Ciudad Juárez, CHI, Mexico
| | - David Meléndez-Martínez
- Laboratorio de Biología Molecular y Bioquímica (Edif. T-216), Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, C. P. 32310, Ciudad Juárez, CHI, Mexico
| | - Javier Vargas-Medrano
- Laboratorio de Biología Molecular y Bioquímica (Edif. T-216), Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, C. P. 32310, Ciudad Juárez, CHI, Mexico.,Department of Biomedical Sciences, Center of Emphasis for Neurosciences, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA
| | - Jorge A Sierra-Fonseca
- Laboratorio de Biología Molecular y Bioquímica (Edif. T-216), Departamento de Ciencias Químico-Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, C. P. 32310, Ciudad Juárez, CHI, Mexico.,Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA
| |
Collapse
|